ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4380
Committed: Tue Oct 27 01:30:49 2015 UTC (9 years, 9 months ago) by skucera
Content type: application/x-tex
File size: 12160 byte(s)
Log Message:
added molecule 

File Contents

# Content
1 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2 \usepackage{graphicx} % needed for figures
3 \usepackage{dcolumn} % needed for some tables
4 \usepackage{bm} % for math
5 \usepackage{amssymb} % for math
6 %\usepackage{booktabs}
7 \usepackage[english]{babel}
8 \usepackage{multirow}
9 \usepackage{tablefootnote}
10 \usepackage{times}
11 \usepackage[version=3]{mhchem}
12 \usepackage{lineno}
13 \usepackage{gensymb}
14 \usepackage{multirow}
15
16 \begin{document}
17
18 \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19 Gold Nanospheres}
20 \author{Kelsey M. Stocker}
21 \author{Suzanne M. Neidhart}
22 \author{J. Daniel Gezelter}
23 \email{gezelter@nd.edu}
24 \affiliation{Department of Chemistry and Biochemistry, University of
25 Notre Dame, Notre Dame, IN 46556}
26
27 \maketitle
28 \vfill
29
30 Gold -- gold interactions were described by the quantum Sutton-Chen
31 (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
32 TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
33 located at the carbon centers for alkyl groups. Bonding interactions
34 were used for intra-molecular sites closer than 3 bonds. Effective
35 Lennard-Jones potentials were used for non-bonded interactions.
36
37 The TraPPE-UA force field includes parameters for thiol
38 molecules\cite{TraPPE-UA.thiols} which were used for the
39 alkanethiolate molecules in our simulations. To derive suitable
40 parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
41 the S parameters from Luedtke and Landman\cite{landman:1998} and
42 modified the parameters for the CTS atom to maintain charge neutrality
43 in the molecule.
44
45 To describe the interactions between metal (Au) and non-metal atoms,
46 potential energy terms were adapted from an adsorption study of alkyl
47 thiols on gold surfaces by Vlugt, \textit{et
48 al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
49 Lennard-Jones form of potential parameters for the interaction between
50 Au and pseudo-atoms CH$_x$ and S based on a well-established and
51 widely-used effective potential of Hautman and Klein for the Au(111)
52 surface.\cite{hautman:4994}
53
54 \begin{table}[h]
55 \centering
56 \caption{Properties of the United atom sites. \label{tab:atypes}}
57 \begin{tabular}{ c|cccc }
58 \toprule
59 atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
60 \colrule
61 CH3 & 15.04 & 0.1947 & 3.75 & \\
62 CH2 & 14.03 & 0.09141 & 3.95 & \\
63 CH & 13.02 & 0.01987 & 4.68 & \\
64 CHene & 13.02 & 0.09340 & 3.73 & \\
65 CH2ene & 14.03 & 0.16891 & 3.675 & \\
66 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
67 CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
68 CH2ar & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
69 \botrule
70 \end{tabular}
71 \end{table}
72
73 Parameters not found in the TraPPE-UA force field for the
74 intramolecular interactions of the conjugated and the penultimate
75 alkenethiolate ligands were calculated using constrained geometry
76 scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
77 the 6-31G(d,p) basis set. Structures were scanned starting at the
78 minimum energy gas phase structure for small ($C_4$) ligands. Only
79 one degree of freedom was constrained for any given scan -- all other
80 atoms were allowed to minimize subject to that constraint. The
81 resulting potential energy surfaces were fit to a harmonic potential
82 for the bond stretching,
83 \begin{equation}
84 V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
85 \end{equation}
86 and angle bending potentials,
87 \begin{equation}
88 V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
89 \end{equation}
90 Torsional potentials were fit to the TraPPE torsional function,
91 \begin{equation}
92 V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
93 \end{equation}
94
95 Say something here about which molecules were used for which scans.... I did the butadiene. I am not sure what molecule was used for the penultimate calculations, that was done when I first came to ND.
96 Butadienethiolate was used for the shortest conjugated thiolate ligand. The molecule was made in Avogardo and a geometry optimization was performed before the scans of the bond, bend, and torsion were calculated.
97
98 The fit values for the bond, bend, and torsional parameters were in
99 relatively good agreement with similar parameters already present in
100 TraPPE.
101
102
103 to find an equilibrium bend angles $\theta_0$ and spring constants,
104 $k$. Torsional parameters were fit to the same part of the
105 penultimate ligand (\(S - CH_{2}- CH-CH)\)
106 for the rotation around the \( CH_{2}- CH\)
107 bond. This potential energy surface was then fit to
108
109 \begin{table}[h]
110 \centering
111 \caption{Bond parameters. \label{tab:bond}}
112 \begin{tabular}{ cc|lll }
113 \toprule
114 $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
115 \colrule
116 CH3 & CH3 & 1.540 & 536 & \\
117 CH3 & CH2 & 1.540 & 536 & \\
118 CH3 & CH & 1.540 & 536 & \\
119 CH2 & CH2 & 1.540 & 536 & \\
120 CH2 & CH & 1.540 & 536 & \\
121 CH & CH & 1.540 & 536 & \\
122 Chene & CHene & 1.330 & 1098 & \\
123 CH2ene & CHene & 1.330 & 1098 & \\
124 CH3 & CHene & 1.540 & 634 & \\
125 CH2 & CHene & 1.540 & 634 & \\
126 S & CH2 & 1.820 & 444 & \\
127 CHar & CHar & 1.40 & 938 & \\
128 CHar & CH2 & 1.540 & 536 & \\
129 CHar & CH3 & 1.540 & 536 & \\
130 CH2ar & CHar & 1.40 & 938 & \\
131 S & CHar & 1.80384 & 527.951 & fit \\
132 \botrule
133 \end{tabular}
134 \end{table}
135
136 \begin{table}[h]
137 \centering
138 \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
139 \begin{tabular}{ ccc|lll }
140 \toprule
141 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
142 \colrule
143 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
144 CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
145 CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
146 CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
147 CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
148 CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
149 CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
150 CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
151 CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
152 CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
153 CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154 CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
155 CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
156 CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
157 CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
158 S & CH2 & CHene & 109.97 & 127.37 & fit \\
159 S & CH2 & CHar & 109.97 & 127.37 & fit \\
160 S & CHar & CHar & 123.911 & 138.093 & fit \\
161 \botrule
162 \end{tabular}
163 \end{table}
164
165 The conjugated system was fit to a bond, bend, and torsion. The
166 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
167 was fit to a potential energy surface to find an equilibrium bond
168 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
169 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
170 A bend parameter for the beginning the longer conjugated ligands
171 (\(S - CH_2- CH)\),
172 was approximated to be equal to the shortest penultimate ligand
173 parameters found. For the shortest conjugated ligand the first bend
174 (\(S - CH- CH)\)
175 was fit a potential energy surface in the same manor as the
176 penultimate bend. The torsion for the first four atoms of the two
177 longer conjugated systems is equal to the torsion calculated for the
178 penultimate system.
179
180 \begin{table}[h]
181 \centering
182 \caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''. All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}}
183 \begin{tabular}{ cccc|lllll }
184 \toprule
185 $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
186 \colrule
187 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188 CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189 CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190 CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191 CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
192 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
193 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
194 X & CHar & CHar & X & & & & & \\ \colrule
195 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196 CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
197 CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198 CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
199 \botrule
200 \end{tabular}
201 \end{table}
202
203 The conjugated system was fit to a bond, bend, and torsion. The
204 terminal bond for the shortest conjugated ligand \(CH-CH_2\)
205 was fit to a potential energy surface to find an equilibrium bond
206 length of 1.4 \AA and a spring constant of 938 kcal/mol using the
207 Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
208 A bend parameter for the beginning the longer conjugated ligands
209 (\(S - CH_2- CH)\),
210 was approximated to be equal to the shortest penultimate ligand
211 parameters found. For the shortest conjugated ligand the first bend
212 (\(S - CH- CH)\)
213 was fit a potential energy surface in the same manor as the
214 penultimate bend. The torsion for the first four atoms of the two
215 longer conjugated systems is equal to the torsion calculated for the
216 penultimate system.
217
218 \begin{table}[h]
219 \centering
220 \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
221 \begin{tabular}{ cc|ccc }
222 \toprule
223 $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
224 \colrule
225 Au &CH3 &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
226 Au &CH2 &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
227 Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228 Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229 Au &CH2ar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
230 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
231 \botrule
232 \end {tabular}
233 \end{table}
234 \newpage
235 \bibliographystyle{aip}
236 \bibliography{NPthiols}
237
238 \end{document}