ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/suppInfo.tex
Revision: 3765
Committed: Thu Sep 29 14:09:15 2011 UTC (13 years, 11 months ago) by skuang
Content type: application/x-tex
File size: 7417 byte(s)
Log Message:
add supporting information file, add keywords.

File Contents

# User Rev Content
1 skuang 3765 \documentclass[11pt]{article}
2     \usepackage{amsmath}
3     \usepackage{amssymb}
4     \usepackage{setspace}
5     \usepackage{endfloat}
6     \usepackage{caption}
7     %\usepackage{tabularx}
8     \usepackage{graphicx}
9     \usepackage{multirow}
10     %\usepackage{booktabs}
11     %\usepackage{bibentry}
12     %\usepackage{mathrsfs}
13     %\usepackage[ref]{overcite}
14     \usepackage[square, comma, sort&compress]{natbib}
15     \usepackage{url}
16     \pagestyle{plain} \pagenumbering{arabic} \oddsidemargin 0.0cm
17     \evensidemargin 0.0cm \topmargin -21pt \headsep 10pt \textheight
18     9.0in \textwidth 6.5in \brokenpenalty=10000
19    
20     % double space list of tables and figures
21     \AtBeginDelayedFloats{\renewcommand{\baselinestretch}{1.66}}
22     \setlength{\abovecaptionskip}{20 pt}
23     \setlength{\belowcaptionskip}{30 pt}
24    
25     %\renewcommand\citemid{\ } % no comma in optional reference note
26     \bibpunct{[}{]}{,}{n}{}{;}
27     \bibliographystyle{achemso}
28    
29     \begin{document}
30    
31     \title{Simulating Interfacial Thermal Conductance at Metal-Solvent
32     Interfaces: the Role of Chemical Capping Agents}
33    
34     \author{Shenyu Kuang and J. Daniel
35     Gezelter\footnote{Corresponding author. \ Electronic mail: gezelter@nd.edu} \\
36     Department of Chemistry and Biochemistry,\\
37     University of Notre Dame\\
38     Notre Dame, Indiana 46556}
39    
40     %\date{\today}
41    
42     \maketitle
43    
44     \begin{doublespace}
45    
46     \newpage
47    
48     %\narrowtext
49    
50     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51     % BODY OF TEXT
52     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53    
54     \begin{table*}
55     \begin{minipage}{\linewidth}
56     \begin{center}
57     \caption{Non-bonded interaction parameters (including cross
58     interactions with Au atoms) for both force fields used in this
59     work.}
60     \begin{tabular}{lllllll}
61     \hline\hline
62     & Site & $\sigma_{ii}$ & $\epsilon_{ii}$ & $q_i$ &
63     $\sigma_{Au-i}$ & $\epsilon_{Au-i}$ \\
64     & & (\AA) & (kcal/mol) & ($e$) & (\AA) & (kcal/mol) \\
65     \hline
66     United Atom (UA)
67     &CH3 & 3.75 & 0.1947 & - & 3.54 & 0.2146 \\
68     &CH2 & 3.95 & 0.0914 & - & 3.54 & 0.1749 \\
69     &CHar & 3.695 & 0.1003 & - & 3.4625 & 0.1680 \\
70     &CRar & 3.88 & 0.04173 & - & 3.555 & 0.1604 \\
71     \hline
72     All Atom (AA)
73     &CT3 & 3.50 & 0.066 & -0.18 & 3.365 & 0.1373 \\
74     &CT2 & 3.50 & 0.066 & -0.12 & 3.365 & 0.1373 \\
75     &CTT & 3.50 & 0.066 & -0.065 & 3.365 & 0.1373 \\
76     &HC & 2.50 & 0.030 & 0.06 & 2.865 & 0.09256 \\
77     &CA & 3.55 & 0.070 & -0.115 & 3.173 & 0.0640 \\
78     &HA & 2.42 & 0.030 & 0.115 & 2.746 & 0.0414 \\
79     \hline
80     Both UA and AA
81     & S & 4.45 & 0.25 & - & 2.40 & 8.465 \\
82     \hline\hline
83     \end{tabular}
84     \label{MnM}
85     \end{center}
86     \end{minipage}
87     \end{table*}
88    
89     {\bf MAY NOT NEED $J_z$ IN TABLE}
90     \begin{table*}
91     \begin{minipage}{\linewidth}
92     \begin{center}
93    
94     \caption{Computed interfacial thermal conductance ($G$ and
95     $G^\prime$) values for interfaces using various models for
96     solvent and capping agent (or without capping agent) at
97     $\langle T\rangle\sim$200K. Here ``D'' stands for deuterated
98     solvent or capping agent molecules; ``Avg.'' denotes results
99     that are averages of simulations under different applied
100     thermal flux $(J_z)$ values. Error estimates are indicated in
101     parentheses.}
102    
103     \begin{tabular}{llccc}
104     \hline\hline
105     Butanethiol model & Solvent & $J_z$ & $G$ & $G^\prime$ \\
106     (or bare surface) & model & (GW/m$^2$) &
107     \multicolumn{2}{c}{(MW/m$^2$/K)} \\
108     \hline
109     UA & UA hexane & Avg. & 131(9) & 87(10) \\
110     & UA hexane(D) & 1.95 & 153(5) & 136(13) \\
111     & AA hexane & Avg. & 131(6) & 122(10) \\
112     & UA toluene & 1.96 & 187(16) & 151(11) \\
113     & AA toluene & 1.89 & 200(36) & 149(53) \\
114     \hline
115     AA & UA hexane & 1.94 & 116(9) & 129(8) \\
116     & AA hexane & Avg. & 442(14) & 356(31) \\
117     & AA hexane(D) & 1.93 & 222(12) & 234(54) \\
118     & UA toluene & 1.98 & 125(25) & 97(60) \\
119     & AA toluene & 3.79 & 487(56) & 290(42) \\
120     \hline
121     AA(D) & UA hexane & 1.94 & 158(25) & 172(4) \\
122     & AA hexane & 1.92 & 243(29) & 191(11) \\
123     & AA toluene & 1.93 & 364(36) & 322(67) \\
124     \hline
125     bare & UA hexane & Avg. & 46.5(3.2) & 49.4(4.5) \\
126     & UA hexane(D) & 0.98 & 43.9(4.6) & 43.0(2.0) \\
127     & AA hexane & 0.96 & 31.0(1.4) & 29.4(1.3) \\
128     & UA toluene & 1.99 & 70.1(1.3) & 65.8(0.5) \\
129     \hline\hline
130     \end{tabular}
131     \label{modelTest}
132     \end{center}
133     \end{minipage}
134     \end{table*}
135    
136     \begin{table*}
137     \begin{minipage}{\linewidth}
138     \begin{center}
139     \caption{In the hexane-solvated interfaces, the system size has
140     little effect on the calculated values for interfacial
141     conductance ($G$ and $G^\prime$), but the direction of heat
142     flow (i.e. the sign of $J_z$) can alter the average
143     temperature of the liquid phase and this can alter the
144     computed conductivity.}
145    
146     \begin{tabular}{ccccccc}
147     \hline\hline
148     $\langle T\rangle$ & $N_{hexane}$ & $\rho_{hexane}$ &
149     $J_z$ & $G$ & $G^\prime$ \\
150     (K) & & (g/cm$^3$) & (GW/m$^2$) &
151     \multicolumn{2}{c}{(MW/m$^2$/K)} \\
152     \hline
153     200 & 266 & 0.672 & -0.96 & 102(3) & 80.0(0.8) \\
154     & 200 & 0.688 & 0.96 & 125(16) & 90.2(15) \\
155     & & & 1.91 & 139(10) & 101(10) \\
156     & & & 2.83 & 141(6) & 89.9(9.8) \\
157     & 166 & 0.681 & 0.97 & 141(30) & 78(22) \\
158     & & & 1.92 & 138(4) & 98.9(9.5) \\
159     \hline
160     250 & 200 & 0.560 & 0.96 & 75(10) & 61.8(7.3) \\
161     & & & -0.95 & 49.4(0.3) & 45.7(2.1) \\
162     & 166 & 0.569 & 0.97 & 80.3(0.6) & 67(11) \\
163     & & & 1.44 & 76.2(5.0) & 64.8(3.8) \\
164     & & & -0.95 & 56.4(2.5) & 54.4(1.1) \\
165     & & & -1.85 & 47.8(1.1) & 53.5(1.5) \\
166     \hline\hline
167     \end{tabular}
168     \label{AuThiolHexaneUA}
169     \end{center}
170     \end{minipage}
171     \end{table*}
172    
173     \begin{table*}
174     \begin{minipage}{\linewidth}
175     \begin{center}
176     \caption{When toluene is the solvent, the interfacial thermal
177     conductivity is less sensitive to temperature, but again, the
178     direction of the heat flow can alter the solvent temperature
179     and can change the computed conductance values.}
180    
181     \begin{tabular}{ccccc}
182     \hline\hline
183     $\langle T\rangle$ & $\rho_{toluene}$ & $J_z$ & $G$ & $G^\prime$ \\
184     (K) & (g/cm$^3$) & (GW/m$^2$) & \multicolumn{2}{c}{(MW/m$^2$/K)} \\
185     \hline
186     200 & 0.933 & 2.15 & 204(12) & 113(12) \\
187     & & -1.86 & 180(3) & 135(21) \\
188     & & -3.93 & 176(5) & 113(12) \\
189     \hline
190     300 & 0.855 & -1.91 & 143(5) & 125(2) \\
191     & & -4.19 & 135(9) & 113(12) \\
192     \hline\hline
193     \end{tabular}
194     \label{AuThiolToluene}
195     \end{center}
196     \end{minipage}
197     \end{table*}
198    
199     \end{doublespace}
200     \end{document}