ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4383
Committed: Tue Oct 27 21:28:05 2015 UTC (9 years, 10 months ago) by gezelter
Content type: application/x-tex
File size: 12470 byte(s)
Log Message:
Edits

File Contents

# User Rev Content
1 skucera 4375 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2     \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6     %\usepackage{booktabs}
7     \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{tablefootnote}
10     \usepackage{times}
11     \usepackage[version=3]{mhchem}
12     \usepackage{lineno}
13     \usepackage{gensymb}
14 gezelter 4376 \usepackage{multirow}
15 skucera 4375
16     \begin{document}
17    
18     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19     Gold Nanospheres}
20     \author{Kelsey M. Stocker}
21     \author{Suzanne M. Neidhart}
22     \author{J. Daniel Gezelter}
23     \email{gezelter@nd.edu}
24     \affiliation{Department of Chemistry and Biochemistry, University of
25     Notre Dame, Notre Dame, IN 46556}
26    
27     \maketitle
28 gezelter 4379 Gold -- gold interactions were described by the quantum Sutton-Chen
29     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
30     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
31     located at the carbon centers for alkyl groups. Bonding interactions
32     were used for intra-molecular sites closer than 3 bonds. Effective
33     Lennard-Jones potentials were used for non-bonded interactions.
34    
35 gezelter 4381 \begin{table}[h]
36     \centering
37     \caption{Properties of the United atom sites. \label{tab:atypes}}
38     \begin{tabular}{ c|cccc }
39     \toprule
40     atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
41     \colrule
42     \ce{CH3} & 15.04 & 0.1947 & 3.75 & \\
43     \ce{CH2} & 14.03 & 0.09141 & 3.95 & \\
44     \ce{CH} & 13.02 & 0.01987 & 4.68 & \\
45     \ce{CHene} & 13.02 & 0.09340 & 3.73 & \\
46     \ce{CH2ene} & 14.03 & 0.16891 & 3.675 & \\
47     S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
48     \ce{CHar} & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
49     \ce{CH2ar} & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
50     \botrule
51     \end{tabular}
52     \end{table}
53    
54 gezelter 4379 The TraPPE-UA force field includes parameters for thiol
55     molecules\cite{TraPPE-UA.thiols} which were used for the
56     alkanethiolate molecules in our simulations. To derive suitable
57     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
58     the S parameters from Luedtke and Landman\cite{landman:1998} and
59     modified the parameters for the CTS atom to maintain charge neutrality
60     in the molecule.
61    
62 gezelter 4383 Bonds are typically rigid in TraPPE-UA, so although we used
63     equilibrium bond distances from TraPPE-UA, for flexible bonds, we
64     adapted bond stretching spring constants from the OPLS-AA force
65     field.\cite{Jorgensen:1996sf}
66 gezelter 4381
67     \begin{table}[h]
68     \centering
69     \caption{Bond parameters. \label{tab:bond}}
70     \begin{tabular}{ cc|lll }
71     \toprule
72     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
73     \colrule
74 gezelter 4383 \ce{CH3} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf}\\
75     \ce{CH3} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
76 gezelter 4381 \ce{CH3} & \ce{CH} & 1.540 & 536 & \\
77 gezelter 4383 \ce{CH2} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkanes} and \protect\cite{Jorgensen:1996sf} \\
78 gezelter 4381 \ce{CH2} & \ce{CH} & 1.540 & 536 & \\
79     \ce{CH} & \ce{CH} & 1.540 & 536 & \\
80     \ce{CHene} & \ce{CHene} & 1.330 & 1098 & \\
81     \ce{CH2ene} & \ce{CHene} & 1.330 & 1098 & \\
82     \ce{CH3} & \ce{CHene} & 1.540 & 634 & \\
83     \ce{CH2} & \ce{CHene} & 1.540 & 634 & \\
84     S & \ce{CH2} & 1.820 & 444 & \\
85 gezelter 4383 \ce{CHar} & \ce{CHar} & 1.40 & 938 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf} \\
86     \ce{CHar} & \ce{CH2} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
87     \ce{CHar} & \ce{CH3} & 1.540 & 536 & Refs. \protect\cite{TraPPE-UA.alkylbenzenes} and \protect\cite{Jorgensen:1996sf}\\
88 gezelter 4381 \ce{CH2ar} & \ce{CHar} & 1.40 & 938 &
89 gezelter 4383 Refs. and
90     \protect\cite{Jorgensen:1996sf} \\
91 gezelter 4381 S & \ce{CHar} & 1.80384 & 527.951 & fit \\
92     \botrule
93     \end{tabular}
94     \end{table}
95    
96 gezelter 4379 To describe the interactions between metal (Au) and non-metal atoms,
97     potential energy terms were adapted from an adsorption study of alkyl
98     thiols on gold surfaces by Vlugt, \textit{et
99     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
100     Lennard-Jones form of potential parameters for the interaction between
101     Au and pseudo-atoms CH$_x$ and S based on a well-established and
102     widely-used effective potential of Hautman and Klein for the Au(111)
103     surface.\cite{hautman:4994}
104    
105     Parameters not found in the TraPPE-UA force field for the
106     intramolecular interactions of the conjugated and the penultimate
107     alkenethiolate ligands were calculated using constrained geometry
108     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
109     the 6-31G(d,p) basis set. Structures were scanned starting at the
110     minimum energy gas phase structure for small ($C_4$) ligands. Only
111     one degree of freedom was constrained for any given scan -- all other
112     atoms were allowed to minimize subject to that constraint. The
113     resulting potential energy surfaces were fit to a harmonic potential
114     for the bond stretching,
115     \begin{equation}
116     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
117     \end{equation}
118     and angle bending potentials,
119     \begin{equation}
120     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
121     \end{equation}
122     Torsional potentials were fit to the TraPPE torsional function,
123     \begin{equation}
124     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
125     \end{equation}
126 skucera 4375
127 gezelter 4381 For the penultimate thiolate ligands, the model molecule used was
128     2-Butene-1-thiol, for which one bend angle (\ce{S-CH2-CHene}) was
129     scanned to fit an equilibrium angle and force constant, as well as one
130     torsion (\ce{S-CH2-CHene-CHene}). The parameters for these two
131     potentials also served as model for the longer conjugated thiolate
132     ligands which require bend angle parameters for (\ce{S-CH2-CHar}) and
133     torsion parameters for (\ce{S-CH2-CHar-CHar}).
134 gezelter 4379
135 gezelter 4381 For the $C_4$ conjugated thiolate ligands, the model molecule for the
136     quantum mechanical calculations was 1,3-Butadiene-1-thiol. This
137     ligand required fitting one bond (\ce{S-CHar}), and one bend angle
138     (\ce{S-CHar-CHar}).
139 gezelter 4379
140 gezelter 4381 The geometries of the model molecules were optimized prior to
141     performing the constrained angle scans, and the fit values for the
142     bond, bend, and torsional parameters were in relatively good agreement
143     with similar parameters already present in TraPPE.
144 gezelter 4379
145    
146     \begin{table}[h]
147     \centering
148     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
149     \begin{tabular}{ ccc|lll }
150     \toprule
151 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
152 gezelter 4379 \colrule
153 gezelter 4381 \ce{CH2} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154     \ce{CH3} & \ce{CH2} & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
155     \ce{CH3} & \ce{CH2} & \ce{CH3} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
156     \ce{CH3} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
157     \ce{CH2} & \ce{CH2} & \ce{CH2} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
158     \ce{CH3} & \ce{CH2} & \ce{CH} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
159     \ce{CHene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
160     \ce{CHene} & \ce{CHene} & \ce{CHene} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
161     \ce{CH2ene} & \ce{CHene} & \ce{CH3} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
162     \ce{CHene} & \ce{CHene} & \ce{CH2} & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
163     \ce{CH2} & \ce{CH2} & \ce{CHene} & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
164     \ce{CHar} & \ce{CHar} & \ce{CHar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
165     \ce{CHar} & \ce{CHar} & \ce{CH2} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
166     \ce{CHar} & \ce{CHar} & \ce{CH3} & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
167     \ce{CHar} & \ce{CHar} & \ce{CH2ar} & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
168     S & \ce{CH2} & \ce{CHene} & 109.97 & 127.37 & fit \\
169     S & \ce{CH2} & \ce{CHar} & 109.97 & 127.37 & fit \\
170     S & \ce{CHar} & \ce{CHar} & 123.911 & 138.093 & fit \\
171 gezelter 4379 \botrule
172 skucera 4375 \end{tabular}
173 gezelter 4379 \end{table}
174    
175     \begin{table}[h]
176     \centering
177 gezelter 4381 \caption{Torsion parameters. The central atoms for each torsion are atoms $j$ and $k$,
178     and wildcard atom types are denoted by ``X''. All $c_n$ parameters
179 gezelter 4383 have units of kcal/mol. The torsions around carbon-carbon double bonds
180 gezelter 4381 are harmonic and assume a trans (180$\degree$) geometry. The force
181     constant for this torsion is given in $\mathrm{kcal~mol~}^{-1}\mathrm{degrees}^{-2}$. \label{tab:torsion}}
182 gezelter 4379 \begin{tabular}{ cccc|lllll }
183     \toprule
184     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
185     \colrule
186 gezelter 4381 \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH3} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
187     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188     \ce{CH3} & \ce{CH2} & \ce{CH2} & \ce{CH} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189     \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CH2} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190     \ce{CH2} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191     \ce{CH3} & \ce{CH2} & \ce{CH2} & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
192     X & \ce{CHene} & \ce{CHene} & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
193     X & \ce{CHar} & \ce{CHar} & X & & & & & \\ \colrule
194     \ce{CH2} & \ce{CH2} & \ce{CHene} & \ce{CHene} & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
195     \ce{CH2} & \ce{CH2} & \ce{CH2} & \ce{CHene} & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196     \ce{CHene} & \ce{CHene} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
197     \ce{CHar} & \ce{CHar} & \ce{CH2} & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198 gezelter 4379 \botrule
199 skucera 4375 \end{tabular}
200 gezelter 4379 \end{table}
201 skucera 4378
202 gezelter 4379 \begin{table}[h]
203     \centering
204     \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
205     \begin{tabular}{ cc|ccc }
206     \toprule
207     $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
208     \colrule
209 gezelter 4381 Au &\ce{CH3} &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
210     Au &\ce{CH2} &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
211     Au &\ce{CHene} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
212     Au &\ce{CHar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
213     Au &\ce{CH2ar} &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
214 gezelter 4379 Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
215     \botrule
216 skucera 4378 \end {tabular}
217 gezelter 4379 \end{table}
218 gezelter 4376 \newpage
219     \bibliographystyle{aip}
220     \bibliography{NPthiols}
221    
222 skucera 4375 \end{document}