ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4381
Committed: Tue Oct 27 16:39:50 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 11828 byte(s)
Log Message:
Edits

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 Gold -- gold interactions were described by the quantum Sutton-Chen
29 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
30 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
31 located at the carbon centers for alkyl groups. Bonding interactions
32 were used for intra-molecular sites closer than 3 bonds. Effective
33 Lennard-Jones potentials were used for non-bonded interactions.
34
35 \begin{table}[h]
36 \centering
37 \caption{Properties of the United atom sites. \label{tab:atypes}}
38 \begin{tabular}{ c|cccc }
39 \toprule
40 atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
41 \colrule
42 \ce{CH3} & 15.04 & 0.1947 & 3.75 & \\
43 \ce{CH2} & 14.03 & 0.09141 & 3.95 & \\
44 \ce{CH} & 13.02 & 0.01987 & 4.68 & \\
45 \ce{CHene} & 13.02 & 0.09340 & 3.73 & \\
46 \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\
47 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
48 \ce{CHar} & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
49 \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
50 \botrule
51 \end{tabular}
52 \end{table}
53
54 The TraPPE-UA force field includes parameters for thiol
55 molecules\cite{TraPPE-UA.thiols} which were used for the
56 alkanethiolate molecules in our simulations. To derive suitable
57 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
58 the S parameters from Luedtke and Landman\cite{landman:1998} and
59 modified the parameters for the CTS atom to maintain charge neutrality
60 in the molecule.
61
62 Bonds are typically rigid in TraPPE-UA, and for flexible bonds, we
63 utilized bond stretching spring constants from
64
65 \begin{table}[h]
66 \centering
67 \caption{Bond parameters. \label{tab:bond}}
68 \begin{tabular}{ cc|lll }
69 \toprule
70 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
71 \colrule
72 \ce{CH3} & \ce{CH3} & 1.540 & 536 & \\
73 \ce{CH3} & \ce{CH2} & 1.540 & 536 & \\
74 \ce{CH3} & \ce{CH} & 1.540 & 536 & \\
75 \ce{CH2} & \ce{CH2} & 1.540 & 536 & \\
76 \ce{CH2} & \ce{CH} & 1.540 & 536 & \\
77 \ce{CH} & \ce{CH} & 1.540 & 536 & \\
78 \ce{CHene} & \ce{CHene} & 1.330 & 1098 & \\
79 \ce{CH2ene} & \ce{CHene} & 1.330 & 1098 & \\
80 \ce{CH3} & \ce{CHene} & 1.540 & 634 & \\
81 \ce{CH2} & \ce{CHene} & 1.540 & 634 & \\
82 S & \ce{CH2} & 1.820 & 444 & \\
83 \ce{CHar} & \ce{CHar} & 1.40 & 938 & \\
84 \ce{CHar} & \ce{CH2} & 1.540 & 536 & \\
85 \ce{CHar} & \ce{CH3} & 1.540 & 536 & \\
86 \ce{CH2ar} & \ce{CHar} & 1.40 & 938 &
87 \protect\cite{William-L.-Jorgensen:1996uq} \\
88 S & \ce{CHar} & 1.80384 & 527.951 & fit \\
89 \botrule
90 \end{tabular}
91 \end{table}
92
93
94 To describe the interactions between metal (Au) and non-metal atoms,
95 potential energy terms were adapted from an adsorption study of alkyl
96 thiols on gold surfaces by Vlugt, \textit{et
97 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
98 Lennard-Jones form of potential parameters for the interaction between
99 Au and pseudo-atoms CH$_x$ and S based on a well-established and
100 widely-used effective potential of Hautman and Klein for the Au(111)
101 surface.\cite{hautman:4994}
102
103 Parameters not found in the TraPPE-UA force field for the
104 intramolecular interactions of the conjugated and the penultimate
105 alkenethiolate ligands were calculated using constrained geometry
106 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
107 the 6-31G(d,p) basis set. Structures were scanned starting at the
108 minimum energy gas phase structure for small ($C_4$) ligands. Only
109 one degree of freedom was constrained for any given scan -- all other
110 atoms were allowed to minimize subject to that constraint. The
111 resulting potential energy surfaces were fit to a harmonic potential
112 for the bond stretching,
113 \begin{equation}
114 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
115 \end{equation}
116 and angle bending potentials,
117 \begin{equation}
118 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
119 \end{equation}
120 Torsional potentials were fit to the TraPPE torsional function,
121 \begin{equation}
122 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
123 \end{equation}
124
125 For the penultimate thiolate ligands, the model molecule used was
126 2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
127 scanned to fit an equilibrium angle and force constant, as well as one
128 torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
129 potentials also served as model for the longer conjugated thiolate
130 ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
131 torsion parameters for (\ce{S-CH2-CHar-CHar}).
132
133 For the $C_4$ conjugated thiolate ligands, the model molecule for the
134 quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
135 ligand required fitting one bond (\ce{S-CHar}), and one bend angle
136 (\ce{S-CHar-CHar}).
137
138 The geometries of the model molecules were optimized prior to
139 performing the constrained angle scans, and the fit values for the
140 bond, bend, and torsional parameters were in relatively good agreement
141 with similar parameters already present in TraPPE.
142
143
144 \begin{table}[h]
145 \centering
146 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
147 \begin{tabular}{ ccc|lll }
148 \toprule
149 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
150 \colrule
151 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
152 \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
153 \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154 \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155 \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156 \ce{CH3} & \ce{CH2} & \ce{CH} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157 \ce{CHene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
158 \ce{CHene} & \ce{CHene} & \ce{CHene} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
159 \ce{CH2ene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160 \ce{CHene} & \ce{CHene} & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161 \ce{CH2} & \ce{CH2} & \ce{CHene} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
162 \ce{CHar} & \ce{CHar} & \ce{CHar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
163 \ce{CHar} & \ce{CHar} & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
164 \ce{CHar} & \ce{CHar} & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165 \ce{CHar} & \ce{CHar} & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166 S & \ce{CH2} & \ce{CHene} & 109.97 & 127.37 & fit \\
167 S & \ce{CH2} & \ce{CHar} & 109.97 & 127.37 & fit \\
168 S & \ce{CHar} & \ce{CHar} & 123.911 & 138.093 & fit \\
169 \botrule
170 \end{tabular}
171 \end{table}
172
173 \begin{table}[h]
174 \centering
175 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
176 and wildcard atom types are denoted by ``X''. All $c_n$ parameters
177 have units of kcal/mol. The torsions around doubly-bonded carbons
178 are harmonic and assume a trans (180$\degree$) geometry. The force
179 constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
180 \begin{tabular}{ cccc|lllll }
181 \toprule
182 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
183 \colrule
184 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
185 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
186 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
190 X & \ce{CHene} & \ce{CHene} & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
191 X & \ce{CHar} & \ce{CHar} & X & & & & & \\ \colrule
192 \ce{CH2} & \ce{CH2} & \ce{CHene} & \ce{CHene} & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
193 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CHene} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
194 \ce{CHene} & \ce{CHene} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
195 \ce{CHar} & \ce{CHar} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
196 \botrule
197 \end{tabular}
198 \end{table}
199
200 \begin{table}[h]
201 \centering
202 \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
203 \begin{tabular}{ cc|ccc }
204 \toprule
205 $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
206 \colrule
207 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
208 Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
209 Au &\ce{CHene} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
210 Au &\ce{CHar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
211 Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
212 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
213 \botrule
214 \end {tabular}
215 \end{table}
216 \newpage
217 \bibliographystyle{aip}
218 \bibliography{NPthiols}
219
220 \end{document}