ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4388
Committed: Wed Oct 28 17:17:56 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 11323 byte(s)
Log Message:
Updates

File Contents

# User Rev Content
1 gezelter 4387 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 skucera 4375 \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6 gezelter 4384 \usepackage{booktabs}
7 skucera 4375 \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{times}
10     \usepackage[version=3]{mhchem}
11     \usepackage{lineno}
12     \usepackage{gensymb}
13 gezelter 4376 \usepackage{multirow}
14 skucera 4375
15     \begin{document}
16    
17     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18     Gold Nanospheres}
19     \author{Kelsey M. Stocker}
20     \author{Suzanne M. Neidhart}
21     \author{J. Daniel Gezelter}
22     \email{gezelter@nd.edu}
23     \affiliation{Department of Chemistry and Biochemistry, University of
24     Notre Dame, Notre Dame, IN 46556}
25 gezelter 4384 \date{\today}
26 skucera 4375
27 gezelter 4384 \begin{abstract}
28     This document supplies force field parameters for the united-atom
29     sites, bond, bend, and torsion parameters, as well as the cross
30     interactions between the united-atom sites and the gold atoms. These
31     parameters were used in the simulations presented in the main text.
32     \end{abstract}
33    
34    
35 skucera 4375 \maketitle
36 gezelter 4384
37 gezelter 4379 Gold -- gold interactions were described by the quantum Sutton-Chen
38     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40     located at the carbon centers for alkyl groups. Bonding interactions
41     were used for intra-molecular sites closer than 3 bonds. Effective
42     Lennard-Jones potentials were used for non-bonded interactions.
43    
44 gezelter 4381 \begin{table}[h]
45 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
46 gezelter 4381 \centering
47 gezelter 4387 \caption{Non-bonded interaction parameters (including cross interactions with Au atoms). \label{tab:atypes}}
48 gezelter 4388 \begin{tabular}{ c|cccccl }
49 gezelter 4381 \toprule
50 gezelter 4387 Site & mass & $\sigma_{ii}$ & $\epsilon_{ii}$ & $\sigma_{\ce{Au}-i}$ & $\epsilon_{\ce{Au}-i}$ & source \\
51     & (amu)& (\AA) & (kcal/mol) & (\AA) & (kcal/mol) & \\
52 gezelter 4381 \colrule
53 gezelter 4388 \ce{CH3} & 15.04 & 3.75 & 0.1947 & 3.54 & 0.2146 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
54     \ce{CH2} & 14.03 & 3.95 & 0.09141& 3.54 & 0.1749 & Refs. \protect\cite{TraPPE-UA.alkanes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
55     CHene & 13.02 & 3.73 & 0.09340& 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes}, \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
56 gezelter 4387 S & 32.0655 & 4.45 & 0.2504 & 2.40 & 8.465 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
57     CHar & 13.02 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
58 gezelter 4388 \ce{CH2ar} & 14.03 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
59 gezelter 4381 \botrule
60     \end{tabular}
61 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
62 gezelter 4381 \end{table}
63    
64 gezelter 4379 The TraPPE-UA force field includes parameters for thiol
65     molecules\cite{TraPPE-UA.thiols} which were used for the
66     alkanethiolate molecules in our simulations. To derive suitable
67     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
68     the S parameters from Luedtke and Landman\cite{landman:1998} and
69     modified the parameters for the CTS atom to maintain charge neutrality
70     in the molecule.
71    
72 gezelter 4383 Bonds are typically rigid in TraPPE-UA, so although we used
73     equilibrium bond distances from TraPPE-UA, for flexible bonds, we
74     adapted bond stretching spring constants from the OPLS-AA force
75     field.\cite{Jorgensen:1996sf}
76 gezelter 4381
77     \begin{table}[h]
78 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
79 gezelter 4381 \centering
80     \caption{Bond parameters. \label{tab:bond}}
81 gezelter 4388 \begin{tabular}{ cc|ccl }
82 gezelter 4381 \toprule
83 gezelter 4388 $i$&$j$ & $r_0$ & $k_\mathrm{bond}$ & source \\
84     & & (\AA) & $(\mathrm{~kcal/mole/\AA}^2)$ & \\
85 gezelter 4381 \colrule
86 gezelter 4388 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
87     \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
88     \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
89     CHene & CHene & 1.330 & 1098 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
90     \ce{CH3} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
91     \ce{CH2} & CHene & 1.540 & 634 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
92     S & \ce{CH2} & 1.820 & 444 & Refs. \protect\cite{TraPPE-UA.thiols} and \protect\cite{Jorgensen:1996sf} \\
93     CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
94     CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
95     CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
96     \ce{CH2ar} & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
97     S & CHar & 1.80384 & 527.951 & This Work \\
98 gezelter 4381 \botrule
99     \end{tabular}
100 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
101 gezelter 4381 \end{table}
102    
103 gezelter 4379 To describe the interactions between metal (Au) and non-metal atoms,
104     potential energy terms were adapted from an adsorption study of alkyl
105     thiols on gold surfaces by Vlugt, \textit{et
106     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
107     Lennard-Jones form of potential parameters for the interaction between
108     Au and pseudo-atoms CH$_x$ and S based on a well-established and
109     widely-used effective potential of Hautman and Klein for the Au(111)
110     surface.\cite{hautman:4994}
111    
112     Parameters not found in the TraPPE-UA force field for the
113     intramolecular interactions of the conjugated and the penultimate
114     alkenethiolate ligands were calculated using constrained geometry
115     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
116     the 6-31G(d,p) basis set. Structures were scanned starting at the
117     minimum energy gas phase structure for small ($C_4$) ligands. Only
118     one degree of freedom was constrained for any given scan -- all other
119     atoms were allowed to minimize subject to that constraint. The
120     resulting potential energy surfaces were fit to a harmonic potential
121     for the bond stretching,
122     \begin{equation}
123     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
124     \end{equation}
125     and angle bending potentials,
126     \begin{equation}
127     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
128     \end{equation}
129     Torsional potentials were fit to the TraPPE torsional function,
130     \begin{equation}
131     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
132     \end{equation}
133 skucera 4375
134 gezelter 4381 For the penultimate thiolate ligands, the model molecule used was
135     2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
136     scanned to fit an equilibrium angle and force constant, as well as one
137     torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
138     potentials also served as model for the longer conjugated thiolate
139     ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
140     torsion parameters for (\ce{S-CH2-CHar-CHar}).
141 gezelter 4379
142 gezelter 4381 For the $C_4$ conjugated thiolate ligands, the model molecule for the
143     quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
144     ligand required fitting one bond (\ce{S-CHar}), and one bend angle
145     (\ce{S-CHar-CHar}).
146 gezelter 4379
147 gezelter 4381 The geometries of the model molecules were optimized prior to
148     performing the constrained angle scans, and the fit values for the
149     bond, bend, and torsional parameters were in relatively good agreement
150     with similar parameters already present in TraPPE.
151 gezelter 4379
152    
153     \begin{table}[h]
154 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
155 gezelter 4379 \centering
156     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
157 gezelter 4388 \begin{tabular}{ ccc|ccl }
158 gezelter 4379 \toprule
159 gezelter 4388 $i$&$j$&$k$ & $\theta_0$ & $k_\mathrm{bend}$ & source\\
160     & & & ($\degree$) & (kcal/mol/rad\textsuperscript{2}) & \\
161 gezelter 4379 \colrule
162 gezelter 4388 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
163     \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
164     \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
165     CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
166     CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
167     \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
168     CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
169     CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
170     CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
171     CHar & CHar & \ce{CH2ar}& 120.0 & 126.0 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
172     S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
173     S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
174     S & CHar & CHar & 123.911 & 138.093 & This work \\
175 gezelter 4379 \botrule
176 skucera 4375 \end{tabular}
177 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
178 gezelter 4379 \end{table}
179    
180     \begin{table}[h]
181 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
182 gezelter 4379 \centering
183 gezelter 4381 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
184     and wildcard atom types are denoted by ``X''. All $c_n$ parameters
185 gezelter 4383 have units of kcal/mol. The torsions around carbon-carbon double bonds
186 gezelter 4381 are harmonic and assume a trans (180$\degree$) geometry. The force
187     constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
188 gezelter 4388 \begin{tabular}{ cccc|ccccl }
189 gezelter 4379 \toprule
190     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
191     \colrule
192 gezelter 4388 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\
193     \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkanes}\\
194     \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.thiols}\\ \colrule
195     X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
196     X & CHar & CHar & X & & & & & \\ \colrule
197     \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
198     \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
199     CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\
200     CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417 & -0.912929& -0.958538 & This work \\
201 gezelter 4379 \botrule
202 skucera 4375 \end{tabular}
203 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
204 gezelter 4379 \end{table}
205 skucera 4378
206 gezelter 4376 \newpage
207     \bibliographystyle{aip}
208     \bibliography{NPthiols}
209 skucera 4375 \end{document}