ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/NPthiols/Sup_Info.tex
Revision: 4380
Committed: Tue Oct 27 01:30:49 2015 UTC (9 years, 10 months ago) by skucera
Content type: application/x-tex
File size: 12160 byte(s)
Log Message:
added molecule 

File Contents

# User Rev Content
1 skucera 4375 \documentclass[aps,jcp,preprint,showpacs,superscriptaddress,groupedaddress]{revtex4} % for double-spaced preprint
2     \usepackage{graphicx} % needed for figures
3     \usepackage{dcolumn} % needed for some tables
4     \usepackage{bm} % for math
5     \usepackage{amssymb} % for math
6     %\usepackage{booktabs}
7     \usepackage[english]{babel}
8     \usepackage{multirow}
9     \usepackage{tablefootnote}
10     \usepackage{times}
11     \usepackage[version=3]{mhchem}
12     \usepackage{lineno}
13     \usepackage{gensymb}
14 gezelter 4376 \usepackage{multirow}
15 skucera 4375
16     \begin{document}
17    
18     \title{Supporting Information for: Interfacial Thermal Conductance of Thiolate-Protected
19     Gold Nanospheres}
20     \author{Kelsey M. Stocker}
21     \author{Suzanne M. Neidhart}
22     \author{J. Daniel Gezelter}
23     \email{gezelter@nd.edu}
24     \affiliation{Department of Chemistry and Biochemistry, University of
25     Notre Dame, Notre Dame, IN 46556}
26    
27     \maketitle
28     \vfill
29 gezelter 4379
30     Gold -- gold interactions were described by the quantum Sutton-Chen
31     (QSC) model.\cite{Qi:1999ph} The hexane solvent is described by the
32     TraPPE united atom model,\cite{TraPPE-UA.alkanes} where sites are
33     located at the carbon centers for alkyl groups. Bonding interactions
34     were used for intra-molecular sites closer than 3 bonds. Effective
35     Lennard-Jones potentials were used for non-bonded interactions.
36    
37     The TraPPE-UA force field includes parameters for thiol
38     molecules\cite{TraPPE-UA.thiols} which were used for the
39     alkanethiolate molecules in our simulations. To derive suitable
40     parameters for butanethiolate adsorbed on Au(111) surfaces, we adopted
41     the S parameters from Luedtke and Landman\cite{landman:1998} and
42     modified the parameters for the CTS atom to maintain charge neutrality
43     in the molecule.
44    
45     To describe the interactions between metal (Au) and non-metal atoms,
46     potential energy terms were adapted from an adsorption study of alkyl
47     thiols on gold surfaces by Vlugt, \textit{et
48     al.}\cite{vlugt:cpc2007154} They fit an effective pair-wise
49     Lennard-Jones form of potential parameters for the interaction between
50     Au and pseudo-atoms CH$_x$ and S based on a well-established and
51     widely-used effective potential of Hautman and Klein for the Au(111)
52     surface.\cite{hautman:4994}
53    
54     \begin{table}[h]
55     \centering
56     \caption{Properties of the United atom sites. \label{tab:atypes}}
57     \begin{tabular}{ c|cccc }
58     \toprule
59     atom type & mass (amu)& $\epsilon$ (kcal/mol) & $\sigma$ (\AA) & source \\
60     \colrule
61 skucera 4378 CH3 & 15.04 & 0.1947 & 3.75 & \\
62     CH2 & 14.03 & 0.09141 & 3.95 & \\
63     CH & 13.02 & 0.01987 & 4.68 & \\
64     CHene & 13.02 & 0.09340 & 3.73 & \\
65     CH2ene & 14.03 & 0.16891 & 3.675 & \\
66 gezelter 4379 S & 32.0655 & 0.2504 & 4.45 & Refs. \protect\cite{landman:1998} ($\sigma$) and \protect\cite{vlugt:cpc2007154} ($\epsilon$) \\
67     CHar & 13.02 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
68     CH2ar & 14.03 & 0.1004 & 3.695 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
69     \botrule
70 skucera 4378 \end{tabular}
71 gezelter 4379 \end{table}
72 skucera 4378
73 gezelter 4379 Parameters not found in the TraPPE-UA force field for the
74     intramolecular interactions of the conjugated and the penultimate
75     alkenethiolate ligands were calculated using constrained geometry
76     scans using the B3LYP functional~\cite{Becke:1993kq,Lee:1988qf} and
77     the 6-31G(d,p) basis set. Structures were scanned starting at the
78     minimum energy gas phase structure for small ($C_4$) ligands. Only
79     one degree of freedom was constrained for any given scan -- all other
80     atoms were allowed to minimize subject to that constraint. The
81     resulting potential energy surfaces were fit to a harmonic potential
82     for the bond stretching,
83     \begin{equation}
84     V_\mathrm{bond} = \frac{k_\mathrm{bond}}{2} \left( r - r_0 \right)^2,
85     \end{equation}
86     and angle bending potentials,
87     \begin{equation}
88     V_\mathrm{bend} = \frac{k_\mathrm{bend}}{2} \left(\theta - \theta_0\right)^2.
89     \end{equation}
90     Torsional potentials were fit to the TraPPE torsional function,
91     \begin{equation}
92     V_\mathrm{tor} = c_0 + c_1 \left(1 + \cos\phi \right) + c_2 \left(1 - \cos 2\phi \right) + c_3 \left(1 + \cos 3 \phi \right).
93     \end{equation}
94 skucera 4375
95 skucera 4380 Say something here about which molecules were used for which scans.... I did the butadiene. I am not sure what molecule was used for the penultimate calculations, that was done when I first came to ND.
96     Butadienethiolate was used for the shortest conjugated thiolate ligand. The molecule was made in Avogardo and a geometry optimization was performed before the scans of the bond, bend, and torsion were calculated.
97 gezelter 4379
98     The fit values for the bond, bend, and torsional parameters were in
99     relatively good agreement with similar parameters already present in
100     TraPPE.
101    
102    
103     to find an equilibrium bend angles $\theta_0$ and spring constants,
104     $k$. Torsional parameters were fit to the same part of the
105     penultimate ligand (\(S - CH_{2}- CH-CH)\)
106     for the rotation around the \( CH_{2}- CH\)
107     bond. This potential energy surface was then fit to
108    
109     \begin{table}[h]
110     \centering
111     \caption{Bond parameters. \label{tab:bond}}
112     \begin{tabular}{ cc|lll }
113     \toprule
114     $i$&$j$ & $r_0$ (\AA) & $k (\mathrm{~kcal/mole/\AA}^2)$ & source\\
115     \colrule
116 gezelter 4376 CH3 & CH3 & 1.540 & 536 & \\
117     CH3 & CH2 & 1.540 & 536 & \\
118     CH3 & CH & 1.540 & 536 & \\
119     CH2 & CH2 & 1.540 & 536 & \\
120     CH2 & CH & 1.540 & 536 & \\
121     CH & CH & 1.540 & 536 & \\
122     Chene & CHene & 1.330 & 1098 & \\
123     CH2ene & CHene & 1.330 & 1098 & \\
124     CH3 & CHene & 1.540 & 634 & \\
125     CH2 & CHene & 1.540 & 634 & \\
126     S & CH2 & 1.820 & 444 & \\
127     CHar & CHar & 1.40 & 938 & \\
128     CHar & CH2 & 1.540 & 536 & \\
129     CHar & CH3 & 1.540 & 536 & \\
130     CH2ar & CHar & 1.40 & 938 & \\
131     S & CHar & 1.80384 & 527.951 & fit \\
132 gezelter 4379 \botrule
133 skucera 4375 \end{tabular}
134 gezelter 4379 \end{table}
135 skucera 4375
136 gezelter 4379 \begin{table}[h]
137     \centering
138     \caption{Bend angle parameters. The central atom in the bend is atom $j$.\label{tab:bend}}
139     \begin{tabular}{ ccc|lll }
140     \toprule
141 gezelter 4376 $i$&$j$&$k$ & $\theta_0 (\degree)$ & $k (\mathrm{kcal/mole/rad}^2)$ & source\\
142 gezelter 4379 \colrule
143 gezelter 4376 CH2 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
144     CH3 & CH2 & S & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
145     CH3 & CH2 & CH3 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
146     CH3 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
147     CH2 & CH2 & CH2 & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
148     CH3 & CH2 & CH & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
149     CHene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
150     CHene & CHene & CHene & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
151     CH2ene & CHene & CH3 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
152     CHene & CHene & CH2 & 119.7 & 139.94& Ref. \protect\cite{Maerzke:2009qy}\\
153     CH2 & CH2 & CHene & 114.0 & 124.20& Ref. \protect\cite{TraPPE-UA.thiols}\\
154     CHar & CHar & CHar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
155     CHar & CHar & CH2 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
156     CHar & CHar & CH3 & 120.0 & 140.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
157     CHar & CHar & CH2ar & 120.0 & 126.0 & Refs. \protect\cite{Maerzke:2009qy} and \\
158     S & CH2 & CHene & 109.97 & 127.37 & fit \\
159     S & CH2 & CHar & 109.97 & 127.37 & fit \\
160     S & CHar & CHar & 123.911 & 138.093 & fit \\
161 gezelter 4379 \botrule
162 skucera 4375 \end{tabular}
163 gezelter 4379 \end{table}
164    
165     The conjugated system was fit to a bond, bend, and torsion. The
166     terminal bond for the shortest conjugated ligand \(CH-CH_2\)
167     was fit to a potential energy surface to find an equilibrium bond
168     length of 1.4 \AA and a spring constant of 938 kcal/mol using the
169     Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
170     A bend parameter for the beginning the longer conjugated ligands
171     (\(S - CH_2- CH)\),
172     was approximated to be equal to the shortest penultimate ligand
173     parameters found. For the shortest conjugated ligand the first bend
174     (\(S - CH- CH)\)
175     was fit a potential energy surface in the same manor as the
176     penultimate bend. The torsion for the first four atoms of the two
177     longer conjugated systems is equal to the torsion calculated for the
178     penultimate system.
179    
180     \begin{table}[h]
181     \centering
182     \caption{Torsion parameters. The central atoms are atoms $j$ and $k$, and wildcard atom types are denoted by ``X''. All $c_n$ parameters have units of kcal/mol. \label{tab:torsion}}
183     \begin{tabular}{ cccc|lllll }
184     \toprule
185     $i$&$j$&$k$&$l$& $c_0$&$c_1$& $c_2$ & $c_3$ & source\\
186     \colrule
187 gezelter 4376 CH3 & CH2 & CH2 & CH3 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
188     CH3 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
189     CH3 & CH2 & CH2 & CH & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
190     CH2 & CH2 & CH2 & CH2 & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
191     CH2 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
192 gezelter 4379 CH3 & CH2 & CH2 & S & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\ \colrule
193     X & CHene & CHene & X & \multicolumn{4}{c}{\multirow{2}{*}{$V = \frac{0.008112}{2} (\phi - 180.0)^2$}} & \multirow{2}{*}{Ref. \protect\cite{TraPPE-UA.alkylbenzenes}} \\
194     X & CHar & CHar & X & & & & & \\ \colrule
195 gezelter 4376 CH2 & CH2 & CHene & CHene & 1.368 & 0.1716 & -0.2181 & -0.56081 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
196     CH2 & CH2 & CH2 & CHene & 0.0 & 0.7055 & -0.13551 & 1.5725 & Ref. \protect\cite{TraPPE-UA.alkylbenzenes}\\
197     CHene & CHene & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
198     CHar & CHar & CH2 & S & 3.20753 & 0.207417& -0.912929& -0.958538 & fit \\
199 gezelter 4379 \botrule
200 skucera 4375 \end{tabular}
201 gezelter 4379 \end{table}
202 skucera 4378
203 gezelter 4379 The conjugated system was fit to a bond, bend, and torsion. The
204     terminal bond for the shortest conjugated ligand \(CH-CH_2\)
205     was fit to a potential energy surface to find an equilibrium bond
206     length of 1.4 \AA and a spring constant of 938 kcal/mol using the
207     Harmonic Model: \(V_{bond} = \frac{k}{2} (b - b_0)^2\).
208     A bend parameter for the beginning the longer conjugated ligands
209     (\(S - CH_2- CH)\),
210     was approximated to be equal to the shortest penultimate ligand
211     parameters found. For the shortest conjugated ligand the first bend
212     (\(S - CH- CH)\)
213     was fit a potential energy surface in the same manor as the
214     penultimate bend. The torsion for the first four atoms of the two
215     longer conjugated systems is equal to the torsion calculated for the
216     penultimate system.
217    
218     \begin{table}[h]
219     \centering
220     \caption{Non-bonded cross interaction parameters between gold atoms and the united atom sites\label{tab:nb}}
221     \begin{tabular}{ cc|ccc }
222     \toprule
223     $i$&$j$ & $\sigma$ (\AA)& $\epsilon$ $(kcal/mol)$ & source \\
224     \colrule
225     Au &CH3 &3.54 &0.2146& Ref. \protect\cite{vlugt:cpc2007154}\\
226     Au &CH2 &3.54 &0.1749& Ref. \protect\cite{vlugt:cpc2007154}\\
227     Au &CHene &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
228     Au &CHar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
229     Au &CH2ar &3.4625 &0.1680& Ref. \protect\cite{vlugt:cpc2007154}\\
230     Au &S &2.40 &8.465& Ref. \protect\cite{vlugt:cpc2007154}\\
231     \botrule
232 skucera 4378 \end {tabular}
233 gezelter 4379 \end{table}
234 gezelter 4376 \newpage
235     \bibliographystyle{aip}
236     \bibliography{NPthiols}
237    
238 skucera 4375 \end{document}