ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4387
Committed: Wed Oct 28 16:04:54 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 12531 byte(s)
Log Message:
combining tables

File Contents

# User Rev Content
1 gezelter 4387 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4-1}
2 skucera 4375 \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6 gezelter 4384 \usepackage{booktabs}
7 skucera 4375 \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{times}
10     \usepackage[version=3]{mhchem}
11     \usepackage{lineno}
12     \usepackage{gensymb}
13 gezelter 4376 \usepackage{multirow}
14 skucera 4375
15     \begin{document}
16    
17     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
18     Gold Nanospheres}
19     \author{Kelsey M. Stocker}
20     \author{Suzanne M. Neidhart}
21     \author{J. Daniel Gezelter}
22     \email{gezelter@nd.edu}
23     \affiliation{Department of Chemistry and Biochemistry, University of
24     Notre Dame, Notre Dame, IN 46556}
25 gezelter 4384 \date{\today}
26 skucera 4375
27 gezelter 4384 \begin{abstract}
28     This document supplies force field parameters for the united-atom
29     sites, bond, bend, and torsion parameters, as well as the cross
30     interactions between the united-atom sites and the gold atoms. These
31     parameters were used in the simulations presented in the main text.
32     \end{abstract}
33    
34    
35 skucera 4375 \maketitle
36 gezelter 4384
37 gezelter 4379 Gold -- gold interactions were described by the quantum Sutton-Chen
38     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
39     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
40     located at the carbon centers for alkyl groups. Bonding interactions
41     were used for intra-molecular sites closer than 3 bonds. Effective
42     Lennard-Jones potentials were used for non-bonded interactions.
43    
44 gezelter 4381 \begin{table}[h]
45 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
46 gezelter 4381 \centering
47 gezelter 4387 \caption{Non-bonded interaction parameters (including cross interactions with Au atoms). \label{tab:atypes}}
48     \begin{tabular}{ c|cccccc }
49 gezelter 4381 \toprule
50 gezelter 4387 Site & mass & $\sigma_{ii}$ & $\epsilon_{ii}$ & $\sigma_{\ce{Au}-i}$ & $\epsilon_{\ce{Au}-i}$ & source \\
51     & (amu)& (\AA) & (kcal/mol) & (\AA) & (kcal/mol) & \\
52 gezelter 4381 \colrule
53 gezelter 4387 \ce{CH3} & 15.04 & 3.75 & 0.1947 & 3.54 & 0.2146 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
54     \ce{CH2} & 14.03 & 3.95 & 0.09141& 3.54 & 0.1749 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
55     CH & 13.02 & 4.68 & 0.01987& - & - & Refs. \protect\cite{TraPPE-UA.thiols} and \protect\cite{vlugt:cpc2007154}\\
56     CHene & 13.02 & 3.73 & 0.09340& 3.4625 & 0.1680 & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
57     \ce{CH2ene} & 14.03 & 3.675 & 0.16891& - & - & Refs. \protect\cite{vlugt:cpc2007154} and \protect\cite{landman:1998}\\
58     S & 32.0655 & 4.45 & 0.2504 & 2.40 & 8.465 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
59     CHar & 13.02 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
60     \ce{CH2ar} & 14.03 & 3.695 & 0.1004 & 3.4625 & 0.1680 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{vlugt:cpc2007154}\\
61 gezelter 4381 \botrule
62     \end{tabular}
63 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
64 gezelter 4381 \end{table}
65    
66 gezelter 4379 The TraPPE-UA force field includes parameters for thiol
67     molecules\cite{TraPPE-UA.thiols} which were used for the
68     alkanethiolate molecules in our simulations. To derive suitable
69     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
70     the S parameters from Luedtke and Landman\cite{landman:1998} and
71     modified the parameters for the CTS atom to maintain charge neutrality
72     in the molecule.
73    
74 gezelter 4383 Bonds are typically rigid in TraPPE-UA, so although we used
75     equilibrium bond distances from TraPPE-UA, for flexible bonds, we
76     adapted bond stretching spring constants from the OPLS-AA force
77     field.\cite{Jorgensen:1996sf}
78 gezelter 4381
79     \begin{table}[h]
80 gezelter 4384 \bibpunct{}{}{,}{n}{}{,}
81 gezelter 4381 \centering
82     \caption{Bond parameters. \label{tab:bond}}
83     \begin{tabular}{ cc|lll }
84     \toprule
85     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
86     \colrule
87 gezelter 4383 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
88     \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
89 gezelter 4384 \ce{CH3} & CH & 1.540 & 536 & \\
90 gezelter 4383 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
91 gezelter 4384 \ce{CH2} & CH & 1.540 & 536 & \\
92     CH & CH & 1.540 & 536 & \\
93     CHene & CHene & 1.330 & 1098 & \\
94     \ce{CH2ene} & CHene & 1.330 & 1098 & \\
95     \ce{CH3} & CHene & 1.540 & 634 & \\
96     \ce{CH2} & CHene & 1.540 & 634 & \\
97 gezelter 4381 S & \ce{CH2} & 1.820 & 444 & \\
98 gezelter 4384 CHar & CHar & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
99     CHar & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
100     CHar & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
101     \ce{CH2ar} & CHar & 1.40 & 938 & Refs. and \protect\cite{Jorgensen:1996sf} \\
102     S & CHar & 1.80384 & 527.951 & This Work \\
103 gezelter 4381 \botrule
104     \end{tabular}
105 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
106 gezelter 4381 \end{table}
107    
108 gezelter 4379 To describe the interactions between metal (Au) and non-metal atoms,
109     potential energy terms were adapted from an adsorption study of alkyl
110     thiols on gold surfaces by Vlugt, \textit{et
111     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
112     Lennard-Jones form of potential parameters for the interaction between
113     Au and pseudo-atoms CH$_x$ and S based on a well-established and
114     widely-used effective potential of Hautman and Klein for the Au(111)
115     surface.\cite{hautman:4994}
116    
117     Parameters not found in the TraPPE-UA force field for the
118     intramolecular interactions of the conjugated and the penultimate
119     alkenethiolate ligands were calculated using constrained geometry
120     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
121     the 6-31G(d,p) basis set. Structures were scanned starting at the
122     minimum energy gas phase structure for small ($C_4$) ligands. Only
123     one degree of freedom was constrained for any given scan -- all other
124     atoms were allowed to minimize subject to that constraint. The
125     resulting potential energy surfaces were fit to a harmonic potential
126     for the bond stretching,
127     \begin{equation}
128     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
129     \end{equation}
130     and angle bending potentials,
131     \begin{equation}
132     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
133     \end{equation}
134     Torsional potentials were fit to the TraPPE torsional function,
135     \begin{equation}
136     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
137     \end{equation}
138 skucera 4375
139 gezelter 4381 For the penultimate thiolate ligands, the model molecule used was
140     2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
141     scanned to fit an equilibrium angle and force constant, as well as one
142     torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
143     potentials also served as model for the longer conjugated thiolate
144     ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
145     torsion parameters for (\ce{S-CH2-CHar-CHar}).
146 gezelter 4379
147 gezelter 4381 For the $C_4$ conjugated thiolate ligands, the model molecule for the
148     quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
149     ligand required fitting one bond (\ce{S-CHar}), and one bend angle
150     (\ce{S-CHar-CHar}).
151 gezelter 4379
152 gezelter 4381 The geometries of the model molecules were optimized prior to
153     performing the constrained angle scans, and the fit values for the
154     bond, bend, and torsional parameters were in relatively good agreement
155     with similar parameters already present in TraPPE.
156 gezelter 4379
157    
158     \begin{table}[h]
159 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
160 gezelter 4379 \centering
161     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
162     \begin{tabular}{ ccc|lll }
163     \toprule
164 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
165 gezelter 4379 \colrule
166 gezelter 4381 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
167     \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
168     \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
169     \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
170     \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
171 gezelter 4384 \ce{CH3} & \ce{CH2} & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
172     CHene & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
173     CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
174     \ce{CH2ene} & CHene & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
175     CHene & CHene & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
176     \ce{CH2} & \ce{CH2} & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
177     CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
178     CHar & CHar & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
179     CHar & CHar & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
180     CHar & CHar & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
181     S & \ce{CH2} & CHene & 109.97 & 127.37 & This work \\
182     S & \ce{CH2} & CHar & 109.97 & 127.37 & This work \\
183     S & CHar & CHar & 123.911 & 138.093 & This work \\
184 gezelter 4379 \botrule
185 skucera 4375 \end{tabular}
186 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
187 gezelter 4379 \end{table}
188    
189     \begin{table}[h]
190 gezelter 4384 \bibpunct{}{}{,}{n}{,}{,}
191 gezelter 4379 \centering
192 gezelter 4381 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
193     and wildcard atom types are denoted by ``X''. All $c_n$ parameters
194 gezelter 4383 have units of kcal/mol. The torsions around carbon-carbon double bonds
195 gezelter 4381 are harmonic and assume a trans (180$\degree$) geometry. The force
196     constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
197 gezelter 4379 \begin{tabular}{ cccc|lllll }
198     \toprule
199     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
200     \colrule
201 gezelter 4381 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
202     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
203 gezelter 4384 \ce{CH3} & \ce{CH2} & \ce{CH2} & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
204 gezelter 4381 \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
205     \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
206     \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
207 gezelter 4384 X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
208     X & CHar & CHar & X & & & & & \\ \colrule
209     \ce{CH2} & \ce{CH2} & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
210     \ce{CH2} & \ce{CH2} & \ce{CH2} & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
211     CHene & CHene & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
212     CHar & CHar & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & This work \\
213 gezelter 4379 \botrule
214 skucera 4375 \end{tabular}
215 gezelter 4384 \bibpunct{[}{]}{,}{n}{,}{,}
216 gezelter 4379 \end{table}
217 skucera 4378
218 gezelter 4384
219 gezelter 4376 \newpage
220     \bibliographystyle{aip}
221     \bibliography{NPthiols}
222 skucera 4375 \end{document}