ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3750
Committed: Tue Jul 26 18:10:49 2011 UTC (14 years, 1 month ago) by skuang
File size: 116098 byte(s)
Log Message:
add more references.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3750 %% Created for Shenyu Kuang at 2011-07-26 13:59:15 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3750 @article{garde:nl2005,
13     Abstract = { Systems with nanoscopic features contain a high density of interfaces. Thermal transport in such systems can be governed by the resistance to heat transfer, the Kapitza resistance (RK), at the interface. Although soft interfaces, such as those between immiscible liquids or between a biomolecule and solvent, are ubiquitous, few studies of thermal transport at such interfaces have been reported. Here we characterize the interfacial conductance, 1/RK, of soft interfaces as a function of molecular architecture, chemistry, and the strength of cross-interfacial intermolecular interactions through detailed molecular dynamics simulations. The conductance of various interfaces studied here, for example, water−organic liquid, water−surfactant, surfactant−organic liquid, is relatively high (in the range of 65−370 MW/m2 K) compared to that for solid−liquid interfaces (∼10 MW/m2 K). Interestingly, the dependence of interfacial conductance on the chemistry and molecular architecture cannot be explained solely in terms of either bulk property mismatch or the strength of intermolecular attraction between the two phases. The observed trends can be attributed to a combination of strong cross-interface intermolecular interactions and good thermal coupling via soft vibration modes present at liquid−liquid interfaces. },
14     Author = {Patel, Harshit A. and Garde, Shekhar and Keblinski, Pawel},
15     Date-Added = {2011-07-26 13:56:59 -0400},
16     Date-Modified = {2011-07-26 13:57:47 -0400},
17     Doi = {10.1021/nl051526q},
18     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/nl051526q},
19     Journal = {Nano Letters},
20     Note = {PMID: 16277458},
21     Number = {11},
22     Pages = {2225-2231},
23     Title = {Thermal Resistance of Nanoscopic Liquid−Liquid Interfaces:  Dependence on Chemistry and Molecular Architecture},
24     Url = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
25     Volume = {5},
26     Year = {2005},
27     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/nl051526q},
28     Bdsk-Url-2 = {http://dx.doi.org/10.1021/nl051526q}}
29    
30     @article{garde:PhysRevLett2009,
31     Author = {Shenogina, Natalia and Godawat, Rahul and Keblinski, Pawel and Garde, Shekhar},
32     Date-Added = {2011-07-25 16:06:12 -0400},
33     Date-Modified = {2011-07-26 13:58:33 -0400},
34     Doi = {10.1103/PhysRevLett.102.156101},
35     Journal = {Phys. Rev. Lett.},
36     Month = {Apr},
37     Number = {15},
38     Numpages = {4},
39     Pages = {156101},
40     Publisher = {American Physical Society},
41     Title = {How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces},
42     Volume = {102},
43     Year = {2009},
44     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevLett.102.156101}}
45    
46 skuang 3749 @article{doi:10.1021/cr9801317,
47     Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
48     Date-Added = {2011-07-25 14:50:24 -0400},
49     Date-Modified = {2011-07-25 14:50:24 -0400},
50     Doi = {10.1021/cr9801317},
51     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
52     Journal = {Chemical Reviews},
53     Number = {10},
54     Pages = {2845-2890},
55     Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
56     Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
57     Volume = {99},
58     Year = {1999},
59     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
60     Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
61    
62     @article{doi:10.1021/ja00008a001,
63     Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
64     Date-Added = {2011-07-25 14:49:37 -0400},
65     Date-Modified = {2011-07-25 14:49:37 -0400},
66     Doi = {10.1021/ja00008a001},
67     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
68     Journal = {Journal of the American Chemical Society},
69     Number = {8},
70     Pages = {2805-2810},
71     Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
72     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
73     Volume = {113},
74     Year = {1991},
75     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
76     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
77    
78 skuang 3737 @article{doi:10.1021/la026493y,
79     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
80     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
81     Date-Added = {2011-07-12 17:52:01 -0400},
82     Date-Modified = {2011-07-12 17:52:01 -0400},
83     Doi = {10.1021/la026493y},
84     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
85     Journal = {Langmuir},
86     Number = {3},
87     Pages = {830-834},
88     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
89     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
90     Volume = {19},
91     Year = {2003},
92     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
93     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
94    
95     @article{doi:10.1021/j100035a033,
96     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
97     Date-Added = {2011-07-12 17:51:55 -0400},
98     Date-Modified = {2011-07-12 17:51:55 -0400},
99     Doi = {10.1021/j100035a033},
100     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
101     Journal = {The Journal of Physical Chemistry},
102     Number = {35},
103     Pages = {13257-13267},
104     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
105     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
106     Volume = {99},
107     Year = {1995},
108     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
109     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
110    
111 skuang 3736 @article{hautman:4994,
112     Author = {Joseph Hautman and Michael L. Klein},
113     Date-Added = {2011-07-11 18:27:57 -0400},
114     Date-Modified = {2011-07-11 18:27:57 -0400},
115     Doi = {10.1063/1.457621},
116     Journal = {The Journal of Chemical Physics},
117     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
118     Number = {8},
119     Pages = {4994-5001},
120     Publisher = {AIP},
121     Title = {Simulation of a monolayer of alkyl thiol chains},
122     Url = {http://link.aip.org/link/?JCP/91/4994/1},
123     Volume = {91},
124     Year = {1989},
125     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
126     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
127    
128     @article{landman:1998,
129     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
130     Author = {Luedtke, W. D. and Landman, Uzi},
131     Date-Added = {2011-07-11 18:22:20 -0400},
132     Date-Modified = {2011-07-11 18:22:54 -0400},
133     Doi = {10.1021/jp981745i},
134     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
135     Journal = {The Journal of Physical Chemistry B},
136     Number = {34},
137     Pages = {6566-6572},
138     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
139     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
140     Volume = {102},
141     Year = {1998},
142     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
143     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
144    
145     @article{hase:2010,
146     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
147     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
148     Date-Added = {2011-07-11 16:02:11 -0400},
149     Date-Modified = {2011-07-11 16:06:39 -0400},
150     Doi = {10.1039/B923858C},
151     Issue = {17},
152     Journal = {Phys. Chem. Chem. Phys.},
153     Pages = {4435-4445},
154     Publisher = {The Royal Society of Chemistry},
155     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
156     Url = {http://dx.doi.org/10.1039/B923858C},
157     Volume = {12},
158     Year = {2010},
159     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
160    
161     @article{jiang:2002,
162 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
163     Author = {JIANG, SHAOYI},
164     Date-Added = {2011-07-08 17:51:59 -0400},
165 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
166 skuang 3733 Doi = {10.1080/00268970210130948},
167     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
168     Journal = {Molecular Physics},
169     Number = {14},
170     Pages = {2261-2275},
171     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
172     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
173     Volume = {100},
174     Year = {2002},
175     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
176     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
177    
178     @article{doi:10.1021/la904855s,
179     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
180     Date-Added = {2011-07-08 17:18:53 -0400},
181     Date-Modified = {2011-07-08 17:18:53 -0400},
182     Doi = {10.1021/la904855s},
183     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
184     Journal = {Langmuir},
185     Note = {PMID: 20166728},
186     Number = {6},
187     Pages = {3786-3789},
188     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
189     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
190     Volume = {26},
191     Year = {2010},
192     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
193     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
194    
195     @article{doi:10.1021/jp8051888,
196     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
197     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
198     Date-Added = {2011-07-08 17:04:34 -0400},
199     Date-Modified = {2011-07-08 17:04:34 -0400},
200     Doi = {10.1021/jp8051888},
201     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
202     Journal = {The Journal of Physical Chemistry C},
203     Number = {35},
204     Pages = {13320-13323},
205     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
206     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
207     Volume = {112},
208     Year = {2008},
209     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
210     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
211    
212     @article{PhysRevB.80.195406,
213     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
214     Date-Added = {2011-07-08 16:36:39 -0400},
215     Date-Modified = {2011-07-08 16:36:39 -0400},
216     Doi = {10.1103/PhysRevB.80.195406},
217     Journal = {Phys. Rev. B},
218     Month = {Nov},
219     Number = {19},
220     Numpages = {6},
221     Pages = {195406},
222     Publisher = {American Physical Society},
223     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
224     Volume = {80},
225     Year = {2009},
226     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
227    
228     @article{Wang10082007,
229     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
230     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
231     Date-Added = {2011-07-08 16:20:05 -0400},
232     Date-Modified = {2011-07-08 16:20:05 -0400},
233     Doi = {10.1126/science.1145220},
234     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
235     Journal = {Science},
236     Number = {5839},
237     Pages = {787-790},
238     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
239     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
240     Volume = {317},
241     Year = {2007},
242     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
243     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
244    
245 skuang 3736 @article{hase:2011,
246 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
247     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
248     Date-Added = {2011-07-08 13:36:39 -0400},
249 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
250 skuang 3733 Doi = {10.1021/jp200672e},
251     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
252     Journal = {The Journal of Physical Chemistry C},
253     Number = {19},
254     Pages = {9622-9628},
255     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
256     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
257     Volume = {115},
258     Year = {2011},
259     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
260     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
261    
262 skuang 3729 @article{doi:10.1021/ja00051a040,
263     Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
264     Date-Added = {2011-06-29 14:04:33 -0400},
265     Date-Modified = {2011-06-29 14:04:33 -0400},
266     Doi = {10.1021/ja00051a040},
267     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
268     Journal = {Journal of the American Chemical Society},
269     Number = {25},
270     Pages = {10024-10035},
271     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
272     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
273     Volume = {114},
274     Year = {1992},
275     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
276     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
277    
278 skuang 3724 @article{doi:10.1021/jp034405s,
279     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
280     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
281     Date-Added = {2011-04-28 11:23:28 -0400},
282     Date-Modified = {2011-04-28 11:23:28 -0400},
283     Doi = {10.1021/jp034405s},
284     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
285     Journal = {The Journal of Physical Chemistry B},
286     Number = {43},
287     Pages = {11940-11950},
288     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
289     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
290     Volume = {107},
291     Year = {2003},
292     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
293     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
294    
295 skuang 3721 @article{OPLSAA,
296     Abstract = {null},
297     Annote = {doi: 10.1021/ja9621760},
298     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
299     Date = {1996/01/01},
300     Date-Added = {2011-02-04 18:54:58 -0500},
301     Date-Modified = {2011-02-04 18:54:58 -0500},
302     Do = {10.1021/ja9621760},
303     Isbn = {0002-7863},
304     Journal = {Journal of the American Chemical Society},
305     M3 = {doi: 10.1021/ja9621760},
306     Month = {01},
307     Number = {45},
308     Pages = {11225--11236},
309     Publisher = {American Chemical Society},
310     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
311     Ty = {JOUR},
312     Url = {http://dx.doi.org/10.1021/ja9621760},
313     Volume = {118},
314     Year = {1996},
315     Year1 = {1996/01/01},
316     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
317    
318     @article{TraPPE-UA.alkylbenzenes,
319     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
320     Date-Added = {2011-02-04 18:31:46 -0500},
321     Date-Modified = {2011-02-04 18:32:22 -0500},
322     Doi = {10.1021/jp001044x},
323     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
324     Journal = {The Journal of Physical Chemistry B},
325     Number = {33},
326     Pages = {8008-8016},
327     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
328     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
329     Volume = {104},
330     Year = {2000},
331     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
332     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
333    
334     @article{TraPPE-UA.alkanes,
335     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
336     Date-Added = {2011-02-04 18:01:31 -0500},
337     Date-Modified = {2011-02-04 18:02:19 -0500},
338     Doi = {10.1021/jp972543+},
339     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
340     Journal = {The Journal of Physical Chemistry B},
341     Number = {14},
342     Pages = {2569-2577},
343     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
344     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
345     Volume = {102},
346     Year = {1998},
347     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
348     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
349    
350     @article{TraPPE-UA.thiols,
351     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
352     Date-Added = {2011-02-04 17:51:03 -0500},
353     Date-Modified = {2011-02-04 17:54:20 -0500},
354     Doi = {10.1021/jp0549125},
355     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
356     Journal = {The Journal of Physical Chemistry B},
357     Number = {50},
358     Pages = {24100-24107},
359     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
360     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
361     Volume = {109},
362     Year = {2005},
363     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
364     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
365    
366     @article{vlugt:cpc2007154,
367     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
368     Date-Added = {2011-02-01 16:00:11 -0500},
369     Date-Modified = {2011-02-04 18:21:59 -0500},
370     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
371     Issn = {0010-4655},
372     Journal = {Computer Physics Communications},
373     Keywords = {Gold nanocrystals},
374     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
375     Number = {1-2},
376     Pages = {154 - 157},
377     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
378     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
379     Volume = {177},
380     Year = {2007},
381     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
382     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
383    
384     @article{packmol,
385     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
386     Bibsource = {DBLP, http://dblp.uni-trier.de},
387     Date-Added = {2011-02-01 15:13:02 -0500},
388     Date-Modified = {2011-02-01 15:14:25 -0500},
389     Ee = {http://dx.doi.org/10.1002/jcc.21224},
390     Journal = {Journal of Computational Chemistry},
391     Number = {13},
392     Pages = {2157-2164},
393     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
394     Volume = {30},
395     Year = {2009}}
396    
397     @article{kuang:164101,
398     Author = {Shenyu Kuang and J. Daniel Gezelter},
399     Date-Added = {2011-01-31 17:12:35 -0500},
400     Date-Modified = {2011-01-31 17:12:35 -0500},
401     Doi = {10.1063/1.3499947},
402     Eid = {164101},
403     Journal = {The Journal of Chemical Physics},
404     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
405     Number = {16},
406     Numpages = {9},
407     Pages = {164101},
408     Publisher = {AIP},
409     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
410     Url = {http://link.aip.org/link/?JCP/133/164101/1},
411     Volume = {133},
412     Year = {2010},
413     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
414     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
415    
416 skuang 3719 @article{muller:014102,
417     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
418     Date-Added = {2010-09-16 19:19:25 -0400},
419     Date-Modified = {2010-09-16 19:19:25 -0400},
420     Doi = {10.1063/1.2943312},
421     Eid = {014102},
422     Journal = {The Journal of Chemical Physics},
423     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
424     Number = {1},
425     Numpages = {8},
426     Pages = {014102},
427     Publisher = {AIP},
428     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
429     Url = {http://link.aip.org/link/?JCP/129/014102/1},
430     Volume = {129},
431     Year = {2008},
432     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
433     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
434    
435     @article{wolf:8254,
436     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
437     Date-Added = {2010-09-16 19:01:51 -0400},
438     Date-Modified = {2010-09-16 19:01:51 -0400},
439     Doi = {10.1063/1.478738},
440     Journal = {J. Chem. Phys.},
441     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
442     Number = {17},
443     Pages = {8254-8282},
444     Publisher = {AIP},
445     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
446     Url = {http://link.aip.org/link/?JCP/110/8254/1},
447     Volume = {110},
448     Year = {1999},
449     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
450     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
451    
452     @article{HeX:1993,
453     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
454     heat conduction is used to compute the thermal conductivity, thermal
455     diffusion factor, and heat of transfer in binary Lennard-Jones
456     mixtures. An internal energy flux is established with local source and
457     sink terms for kinetic energy.
458     Simulations of isotope mixtures covering a range of densities and mass
459     ratios show that the lighter component prefers the hot side of the
460     system at stationary state. This implies a positive thermal diffusion
461     factor in the definition we have adopted here. The molecular basis for
462     the Soret effect is studied by analysing the energy flux through the
463     system. In all cases we found that there is a difference in the
464     relative contributions when we compare the hot and cold sides of the
465     system. The contribution from the lighter component is predominantly
466     flux of kinetic energy, and this contribution increases from the cold
467     to the hot side. The contribution from the heavier component is
468     predominantly energy transfer through molecular interactions, and it
469     increases from the hot to the cold side. This explains why the thermal
470     diffusion factor is positive; heal is conducted more effectively
471     through the system if the lighter component is enriched at the hot
472     side. Even for very large heat fluxes, we find a linear or almost
473     linear temperature profile through the system, and a constant thermal
474     conductivity. The entropy production per unit volume and unit time
475     increases from the hot to the cold side.},
476     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
477     Date-Added = {2010-09-15 16:52:45 -0400},
478     Date-Modified = {2010-09-15 16:54:23 -0400},
479     Issn = {{0026-8976}},
480     Journal = {Mol. Phys.},
481     Month = {DEC},
482     Number = {6},
483     Pages = {1389-1412},
484     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
485     Unique-Id = {ISI:A1993MQ34500009},
486     Volume = {80},
487 skuang 3721 Year = {1993}}
488 skuang 3719
489     @article{HeX:1994,
490     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
491     dynamics, where a temperature gradient is established in a system with
492     periodic boundary conditions. At each time step in the simulation, a
493     fixed amount of energy is supplied to a hot region by scaling the
494     velocity of each particle in it, subject to conservation of total
495     momentum. An equal amount of energy is likewise withdrawn from a cold
496     region at each time step. Between the hot and cold regions is a region
497     through which an energy flux is established. Two configurations of hot
498     and cold regions are proposed. Using a stacked layer structure, the
499     instantaneous local energy flux for a 128-particle Lennard-Jones system
500     in liquid was found to be in good agreement with the macroscopic theory
501     of heat conduction at stationary state, except in and near the hot and
502     cold regions. Thermal conductivity calculated for the 128-particle
503     system was about 10\% smaller than the literature value obtained by
504     molecular dynamics calculations. One run with a 1024-particle system
505     showed an agreement with the literature value within statistical error
506     (1-2\%). Using a unit cell with a cold spherical region at the centre
507     and a hot region in the perimeter of the cube, an initial gaseous state
508     of argon was separated into gas and liquid phases. Energy fluxes due to
509     intermolecular energy transfer and transport of kinetic energy dominate
510     in the liquid and gas phases, respectively.},
511     Author = {Ikeshoji, T and Hafskjold, B},
512     Date-Added = {2010-09-15 16:52:45 -0400},
513     Date-Modified = {2010-09-15 16:54:37 -0400},
514     Issn = {0026-8976},
515     Journal = {Mol. Phys.},
516     Month = {FEB},
517     Number = {2},
518     Pages = {251-261},
519     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
520     Unique-Id = {ISI:A1994MY17400001},
521     Volume = {81},
522 skuang 3721 Year = {1994}}
523 skuang 3719
524     @article{plech:195423,
525     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
526     Date-Added = {2010-08-12 11:34:55 -0400},
527     Date-Modified = {2010-08-12 11:34:55 -0400},
528     Eid = {195423},
529     Journal = {Phys. Rev. B},
530     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
531     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
532     Number = {19},
533     Numpages = {7},
534     Pages = {195423},
535     Publisher = {APS},
536     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
537     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
538     Volume = {70},
539     Year = {2004},
540     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
541    
542     @article{Wilson:2002uq,
543     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
544     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
545     Date-Added = {2010-08-12 11:31:02 -0400},
546     Date-Modified = {2010-08-12 11:31:02 -0400},
547     Doi = {ARTN 224301},
548     Journal = {Phys. Rev. B},
549     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
550     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
551     Volume = {66},
552     Year = {2002},
553     Bdsk-Url-1 = {http://dx.doi.org/224301}}
554    
555     @article{RevModPhys.61.605,
556     Author = {Swartz, E. T. and Pohl, R. O.},
557     Date-Added = {2010-08-06 17:03:01 -0400},
558     Date-Modified = {2010-08-06 17:03:01 -0400},
559     Doi = {10.1103/RevModPhys.61.605},
560     Journal = {Rev. Mod. Phys.},
561     Month = {Jul},
562     Number = {3},
563     Numpages = {63},
564     Pages = {605--668},
565     Publisher = {American Physical Society},
566     Title = {Thermal boundary resistance},
567     Volume = {61},
568     Year = {1989},
569     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
570    
571     @article{cahill:793,
572     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
573     Date-Added = {2010-08-06 17:02:22 -0400},
574     Date-Modified = {2010-08-06 17:02:22 -0400},
575     Doi = {10.1063/1.1524305},
576     Journal = {J. Applied Phys.},
577     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
578     Number = {2},
579     Pages = {793-818},
580     Publisher = {AIP},
581     Title = {Nanoscale thermal transport},
582     Url = {http://link.aip.org/link/?JAP/93/793/1},
583     Volume = {93},
584     Year = {2003},
585     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
586     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
587    
588     @inbook{Hoffman:2001sf,
589     Address = {New York},
590     Annote = {LDR 01107cam 2200253 a 4500
591     001 12358442
592     005 20070910074423.0
593     008 010326s2001 nyua b 001 0 eng
594     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
595     925 0 $aacquire$b2 shelf copies$xpolicy default
596     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
597     010 $a 2001028633
598     020 $a0824704436 (acid-free paper)
599     040 $aDLC$cDLC$dDLC
600     050 00 $aQA297$b.H588 2001
601     082 00 $a519.4$221
602     100 1 $aHoffman, Joe D.,$d1934-
603     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
604     250 $a2nd ed., rev. and expanded.
605     260 $aNew York :$bMarcel Dekker,$cc2001.
606     300 $axi, 823 p. :$bill. ;$c26 cm.
607     504 $aIncludes bibliographical references (p. 775-777) and index.
608     650 0 $aNumerical analysis.
609     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
610     },
611     Author = {Hoffman, Joe D.},
612     Call-Number = {QA297},
613     Date-Added = {2010-07-15 16:32:02 -0400},
614     Date-Modified = {2010-07-19 16:49:37 -0400},
615     Dewey-Call-Number = {519.4},
616     Edition = {2nd ed., rev. and expanded},
617     Genre = {Numerical analysis},
618     Isbn = {0824704436 (acid-free paper)},
619     Library-Id = {2001028633},
620     Pages = {157},
621     Publisher = {Marcel Dekker},
622     Title = {Numerical methods for engineers and scientists},
623     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
624     Year = {2001},
625     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
626    
627     @article{Vardeman:2008fk,
628     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
629     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
630     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
631     Date-Added = {2010-07-13 11:48:22 -0400},
632     Date-Modified = {2010-07-19 16:20:01 -0400},
633     Doi = {DOI 10.1021/jp710063g},
634     Isi = {000253512400021},
635     Isi-Recid = {160903603},
636     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
637     Journal = {J. Phys. Chem. C},
638     Month = mar,
639     Number = {9},
640     Pages = {3283-3293},
641     Publisher = {AMER CHEMICAL SOC},
642     Times-Cited = {0},
643     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
644     Volume = {112},
645     Year = {2008},
646     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
647    
648     @article{PhysRevB.59.3527,
649     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
650     Date-Added = {2010-07-13 11:44:08 -0400},
651     Date-Modified = {2010-07-13 11:44:08 -0400},
652     Doi = {10.1103/PhysRevB.59.3527},
653     Journal = {Phys. Rev. B},
654     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
655     Month = {Feb},
656     Number = {5},
657     Numpages = {6},
658     Pages = {3527-3533},
659     Publisher = {American Physical Society},
660     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
661     Volume = {59},
662     Year = {1999},
663     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
664    
665     @article{Medasani:2007uq,
666     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
667     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
668     Date-Added = {2010-07-13 11:43:15 -0400},
669     Date-Modified = {2010-07-13 11:43:15 -0400},
670     Doi = {ARTN 235436},
671     Journal = {Phys. Rev. B},
672     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
673     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
674     Volume = {75},
675     Year = {2007},
676     Bdsk-Url-1 = {http://dx.doi.org/235436}}
677    
678     @article{Wang:2005qy,
679     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
680     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
681     Date-Added = {2010-07-13 11:42:50 -0400},
682     Date-Modified = {2010-07-13 11:42:50 -0400},
683     Doi = {DOI 10.1021/jp050116n},
684     Journal = {J. Phys. Chem. B},
685     Pages = {11683-11692},
686     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
687     Volume = {109},
688     Year = {2005},
689     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
690    
691     @article{Chui:2003fk,
692     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
693     Author = {Chui, YH and Chan, KY},
694     Date-Added = {2010-07-13 11:42:32 -0400},
695     Date-Modified = {2010-07-13 11:42:32 -0400},
696     Doi = {DOI 10.1039/b302122j},
697     Journal = {Phys. Chem. Chem. Phys.},
698     Pages = {2869-2874},
699     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
700     Volume = {5},
701     Year = {2003},
702     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
703    
704     @article{Sankaranarayanan:2005lr,
705     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
706     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
707     Date-Added = {2010-07-13 11:42:13 -0400},
708     Date-Modified = {2010-07-13 11:42:13 -0400},
709     Doi = {ARTN 195415},
710     Journal = {Phys. Rev. B},
711     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
712     Volume = {71},
713     Year = {2005},
714     Bdsk-Url-1 = {http://dx.doi.org/195415}}
715    
716     @article{Vardeman-II:2001jn,
717     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
718     Date-Added = {2010-07-13 11:41:50 -0400},
719     Date-Modified = {2010-07-13 11:41:50 -0400},
720     Journal = {J. Phys. Chem. A},
721     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
722     Number = {12},
723     Pages = {2568},
724     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
725     Volume = {105},
726     Year = {2001}}
727    
728     @article{ShibataT._ja026764r,
729     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
730     Date-Added = {2010-07-13 11:41:36 -0400},
731     Date-Modified = {2010-07-13 11:41:36 -0400},
732     Journal = {J. Amer. Chem. Soc.},
733     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
734     Number = {40},
735     Pages = {11989-11996},
736     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
737     Url = {http://dx.doi.org/10.1021/ja026764r},
738     Volume = {124},
739     Year = {2002},
740     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
741    
742     @article{Chen90,
743     Author = {A.~P. Sutton and J. Chen},
744     Date-Added = {2010-07-13 11:40:48 -0400},
745     Date-Modified = {2010-07-13 11:40:48 -0400},
746     Journal = {Phil. Mag. Lett.},
747     Pages = {139-146},
748     Title = {Long-Range Finnis Sinclair Potentials},
749     Volume = 61,
750     Year = {1990}}
751    
752     @article{PhysRevB.33.7983,
753     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
754     Date-Added = {2010-07-13 11:40:28 -0400},
755     Date-Modified = {2010-07-13 11:40:28 -0400},
756     Doi = {10.1103/PhysRevB.33.7983},
757     Journal = {Phys. Rev. B},
758     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
759     Month = {Jun},
760     Number = {12},
761     Numpages = {8},
762     Pages = {7983-7991},
763     Publisher = {American Physical Society},
764     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
765     Volume = {33},
766     Year = {1986},
767     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
768    
769     @article{hoover85,
770     Author = {W.~G. Hoover},
771     Date-Added = {2010-07-13 11:24:30 -0400},
772     Date-Modified = {2010-07-13 11:24:30 -0400},
773     Journal = pra,
774     Pages = 1695,
775     Title = {Canonical dynamics: Equilibrium phase-space distributions},
776     Volume = 31,
777     Year = 1985}
778    
779     @article{melchionna93,
780     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
781     Date-Added = {2010-07-13 11:22:17 -0400},
782     Date-Modified = {2010-07-13 11:22:17 -0400},
783     Journal = {Mol. Phys.},
784     Pages = {533-544},
785     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
786     Volume = 78,
787     Year = 1993}
788    
789     @misc{openmd,
790     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
791     Date-Added = {2010-07-13 11:16:00 -0400},
792     Date-Modified = {2010-07-19 16:27:45 -0400},
793     Howpublished = {Available at {\tt http://openmd.net}},
794     Title = {{OpenMD, an open source engine for molecular dynamics}}}
795    
796     @inbook{AshcroftMermin,
797 skuang 3721 Address = {Belmont, CA},
798 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
799     Date-Added = {2010-07-12 14:26:49 -0400},
800     Date-Modified = {2010-07-22 13:37:20 -0400},
801     Pages = {21},
802     Publisher = {Brooks Cole},
803     Title = {Solid State Physics},
804 skuang 3721 Year = {1976}}
805 skuang 3719
806     @book{WagnerKruse,
807     Address = {Berlin},
808     Author = {W. Wagner and A. Kruse},
809     Date-Added = {2010-07-12 14:10:29 -0400},
810     Date-Modified = {2010-07-12 14:13:44 -0400},
811     Publisher = {Springer-Verlag},
812     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
813 skuang 3721 Year = {1998}}
814 skuang 3719
815     @article{ISI:000266247600008,
816     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
817     hexafluorophosphate is investigated by non-equilibrium molecular
818     dynamics simulations with cosine-modulated force in the temperature
819     range from 360 to 480K. It is shown that this method is able to
820     correctly predict the shear viscosity. The simulation setting and
821     choice of the force field are discussed in detail. The all-atom force
822     field exhibits a bad convergence and the shear viscosity is
823     overestimated, while the simple united atom model predicts the kinetics
824     very well. The results are compared with the equilibrium molecular
825     dynamics simulations. The relationship between the diffusion
826     coefficient and viscosity is examined by means of the hydrodynamic
827     radii calculated from the Stokes-Einstein equation and the solvation
828     properties are discussed.},
829     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
830     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
831     Author = {Picalek, Jan and Kolafa, Jiri},
832     Author-Email = {jiri.kolafa@vscht.cz},
833     Date-Added = {2010-04-16 13:19:12 -0400},
834     Date-Modified = {2010-04-16 13:19:12 -0400},
835     Doc-Delivery-Number = {448FD},
836     Doi = {10.1080/08927020802680703},
837     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
838     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
839     Issn = {0892-7022},
840     Journal = {Mol. Simul.},
841     Journal-Iso = {Mol. Simul.},
842     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
843     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
844     Language = {English},
845     Number = {8},
846     Number-Of-Cited-References = {50},
847     Pages = {685-690},
848     Publisher = {TAYLOR \& FRANCIS LTD},
849     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
850     Times-Cited = {2},
851     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
852     Type = {Article},
853     Unique-Id = {ISI:000266247600008},
854     Volume = {35},
855     Year = {2009},
856     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
857    
858     @article{Vasquez:2004fk,
859     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
860     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
861     Date = {2004/11/02/},
862     Date-Added = {2010-04-16 13:18:48 -0400},
863     Date-Modified = {2010-04-16 13:18:48 -0400},
864     Day = {02},
865     Journal = {Int. J. Thermophys.},
866     M3 = {10.1007/s10765-004-7736-3},
867     Month = {11},
868     Number = {6},
869     Pages = {1799--1818},
870     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
871     Ty = {JOUR},
872     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
873     Volume = {25},
874     Year = {2004},
875     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
876    
877     @article{hess:209,
878     Author = {Berk Hess},
879     Date-Added = {2010-04-16 12:37:37 -0400},
880     Date-Modified = {2010-04-16 12:37:37 -0400},
881     Doi = {10.1063/1.1421362},
882     Journal = {J. Chem. Phys.},
883     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
884     Number = {1},
885     Pages = {209-217},
886     Publisher = {AIP},
887     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
888     Url = {http://link.aip.org/link/?JCP/116/209/1},
889     Volume = {116},
890     Year = {2002},
891     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
892     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
893    
894     @article{backer:154503,
895     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
896     Date-Added = {2010-04-16 12:37:37 -0400},
897     Date-Modified = {2010-04-16 12:37:37 -0400},
898     Doi = {10.1063/1.1883163},
899     Eid = {154503},
900     Journal = {J. Chem. Phys.},
901     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
902     Number = {15},
903     Numpages = {6},
904     Pages = {154503},
905     Publisher = {AIP},
906     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
907     Url = {http://link.aip.org/link/?JCP/122/154503/1},
908     Volume = {122},
909     Year = {2005},
910     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
911     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
912    
913     @article{daivis:541,
914     Author = {Peter J. Daivis and Denis J. Evans},
915     Date-Added = {2010-04-16 12:05:36 -0400},
916     Date-Modified = {2010-04-16 12:05:36 -0400},
917     Doi = {10.1063/1.466970},
918     Journal = {J. Chem. Phys.},
919     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
920     Number = {1},
921     Pages = {541-547},
922     Publisher = {AIP},
923     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
924     Url = {http://link.aip.org/link/?JCP/100/541/1},
925     Volume = {100},
926     Year = {1994},
927     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
928     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
929    
930     @article{mondello:9327,
931     Author = {Maurizio Mondello and Gary S. Grest},
932     Date-Added = {2010-04-16 12:05:36 -0400},
933     Date-Modified = {2010-04-16 12:05:36 -0400},
934     Doi = {10.1063/1.474002},
935     Journal = {J. Chem. Phys.},
936     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
937     Number = {22},
938     Pages = {9327-9336},
939     Publisher = {AIP},
940     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
941     Url = {http://link.aip.org/link/?JCP/106/9327/1},
942     Volume = {106},
943     Year = {1997},
944     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
945     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
946    
947     @article{ISI:A1988Q205300014,
948     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
949     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
950     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
951     Date-Added = {2010-04-14 16:20:24 -0400},
952     Date-Modified = {2010-04-14 16:20:24 -0400},
953     Doc-Delivery-Number = {Q2053},
954     Issn = {0026-8976},
955     Journal = {Mol. Phys.},
956     Journal-Iso = {Mol. Phys.},
957     Language = {English},
958     Month = {AUG 20},
959     Number = {6},
960     Number-Of-Cited-References = {14},
961     Pages = {1203-1213},
962     Publisher = {TAYLOR \& FRANCIS LTD},
963     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
964     Times-Cited = {12},
965     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
966     Type = {Article},
967     Unique-Id = {ISI:A1988Q205300014},
968     Volume = {64},
969     Year = {1988}}
970    
971     @article{ISI:000261835100054,
972     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
973     molecular dynamics simulation. The molecular models for the alcohols
974     are rigid, nonpolarizable, and of united-atom type. They were developed
975     in preceding work using experimental vapor-liquid equilibrium data
976     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
977     shear viscosity of methanol, ethanol, and their binary mixture are
978     determined using equilibrium molecular dynamics and the Green-Kubo
979     formalism. Nonequilibrium molecular dynamics is used for predicting the
980     thermal conductivity of the two pure substances. The transport
981     properties of the fluids are calculated over a wide temperature range
982     at ambient pressure and compared with experimental and simulation data
983     from the literature. Overall, a very good agreement with the experiment
984     is found. For instance, the self-diffusion coefficient and the shear
985     viscosity are predicted with average deviations of less than 8\% for
986     the pure alcohols and 12\% for the mixture. The predicted thermal
987     conductivity agrees on average within 5\% with the experimental data.
988     Additionally, some velocity and shear viscosity autocorrelation
989     functions are presented and discussed. Radial distribution functions
990     for ethanol are also presented. The predicted excess volume, excess
991     enthalpy, and the vapor-liquid equilibrium of the binary mixture
992     methanol + ethanol are assessed and agree well with experimental data.},
993     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
994     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
995     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
996     Author-Email = {vrabec@itt.uni-stuttgart.de},
997     Date-Added = {2010-04-14 15:43:29 -0400},
998     Date-Modified = {2010-04-14 15:43:29 -0400},
999     Doc-Delivery-Number = {385SY},
1000     Doi = {10.1021/jp805584d},
1001     Issn = {1520-6106},
1002     Journal = {J. Phys. Chem. B},
1003     Journal-Iso = {J. Phys. Chem. B},
1004     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
1005     Language = {English},
1006     Month = {DEC 25},
1007     Number = {51},
1008     Number-Of-Cited-References = {86},
1009     Pages = {16664-16674},
1010     Publisher = {AMER CHEMICAL SOC},
1011     Subject-Category = {Chemistry, Physical},
1012     Times-Cited = {5},
1013     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
1014     Type = {Article},
1015     Unique-Id = {ISI:000261835100054},
1016     Volume = {112},
1017     Year = {2008},
1018     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
1019    
1020     @article{ISI:000258460400020,
1021     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
1022     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
1023     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
1024     9549) force fields have been employed to calculate the thermal
1025     conductivity and other associated properties of methane hydrate over a
1026     temperature range from 30 to 260 K. The calculated results are compared
1027     to experimental data over this same range. The values of the thermal
1028     conductivity calculated with the COS/G2 model are closer to the
1029     experimental values than are those calculated with the nonpolarizable
1030     SPC/E model. The calculations match the temperature trend in the
1031     experimental data at temperatures below 50 K; however, they exhibit a
1032     slight decrease in thermal conductivity at higher temperatures in
1033     comparison to an opposite trend in the experimental data. The
1034     calculated thermal conductivity values are found to be relatively
1035     insensitive to the occupancy of the cages except at low (T <= 50 K)
1036     temperatures, which indicates that the differences between the two
1037     lattice structures may have a more dominant role than generally thought
1038     in explaining the low thermal conductivity of methane hydrate compared
1039     to ice Ih. The introduction of defects into the water lattice is found
1040     to cause a reduction in the thermal conductivity but to have a
1041     negligible impact on its temperature dependence.},
1042     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1043     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
1044     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
1045     Date-Added = {2010-04-14 15:38:14 -0400},
1046     Date-Modified = {2010-04-14 15:38:14 -0400},
1047     Doc-Delivery-Number = {337UG},
1048     Doi = {10.1021/jp802942v},
1049     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
1050     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
1051     Issn = {1520-6106},
1052     Journal = {J. Phys. Chem. B},
1053     Journal-Iso = {J. Phys. Chem. B},
1054     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
1055     Language = {English},
1056     Month = {AUG 21},
1057     Number = {33},
1058     Number-Of-Cited-References = {51},
1059     Pages = {10207-10216},
1060     Publisher = {AMER CHEMICAL SOC},
1061     Subject-Category = {Chemistry, Physical},
1062     Times-Cited = {8},
1063     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
1064     Type = {Article},
1065     Unique-Id = {ISI:000258460400020},
1066     Volume = {112},
1067     Year = {2008},
1068     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1069    
1070     @article{ISI:000184808400018,
1071     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1072     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1073     6082), for the non-equilibrium simulation of heat transport maintaining
1074     fixed the total momentum as well as the total energy of the system. The
1075     presented scheme preserves these properties but, unlike the original
1076     algorithm, is able to deal with multicomponent systems, that is with
1077     particles of different mass independently of their relative
1078     concentration. The main idea behind the new procedure is to consider an
1079     exchange of momentum and energy between the particles in the hot and
1080     cold regions, to maintain the non-equilibrium conditions, as if they
1081     undergo a hypothetical elastic collision. The new algorithm can also be
1082     employed in multicomponent systems for molecular fluids and in a wide
1083     range of thermodynamic conditions.},
1084     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1085     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1086     Author = {Nieto-Draghi, C and Avalos, JB},
1087     Date-Added = {2010-04-14 12:48:08 -0400},
1088     Date-Modified = {2010-04-14 12:48:08 -0400},
1089     Doc-Delivery-Number = {712QM},
1090     Doi = {10.1080/0026897031000154338},
1091     Issn = {0026-8976},
1092     Journal = {Mol. Phys.},
1093     Journal-Iso = {Mol. Phys.},
1094     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1095     Language = {English},
1096     Month = {JUL 20},
1097     Number = {14},
1098     Number-Of-Cited-References = {20},
1099     Pages = {2303-2307},
1100     Publisher = {TAYLOR \& FRANCIS LTD},
1101     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1102     Times-Cited = {13},
1103     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1104     Type = {Article},
1105     Unique-Id = {ISI:000184808400018},
1106     Volume = {101},
1107     Year = {2003},
1108     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1109    
1110     @article{Bedrov:2000-1,
1111     Abstract = {The thermal conductivity of liquid
1112     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1113     determined from imposed heat flux non-equilibrium molecular dynamics
1114     (NEMD) simulations using a previously published quantum chemistry-based
1115     atomistic potential. The thermal conductivity was determined in the
1116     temperature domain 550 less than or equal to T less than or equal to
1117     800 K, which corresponds approximately to the existence limits of the
1118     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1119     which comprise the first reported values for thermal conductivity of
1120     HMX liquid, were found to be consistent with measured values for
1121     crystalline HMX. The thermal conductivity of liquid HMX was found to
1122     exhibit a much weaker temperature dependence than the shear viscosity
1123     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1124     rights reserved.},
1125     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1126     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1127     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1128     Date-Added = {2010-04-14 12:26:59 -0400},
1129     Date-Modified = {2010-04-14 12:27:52 -0400},
1130     Doc-Delivery-Number = {330PF},
1131     Issn = {0009-2614},
1132     Journal = {Chem. Phys. Lett.},
1133     Journal-Iso = {Chem. Phys. Lett.},
1134     Keywords-Plus = {FORCE-FIELD},
1135     Language = {English},
1136     Month = {JUN 30},
1137     Number = {1-3},
1138     Number-Of-Cited-References = {17},
1139     Pages = {64-68},
1140     Publisher = {ELSEVIER SCIENCE BV},
1141     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1142     Times-Cited = {19},
1143     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1144     Type = {Article},
1145     Unique-Id = {ISI:000087969900011},
1146     Volume = {324},
1147     Year = {2000}}
1148    
1149     @article{ISI:000258840700015,
1150     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1151     (MD) simulations are carried out to calculate the viscosity and
1152     self-diffusion coefficient of liquid copper from the normal to the
1153     undercooled states. The simulated results are in reasonable agreement
1154     with the experimental values available above the melting temperature
1155     that is also predicted from a solid-liquid-solid sandwich structure.
1156     The relationship between the viscosity and the self-diffusion
1157     coefficient is evaluated. It is found that the Stokes-Einstein and
1158     Sutherland-Einstein relations qualitatively describe this relationship
1159     within the simulation temperature range. However, the predicted
1160     constant from MD simulation is close to 1/(3 pi), which is larger than
1161     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1162     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1163     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1164     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1165     Author-Email = {mchen@tsinghua.edu.cn},
1166     Date-Added = {2010-04-14 12:00:38 -0400},
1167     Date-Modified = {2010-04-14 12:00:38 -0400},
1168     Doc-Delivery-Number = {343GH},
1169     Doi = {10.1007/s10765-008-0489-7},
1170     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1171     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1172     Issn = {0195-928X},
1173     Journal = {Int. J. Thermophys.},
1174     Journal-Iso = {Int. J. Thermophys.},
1175     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1176     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1177     Language = {English},
1178     Month = {AUG},
1179     Number = {4},
1180     Number-Of-Cited-References = {39},
1181     Pages = {1408-1421},
1182     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1183     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1184     Times-Cited = {2},
1185     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1186     Type = {Article},
1187     Unique-Id = {ISI:000258840700015},
1188     Volume = {29},
1189     Year = {2008},
1190     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1191    
1192     @article{Muller-Plathe:2008,
1193     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1194     dynamics simulations were carried out to compute the shear viscosity of
1195     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1196     yielded consistent results which were also compared to experiments. The
1197     results showed that the reverse nonequilibrium molecular dynamics
1198     (RNEMD) methodology can successfully be applied to computation of
1199     highly viscous ionic liquids. Moreover, this study provides a
1200     validation of the atomistic force-field developed by Bhargava and
1201     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1202     properties.},
1203     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1204     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1205     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1206     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1207     Date-Added = {2010-04-14 11:53:37 -0400},
1208     Date-Modified = {2010-04-14 11:54:20 -0400},
1209     Doc-Delivery-Number = {321VS},
1210     Doi = {10.1021/jp8017869},
1211     Issn = {1520-6106},
1212     Journal = {J. Phys. Chem. B},
1213     Journal-Iso = {J. Phys. Chem. B},
1214     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1215     Language = {English},
1216     Month = {JUL 10},
1217     Number = {27},
1218     Number-Of-Cited-References = {49},
1219     Pages = {8129-8133},
1220     Publisher = {AMER CHEMICAL SOC},
1221     Subject-Category = {Chemistry, Physical},
1222     Times-Cited = {2},
1223     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1224     Type = {Article},
1225     Unique-Id = {ISI:000257335200022},
1226     Volume = {112},
1227     Year = {2008},
1228     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1229    
1230     @article{Muller-Plathe:2002,
1231     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1232     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1233     viscosity of Lennard-Jones liquids has been extended to atomistic
1234     models of molecular liquids. The method is improved to overcome the
1235     problems due to the detailed molecular models. The new technique is
1236     besides a test with a Lennard-Jones fluid, applied on different
1237     realistic systems: liquid nitrogen, water, and hexane, in order to
1238     cover a large range of interactions and systems/architectures. We show
1239     that all the advantages of the method itemized previously are still
1240     valid, and that it has a very good efficiency and accuracy making it
1241     very competitive. (C) 2002 American Institute of Physics.},
1242     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1243     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1244     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1245     Date-Added = {2010-04-14 11:34:42 -0400},
1246     Date-Modified = {2010-04-14 11:35:35 -0400},
1247     Doc-Delivery-Number = {521QV},
1248     Doi = {10.1063/1.1436124},
1249     Issn = {0021-9606},
1250     Journal = {J. Chem. Phys.},
1251     Journal-Iso = {J. Chem. Phys.},
1252     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1253     Language = {English},
1254     Month = {FEB 22},
1255     Number = {8},
1256     Number-Of-Cited-References = {47},
1257     Pages = {3362-3369},
1258     Publisher = {AMER INST PHYSICS},
1259     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1260     Times-Cited = {33},
1261     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1262     Type = {Article},
1263     Unique-Id = {ISI:000173853600023},
1264     Volume = {116},
1265     Year = {2002},
1266     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1267    
1268     @article{ISI:000207079300006,
1269     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1270     methods have been used to study the ability of
1271     Embedded Atom Method models of the metals copper and
1272     gold to reproduce the equilibrium and
1273     non-equilibrium behavior of metals at a stationary
1274     and at a moving solid/liquid interface. The
1275     equilibrium solid/vapor interface was shown to
1276     display a simple termination of the bulk until the
1277     temperature of the solid reaches approximate to 90\%
1278     of the bulk melting point. At and above such
1279     temperatures the systems exhibit a surface
1280     disodering known as surface melting. Non-equilibrium
1281     simulations emulating the action of a picosecond
1282     laser on the metal were performed to determine the
1283     regrowth velocity. For copper, the action of a 20 ps
1284     laser with an absorbed energy of 2-5 mJ/cm(2)
1285     produced a regrowth velocity of 83-100 m/s, in
1286     reasonable agreement with the value obtained by
1287     experiment (>60 m/s). For gold, similar conditions
1288     produced a slower regrowth velocity of 63 m/s at an
1289     absorbed energy of 5 mJ/cm(2). This is almost a
1290     factor of two too low in comparison to experiment
1291     (>100 m/s). The regrowth velocities of the metals
1292     seems unexpectedly close to experiment considering
1293     that the free-electron contribution is ignored in
1294     the Embeeded Atom Method models used.},
1295     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1296     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1297     Author = {Richardson, Clifton F. and Clancy, Paulette},
1298     Date-Added = {2010-04-07 11:24:36 -0400},
1299     Date-Modified = {2010-04-07 11:24:36 -0400},
1300     Doc-Delivery-Number = {V04SY},
1301     Issn = {0892-7022},
1302     Journal = {Mol. Simul.},
1303     Journal-Iso = {Mol. Simul.},
1304     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1305     Language = {English},
1306     Number = {5-6},
1307     Number-Of-Cited-References = {36},
1308     Pages = {335-355},
1309     Publisher = {TAYLOR \& FRANCIS LTD},
1310     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1311     Times-Cited = {7},
1312     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1313     Type = {Article},
1314     Unique-Id = {ISI:000207079300006},
1315     Volume = {7},
1316     Year = {1991}}
1317    
1318     @article{ISI:000167766600035,
1319     Abstract = {Molecular dynamics simulations are used to
1320     investigate the separation of water films adjacent
1321     to a hot metal surface. The simulations clearly show
1322     that the water layers nearest the surface overheat
1323     and undergo explosive boiling. For thick films, the
1324     expansion of the vaporized molecules near the
1325     surface forces the outer water layers to move away
1326     from the surface. These results are of interest for
1327     mass spectrometry of biological molecules, steam
1328     cleaning of surfaces, and medical procedures.},
1329     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1330     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1331     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1332     Date-Added = {2010-03-11 15:32:14 -0500},
1333     Date-Modified = {2010-03-11 15:32:14 -0500},
1334     Doc-Delivery-Number = {416ED},
1335     Issn = {1089-5639},
1336     Journal = {J. Phys. Chem. A},
1337     Journal-Iso = {J. Phys. Chem. A},
1338     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1339     Language = {English},
1340     Month = {MAR 29},
1341     Number = {12},
1342     Number-Of-Cited-References = {65},
1343     Pages = {2748-2755},
1344     Publisher = {AMER CHEMICAL SOC},
1345     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1346     Times-Cited = {66},
1347     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1348     Type = {Article},
1349     Unique-Id = {ISI:000167766600035},
1350     Volume = {105},
1351     Year = {2001}}
1352    
1353     @article{Maginn:2010,
1354     Abstract = {The reverse nonequilibrium molecular dynamics
1355     (RNEMD) method calculates the shear viscosity of a
1356     fluid by imposing a nonphysical exchange of momentum
1357     and measuring the resulting shear velocity
1358     gradient. In this study we investigate the range of
1359     momentum flux values over which RNEMD yields usable
1360     (linear) velocity gradients. We find that nonlinear
1361     velocity profiles result primarily from gradients in
1362     fluid temperature and density. The temperature
1363     gradient results from conversion of heat into bulk
1364     kinetic energy, which is transformed back into heat
1365     elsewhere via viscous heating. An expression is
1366     derived to predict the temperature profile resulting
1367     from a specified momentum flux for a given fluid and
1368     simulation cell. Although primarily bounded above,
1369     we also describe milder low-flux limitations. RNEMD
1370     results for a Lennard-Jones fluid agree with
1371     equilibrium molecular dynamics and conventional
1372     nonequilibrium molecular dynamics calculations at
1373     low shear, but RNEMD underpredicts viscosity
1374     relative to conventional NEMD at high shear.},
1375     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1376     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1377     Article-Number = {014103},
1378     Author = {Tenney, Craig M. and Maginn, Edward J.},
1379     Author-Email = {ed@nd.edu},
1380     Date-Added = {2010-03-09 13:08:41 -0500},
1381     Date-Modified = {2010-07-19 16:21:35 -0400},
1382     Doc-Delivery-Number = {542DQ},
1383     Doi = {10.1063/1.3276454},
1384     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1385     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1386     Issn = {0021-9606},
1387     Journal = {J. Chem. Phys.},
1388     Journal-Iso = {J. Chem. Phys.},
1389     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1390     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1391     Language = {English},
1392     Month = {JAN 7},
1393     Number = {1},
1394     Number-Of-Cited-References = {20},
1395     Pages = {014103},
1396     Publisher = {AMER INST PHYSICS},
1397     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1398     Times-Cited = {0},
1399     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1400     Type = {Article},
1401     Unique-Id = {ISI:000273472300004},
1402     Volume = {132},
1403     Year = {2010},
1404     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1405    
1406     @article{Clancy:1992,
1407     Abstract = {The regrowth velocity of a crystal from a melt
1408     depends on contributions from the thermal
1409     conductivity, heat gradient, and latent heat. The
1410     relative contributions of these terms to the
1411     regrowth velocity of the pure metals copper and gold
1412     during liquid-phase epitaxy are evaluated. These
1413     results are used to explain how results from
1414     previous nonequilibrium molecular-dynamics
1415     simulations using classical potentials are able to
1416     predict regrowth velocities that are close to the
1417     experimental values. Results from equilibrium
1418     molecular dynamics showing the nature of the
1419     solid-vapor interface of an
1420     embedded-atom-method-modeled Cu57Ni43 alloy at a
1421     temperature corresponding to 62\% of the melting
1422     point are presented. The regrowth of this alloy
1423     following a simulation of a laser-processing
1424     experiment is also given, with use of nonequilibrium
1425     molecular-dynamics techniques. The thermal
1426     conductivity and temperature gradient in the
1427     simulation of the alloy are compared to those for
1428     the pure metals.},
1429     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1430     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1431     Author = {Richardson, C.~F. and Clancy, P},
1432     Date-Added = {2010-01-12 16:17:33 -0500},
1433     Date-Modified = {2010-04-08 17:18:25 -0400},
1434     Doc-Delivery-Number = {HX378},
1435     Issn = {0163-1829},
1436     Journal = {Phys. Rev. B},
1437     Journal-Iso = {Phys. Rev. B},
1438     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1439     Language = {English},
1440     Month = {JUN 1},
1441     Number = {21},
1442     Number-Of-Cited-References = {24},
1443     Pages = {12260-12268},
1444     Publisher = {AMERICAN PHYSICAL SOC},
1445     Subject-Category = {Physics, Condensed Matter},
1446     Times-Cited = {11},
1447     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1448     Type = {Article},
1449     Unique-Id = {ISI:A1992HX37800010},
1450     Volume = {45},
1451     Year = {1992}}
1452    
1453     @article{Bedrov:2000,
1454     Abstract = {We have applied a new nonequilibrium molecular
1455     dynamics (NEMD) method {[}F. Muller-Plathe,
1456     J. Chem. Phys. 106, 6082 (1997)] previously applied
1457     to monatomic Lennard-Jones fluids in the
1458     determination of the thermal conductivity of
1459     molecular fluids. The method was modified in order
1460     to be applicable to systems with holonomic
1461     constraints. Because the method involves imposing a
1462     known heat flux it is particularly attractive for
1463     systems involving long-range and many-body
1464     interactions where calculation of the microscopic
1465     heat flux is difficult. The predicted thermal
1466     conductivities of liquid n-butane and water using
1467     the imposed-flux NEMD method were found to be in a
1468     good agreement with previous simulations and
1469     experiment. (C) 2000 American Institute of
1470     Physics. {[}S0021-9606(00)50841-1].},
1471     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1472     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1473     Author = {Bedrov, D and Smith, GD},
1474     Date-Added = {2009-11-05 18:21:18 -0500},
1475     Date-Modified = {2010-04-14 11:50:48 -0400},
1476     Doc-Delivery-Number = {369BF},
1477     Issn = {0021-9606},
1478     Journal = {J. Chem. Phys.},
1479     Journal-Iso = {J. Chem. Phys.},
1480     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1481     Language = {English},
1482     Month = {NOV 8},
1483     Number = {18},
1484     Number-Of-Cited-References = {26},
1485     Pages = {8080-8084},
1486     Publisher = {AMER INST PHYSICS},
1487     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1488     Times-Cited = {23},
1489     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1490     Type = {Article},
1491     Unique-Id = {ISI:000090151400044},
1492     Volume = {113},
1493     Year = {2000}}
1494    
1495     @article{ISI:000231042800044,
1496     Abstract = {The reverse nonequilibrium molecular dynamics
1497     method for thermal conductivities is adapted to the
1498     investigation of molecular fluids. The method
1499     generates a heat flux through the system by suitably
1500     exchanging velocities of particles located in
1501     different regions. From the resulting temperature
1502     gradient, the thermal conductivity is then
1503     calculated. Different variants of the algorithm and
1504     their combinations with other system parameters are
1505     tested: exchange of atomic velocities versus
1506     exchange of molecular center-of-mass velocities,
1507     different exchange frequencies, molecular models
1508     with bond constraints versus models with flexible
1509     bonds, united-atom versus all-atom models, and
1510     presence versus absence of a thermostat. To help
1511     establish the range of applicability, the algorithm
1512     is tested on different models of benzene,
1513     cyclohexane, water, and n-hexane. We find that the
1514     algorithm is robust and that the calculated thermal
1515     conductivities are insensitive to variations in its
1516     control parameters. The force field, in contrast,
1517     has a major influence on the value of the thermal
1518     conductivity. While calculated and experimental
1519     thermal conductivities fall into the same order of
1520     magnitude, in most cases the calculated values are
1521     systematically larger. United-atom force fields seem
1522     to do better than all-atom force fields, possibly
1523     because they remove high-frequency degrees of
1524     freedom from the simulation, which, in nature, are
1525     quantum-mechanical oscillators in their ground state
1526     and do not contribute to heat conduction.},
1527     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1528     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1529     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1530     Date-Added = {2009-11-05 18:17:33 -0500},
1531     Date-Modified = {2009-11-05 18:17:33 -0500},
1532     Doc-Delivery-Number = {952YQ},
1533     Doi = {10.1021/jp0512255},
1534     Issn = {1520-6106},
1535     Journal = {J. Phys. Chem. B},
1536     Journal-Iso = {J. Phys. Chem. B},
1537     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1538     Language = {English},
1539     Month = {AUG 11},
1540     Number = {31},
1541     Number-Of-Cited-References = {42},
1542     Pages = {15060-15067},
1543     Publisher = {AMER CHEMICAL SOC},
1544     Subject-Category = {Chemistry, Physical},
1545     Times-Cited = {17},
1546     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1547     Type = {Article},
1548     Unique-Id = {ISI:000231042800044},
1549     Volume = {109},
1550     Year = {2005},
1551     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1552    
1553     @article{ISI:A1997YC32200056,
1554     Abstract = {Equilibrium molecular dynamics simulations have
1555     been carried out in the microcanonical ensemble at
1556     300 and 255 K on the extended simple point charge
1557     (SPC/E) model of water {[}Berendsen et al.,
1558     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1559     number of static and dynamic properties, thermal
1560     conductivity lambda has been calculated via
1561     Green-Kubo integration of the heat current time
1562     correlation functions (CF's) in the atomic and
1563     molecular formalism, at wave number k=0. The
1564     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1565     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1566     with the experimental data (0.61 W/mK at 300 K and
1567     0.49 W/mK at 255 K). A negative long-time tail of
1568     the heat current CF, more apparent at 255 K, is
1569     responsible for the anomalous decrease of lambda
1570     with temperature. An analysis of the dynamical modes
1571     contributing to lambda has shown that its value is
1572     due to two low-frequency exponential-like modes, a
1573     faster collisional mode, with positive contribution,
1574     and a slower one, which determines the negative
1575     long-time tail. A comparison of the molecular and
1576     atomic spectra of the heat current CF has suggested
1577     that higher-frequency modes should not contribute to
1578     lambda in this temperature range. Generalized
1579     thermal diffusivity D-T(k) decreases as a function
1580     of k, after an initial minor increase at k =
1581     k(min). The k dependence of the generalized
1582     thermodynamic properties has been calculated in the
1583     atomic and molecular formalisms. The observed
1584     differences have been traced back to intramolecular
1585     or intermolecular rotational effects and related to
1586     the partial structure functions. Finally, from the
1587     results we calculated it appears that the SPC/E
1588     model gives results in better agreement with
1589     experimental data than the transferable
1590     intermolecular potential with four points TIP4P
1591     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1592     926 (1983)], with a larger improvement for, e.g.,
1593     diffusion, viscosities, and dielectric properties
1594     and a smaller one for thermal conductivity. The
1595     SPC/E model shares, to a smaller extent, the
1596     insufficient slowing down of dynamics at low
1597     temperature already found for the TIP4P water
1598     model.},
1599     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1600     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1601     Author = {Bertolini, D and Tani, A},
1602     Date-Added = {2009-10-30 15:41:21 -0400},
1603     Date-Modified = {2009-10-30 15:41:21 -0400},
1604     Doc-Delivery-Number = {YC322},
1605     Issn = {1063-651X},
1606     Journal = {Phys. Rev. E},
1607     Journal-Iso = {Phys. Rev. E},
1608     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1609     Language = {English},
1610     Month = {OCT},
1611     Number = {4},
1612     Number-Of-Cited-References = {35},
1613     Pages = {4135-4151},
1614     Publisher = {AMERICAN PHYSICAL SOC},
1615     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1616     Times-Cited = {18},
1617     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1618     Type = {Article},
1619     Unique-Id = {ISI:A1997YC32200056},
1620     Volume = {56},
1621     Year = {1997}}
1622    
1623     @article{Meineke:2005gd,
1624     Abstract = {OOPSE is a new molecular dynamics simulation program
1625     that is capable of efficiently integrating equations
1626     of motion for atom types with orientational degrees
1627     of freedom (e.g. #sticky# atoms and point
1628     dipoles). Transition metals can also be simulated
1629     using the embedded atom method (EAM) potential
1630     included in the code. Parallel simulations are
1631     carried out using the force-based decomposition
1632     method. Simulations are specified using a very
1633     simple C-based meta-data language. A number of
1634     advanced integrators are included, and the basic
1635     integrator for orientational dynamics provides
1636     substantial improvements over older quaternion-based
1637     schemes.},
1638     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1639     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1640     Date-Added = {2009-10-01 18:43:03 -0400},
1641     Date-Modified = {2010-04-13 09:11:16 -0400},
1642     Doi = {DOI 10.1002/jcc.20161},
1643     Isi = {000226558200006},
1644     Isi-Recid = {142688207},
1645     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1646     Journal = {J. Comp. Chem.},
1647     Keywords = {OOPSE; molecular dynamics},
1648     Month = feb,
1649     Number = {3},
1650     Pages = {252-271},
1651     Publisher = {JOHN WILEY \& SONS INC},
1652     Times-Cited = {9},
1653     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1654     Volume = {26},
1655     Year = {2005},
1656     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1657     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1658    
1659     @article{ISI:000080382700030,
1660     Abstract = {A nonequilibrium method for calculating the shear
1661     viscosity is presented. It reverses the
1662     cause-and-effect picture customarily used in
1663     nonequilibrium molecular dynamics: the effect, the
1664     momentum flux or stress, is imposed, whereas the
1665     cause, the velocity gradient or shear rate, is
1666     obtained from the simulation. It differs from other
1667     Norton-ensemble methods by the way in which the
1668     steady-state momentum flux is maintained. This
1669     method involves a simple exchange of particle
1670     momenta, which is easy to implement. Moreover, it
1671     can be made to conserve the total energy as well as
1672     the total linear momentum, so no coupling to an
1673     external temperature bath is needed. The resulting
1674     raw data, the velocity profile, is a robust and
1675     rapidly converging property. The method is tested on
1676     the Lennard-Jones fluid near its triple point. It
1677     yields a viscosity of 3.2-3.3, in Lennard-Jones
1678     reduced units, in agreement with literature
1679     results. {[}S1063-651X(99)03105-0].},
1680     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1681     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1682     Author = {M\"{u}ller-Plathe, F},
1683     Date-Added = {2009-10-01 14:07:30 -0400},
1684     Date-Modified = {2009-10-01 14:07:30 -0400},
1685     Doc-Delivery-Number = {197TX},
1686     Issn = {1063-651X},
1687     Journal = {Phys. Rev. E},
1688     Journal-Iso = {Phys. Rev. E},
1689     Language = {English},
1690     Month = {MAY},
1691     Number = {5, Part A},
1692     Number-Of-Cited-References = {17},
1693     Pages = {4894-4898},
1694     Publisher = {AMERICAN PHYSICAL SOC},
1695     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1696     Times-Cited = {57},
1697     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1698     Type = {Article},
1699     Unique-Id = {ISI:000080382700030},
1700     Volume = {59},
1701     Year = {1999}}
1702    
1703     @article{Maginn:2007,
1704     Abstract = {Atomistic simulations are conducted to examine the
1705     dependence of the viscosity of
1706     1-ethyl-3-methylimidazolium
1707     bis(trifluoromethanesulfonyl)imide on temperature
1708     and water content. A nonequilibrium molecular
1709     dynamics procedure is utilized along with an
1710     established fixed charge force field. It is found
1711     that the simulations quantitatively capture the
1712     temperature dependence of the viscosity as well as
1713     the drop in viscosity that occurs with increasing
1714     water content. Using mixture viscosity models, we
1715     show that the relative drop in viscosity with water
1716     content is actually less than that that would be
1717     predicted for an ideal system. This finding is at
1718     odds with the popular notion that small amounts of
1719     water cause an unusually large drop in the viscosity
1720     of ionic liquids. The simulations suggest that, due
1721     to preferential association of water with anions and
1722     the formation of water clusters, the excess molar
1723     volume is negative. This means that dissolved water
1724     is actually less effective at lowering the viscosity
1725     of these mixtures when compared to a solute obeying
1726     ideal mixing behavior. The use of a nonequilibrium
1727     simulation technique enables diffusive behavior to
1728     be observed on the time scale of the simulations,
1729     and standard equilibrium molecular dynamics resulted
1730     in sub-diffusive behavior even over 2 ns of
1731     simulation time.},
1732     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1733     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1734     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1735     Author-Email = {ed@nd.edu},
1736     Date-Added = {2009-09-29 17:07:17 -0400},
1737     Date-Modified = {2010-04-14 12:51:02 -0400},
1738     Doc-Delivery-Number = {163VA},
1739     Doi = {10.1021/jp0686893},
1740     Issn = {1520-6106},
1741     Journal = {J. Phys. Chem. B},
1742     Journal-Iso = {J. Phys. Chem. B},
1743     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1744     Language = {English},
1745     Month = {MAY 10},
1746     Number = {18},
1747     Number-Of-Cited-References = {57},
1748     Pages = {4867-4876},
1749     Publisher = {AMER CHEMICAL SOC},
1750     Subject-Category = {Chemistry, Physical},
1751     Times-Cited = {35},
1752     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1753     Type = {Article},
1754     Unique-Id = {ISI:000246190100032},
1755     Volume = {111},
1756     Year = {2007},
1757     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1758     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1759    
1760     @article{MullerPlathe:1997xw,
1761     Abstract = {A nonequilibrium molecular dynamics method for
1762     calculating the thermal conductivity is
1763     presented. It reverses the usual cause and effect
1764     picture. The ''effect,'' the heat flux, is imposed
1765     on the system and the ''cause,'' the temperature
1766     gradient is obtained from the simulation. Besides
1767     being very simple to implement, the scheme offers
1768     several advantages such as compatibility with
1769     periodic boundary conditions, conservation of total
1770     energy and total linear momentum, and the sampling
1771     of a rapidly converging quantity (temperature
1772     gradient) rather than a slowly converging one (heat
1773     flux). The scheme is tested on the Lennard-Jones
1774     fluid. (C) 1997 American Institute of Physics.},
1775     Address = {WOODBURY},
1776     Author = {M\"{u}ller-Plathe, F.},
1777     Cited-Reference-Count = {13},
1778     Date = {APR 8},
1779     Date-Added = {2009-09-21 16:51:21 -0400},
1780     Date-Modified = {2009-09-21 16:51:21 -0400},
1781     Document-Type = {Article},
1782     Isi = {ISI:A1997WR62000032},
1783     Isi-Document-Delivery-Number = {WR620},
1784     Iso-Source-Abbreviation = {J. Chem. Phys.},
1785     Issn = {0021-9606},
1786     Journal = {J. Chem. Phys.},
1787     Language = {English},
1788     Month = {Apr},
1789     Number = {14},
1790     Page-Count = {4},
1791     Pages = {6082--6085},
1792     Publication-Type = {J},
1793     Publisher = {AMER INST PHYSICS},
1794     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1795     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1796     Source = {J CHEM PHYS},
1797     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1798     Times-Cited = {106},
1799     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1800     Volume = {106},
1801     Year = {1997}}
1802    
1803     @article{Muller-Plathe:1999ek,
1804     Abstract = {A novel non-equilibrium method for calculating
1805     transport coefficients is presented. It reverses the
1806     experimental cause-and-effect picture, e.g. for the
1807     calculation of viscosities: the effect, the momentum
1808     flux or stress, is imposed, whereas the cause, the
1809     velocity gradient or shear rates, is obtained from
1810     the simulation. It differs from other
1811     Norton-ensemble methods by the way, in which the
1812     steady-state fluxes are maintained. This method
1813     involves a simple exchange of particle momenta,
1814     which is easy to implement and to analyse. Moreover,
1815     it can be made to conserve the total energy as well
1816     as the total linear momentum, so no thermostatting
1817     is needed. The resulting raw data are robust and
1818     rapidly converging. The method is tested on the
1819     calculation of the shear viscosity, the thermal
1820     conductivity and the Soret coefficient (thermal
1821     diffusion) for the Lennard-Jones (LJ) fluid near its
1822     triple point. Possible applications to other
1823     transport coefficients and more complicated systems
1824     are discussed. (C) 1999 Elsevier Science Ltd. All
1825     rights reserved.},
1826     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1827     Author = {M\"{u}ller-Plathe, F and Reith, D},
1828     Date-Added = {2009-09-21 16:47:07 -0400},
1829     Date-Modified = {2009-09-21 16:47:07 -0400},
1830     Isi = {000082266500004},
1831     Isi-Recid = {111564960},
1832     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1833     Journal = {Computational and Theoretical Polymer Science},
1834     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1835     Number = {3-4},
1836     Pages = {203-209},
1837     Publisher = {ELSEVIER SCI LTD},
1838     Times-Cited = {15},
1839     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1840     Volume = {9},
1841     Year = {1999},
1842     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1843    
1844     @article{Viscardy:2007lq,
1845     Abstract = {The thermal conductivity is calculated with the
1846     Helfand-moment method in the Lennard-Jones fluid
1847     near the triple point. The Helfand moment of thermal
1848     conductivity is here derived for molecular dynamics
1849     with periodic boundary conditions. Thermal
1850     conductivity is given by a generalized Einstein
1851     relation with this Helfand moment. The authors
1852     compute thermal conductivity by this new method and
1853     compare it with their own values obtained by the
1854     standard Green-Kubo method. The agreement is
1855     excellent. (C) 2007 American Institute of Physics.},
1856     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1857     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1858     Date-Added = {2009-09-21 16:37:20 -0400},
1859     Date-Modified = {2010-07-19 16:18:44 -0400},
1860     Doi = {DOI 10.1063/1.2724821},
1861     Isi = {000246453900035},
1862     Isi-Recid = {156192451},
1863     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1864     Journal = {J. Chem. Phys.},
1865     Month = may,
1866     Number = {18},
1867     Pages = {184513},
1868     Publisher = {AMER INST PHYSICS},
1869     Times-Cited = {3},
1870     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1871     Volume = {126},
1872     Year = {2007},
1873     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1874     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1875    
1876     @article{Viscardy:2007bh,
1877     Abstract = {The authors propose a new method, the Helfand-moment
1878     method, to compute the shear viscosity by
1879     equilibrium molecular dynamics in periodic
1880     systems. In this method, the shear viscosity is
1881     written as an Einstein-type relation in terms of the
1882     variance of the so-called Helfand moment. This
1883     quantity is modified in order to satisfy systems
1884     with periodic boundary conditions usually considered
1885     in molecular dynamics. They calculate the shear
1886     viscosity in the Lennard-Jones fluid near the triple
1887     point thanks to this new technique. They show that
1888     the results of the Helfand-moment method are in
1889     excellent agreement with the results of the standard
1890     Green-Kubo method. (C) 2007 American Institute of
1891     Physics.},
1892     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1893     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1894     Date-Added = {2009-09-21 16:37:19 -0400},
1895     Date-Modified = {2010-07-19 16:19:03 -0400},
1896     Doi = {DOI 10.1063/1.2724820},
1897     Isi = {000246453900034},
1898     Isi-Recid = {156192449},
1899     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1900     Journal = {J. Chem. Phys.},
1901     Month = may,
1902     Number = {18},
1903     Pages = {184512},
1904     Publisher = {AMER INST PHYSICS},
1905     Times-Cited = {1},
1906     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1907     Volume = {126},
1908     Year = {2007},
1909     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1910     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1911    
1912     @inproceedings{384119,
1913     Address = {New York, NY, USA},
1914     Author = {Fortune, Steven},
1915     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1916     Doi = {http://doi.acm.org/10.1145/384101.384119},
1917     Isbn = {1-58113-417-7},
1918     Location = {London, Ontario, Canada},
1919     Pages = {121--128},
1920     Publisher = {ACM},
1921     Title = {Polynomial root finding using iterated Eigenvalue computation},
1922     Year = {2001},
1923     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1924    
1925     @article{Fennell06,
1926 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1927     Date-Added = {2006-08-24 09:49:57 -0400},
1928     Date-Modified = {2006-08-24 09:49:57 -0400},
1929     Doi = {10.1063/1.2206581},
1930     Journal = {J. Chem. Phys.},
1931     Number = {23},
1932     Pages = {234104(12)},
1933     Rating = {5},
1934     Read = {Yes},
1935     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1936     Volume = {124},
1937     Year = {2006},
1938     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1939 skuang 3719
1940 skuang 3721 @book{Sommese2005,
1941     Address = {Singapore},
1942     Author = {Andrew J. Sommese and Charles W. Wampler},
1943     Publisher = {World Scientific Press},
1944     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1945     Year = 2005}