ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3749
Committed: Mon Jul 25 19:11:33 2011 UTC (14 years, 1 month ago) by skuang
File size: 113438 byte(s)
Log Message:
add new references; some edits.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3749 %% Created for Shenyu Kuang at 2011-07-25 14:50:27 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3749 @article{doi:10.1021/cr9801317,
13     Author = {Takano, Hajime and Kenseth, Jeremy R. and Wong, Sze-Shun and O'Brie, Janese C. and Porter, Marc D.},
14     Date-Added = {2011-07-25 14:50:24 -0400},
15     Date-Modified = {2011-07-25 14:50:24 -0400},
16     Doi = {10.1021/cr9801317},
17     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/cr9801317},
18     Journal = {Chemical Reviews},
19     Number = {10},
20     Pages = {2845-2890},
21     Title = {Chemical and Biochemical Analysis Using Scanning Force Microscopy},
22     Url = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
23     Volume = {99},
24     Year = {1999},
25     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/cr9801317},
26     Bdsk-Url-2 = {http://dx.doi.org/10.1021/cr9801317}}
27    
28     @article{doi:10.1021/ja00008a001,
29     Author = {Widrig, Cindra A. and Alves, Carla A. and Porter, Marc D.},
30     Date-Added = {2011-07-25 14:49:37 -0400},
31     Date-Modified = {2011-07-25 14:49:37 -0400},
32     Doi = {10.1021/ja00008a001},
33     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00008a001},
34     Journal = {Journal of the American Chemical Society},
35     Number = {8},
36     Pages = {2805-2810},
37     Title = {Scanning tunneling microscopy of ethanethiolate and n-octadecanethiolate monolayers spontaneously absorbed at gold surfaces},
38     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
39     Volume = {113},
40     Year = {1991},
41     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00008a001},
42     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00008a001}}
43    
44 skuang 3737 @article{doi:10.1021/la026493y,
45     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
46     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
47     Date-Added = {2011-07-12 17:52:01 -0400},
48     Date-Modified = {2011-07-12 17:52:01 -0400},
49     Doi = {10.1021/la026493y},
50     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
51     Journal = {Langmuir},
52     Number = {3},
53     Pages = {830-834},
54     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
55     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
56     Volume = {19},
57     Year = {2003},
58     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
59     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
60    
61     @article{doi:10.1021/j100035a033,
62     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
63     Date-Added = {2011-07-12 17:51:55 -0400},
64     Date-Modified = {2011-07-12 17:51:55 -0400},
65     Doi = {10.1021/j100035a033},
66     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
67     Journal = {The Journal of Physical Chemistry},
68     Number = {35},
69     Pages = {13257-13267},
70     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
71     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
72     Volume = {99},
73     Year = {1995},
74     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
75     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
76    
77 skuang 3736 @article{hautman:4994,
78     Author = {Joseph Hautman and Michael L. Klein},
79     Date-Added = {2011-07-11 18:27:57 -0400},
80     Date-Modified = {2011-07-11 18:27:57 -0400},
81     Doi = {10.1063/1.457621},
82     Journal = {The Journal of Chemical Physics},
83     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
84     Number = {8},
85     Pages = {4994-5001},
86     Publisher = {AIP},
87     Title = {Simulation of a monolayer of alkyl thiol chains},
88     Url = {http://link.aip.org/link/?JCP/91/4994/1},
89     Volume = {91},
90     Year = {1989},
91     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
92     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
93    
94     @article{landman:1998,
95     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
96     Author = {Luedtke, W. D. and Landman, Uzi},
97     Date-Added = {2011-07-11 18:22:20 -0400},
98     Date-Modified = {2011-07-11 18:22:54 -0400},
99     Doi = {10.1021/jp981745i},
100     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
101     Journal = {The Journal of Physical Chemistry B},
102     Number = {34},
103     Pages = {6566-6572},
104     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
105     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
106     Volume = {102},
107     Year = {1998},
108     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
109     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
110    
111     @article{hase:2010,
112     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
113     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
114     Date-Added = {2011-07-11 16:02:11 -0400},
115     Date-Modified = {2011-07-11 16:06:39 -0400},
116     Doi = {10.1039/B923858C},
117     Issue = {17},
118     Journal = {Phys. Chem. Chem. Phys.},
119     Pages = {4435-4445},
120     Publisher = {The Royal Society of Chemistry},
121     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
122     Url = {http://dx.doi.org/10.1039/B923858C},
123     Volume = {12},
124     Year = {2010},
125     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
126    
127     @article{jiang:2002,
128 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
129     Author = {JIANG, SHAOYI},
130     Date-Added = {2011-07-08 17:51:59 -0400},
131 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
132 skuang 3733 Doi = {10.1080/00268970210130948},
133     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
134     Journal = {Molecular Physics},
135     Number = {14},
136     Pages = {2261-2275},
137     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
138     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
139     Volume = {100},
140     Year = {2002},
141     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
142     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
143    
144     @article{doi:10.1021/la904855s,
145     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
146     Date-Added = {2011-07-08 17:18:53 -0400},
147     Date-Modified = {2011-07-08 17:18:53 -0400},
148     Doi = {10.1021/la904855s},
149     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
150     Journal = {Langmuir},
151     Note = {PMID: 20166728},
152     Number = {6},
153     Pages = {3786-3789},
154     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
155     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
156     Volume = {26},
157     Year = {2010},
158     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
159     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
160    
161     @article{doi:10.1021/jp8051888,
162     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
163     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
164     Date-Added = {2011-07-08 17:04:34 -0400},
165     Date-Modified = {2011-07-08 17:04:34 -0400},
166     Doi = {10.1021/jp8051888},
167     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
168     Journal = {The Journal of Physical Chemistry C},
169     Number = {35},
170     Pages = {13320-13323},
171     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
172     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
173     Volume = {112},
174     Year = {2008},
175     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
176     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
177    
178     @article{PhysRevB.80.195406,
179     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
180     Date-Added = {2011-07-08 16:36:39 -0400},
181     Date-Modified = {2011-07-08 16:36:39 -0400},
182     Doi = {10.1103/PhysRevB.80.195406},
183     Journal = {Phys. Rev. B},
184     Month = {Nov},
185     Number = {19},
186     Numpages = {6},
187     Pages = {195406},
188     Publisher = {American Physical Society},
189     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
190     Volume = {80},
191     Year = {2009},
192     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
193    
194     @article{Wang10082007,
195     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
196     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
197     Date-Added = {2011-07-08 16:20:05 -0400},
198     Date-Modified = {2011-07-08 16:20:05 -0400},
199     Doi = {10.1126/science.1145220},
200     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
201     Journal = {Science},
202     Number = {5839},
203     Pages = {787-790},
204     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
205     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
206     Volume = {317},
207     Year = {2007},
208     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
209     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
210    
211 skuang 3736 @article{hase:2011,
212 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
213     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
214     Date-Added = {2011-07-08 13:36:39 -0400},
215 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
216 skuang 3733 Doi = {10.1021/jp200672e},
217     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
218     Journal = {The Journal of Physical Chemistry C},
219     Number = {19},
220     Pages = {9622-9628},
221     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
222     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
223     Volume = {115},
224     Year = {2011},
225     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
226     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
227    
228 skuang 3729 @article{doi:10.1021/ja00051a040,
229     Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
230     Date-Added = {2011-06-29 14:04:33 -0400},
231     Date-Modified = {2011-06-29 14:04:33 -0400},
232     Doi = {10.1021/ja00051a040},
233     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
234     Journal = {Journal of the American Chemical Society},
235     Number = {25},
236     Pages = {10024-10035},
237     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
238     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
239     Volume = {114},
240     Year = {1992},
241     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
242     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
243    
244 skuang 3724 @article{doi:10.1021/jp034405s,
245     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
246     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
247     Date-Added = {2011-04-28 11:23:28 -0400},
248     Date-Modified = {2011-04-28 11:23:28 -0400},
249     Doi = {10.1021/jp034405s},
250     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
251     Journal = {The Journal of Physical Chemistry B},
252     Number = {43},
253     Pages = {11940-11950},
254     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
255     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
256     Volume = {107},
257     Year = {2003},
258     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
259     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
260    
261 skuang 3721 @article{OPLSAA,
262     Abstract = {null},
263     Annote = {doi: 10.1021/ja9621760},
264     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
265     Date = {1996/01/01},
266     Date-Added = {2011-02-04 18:54:58 -0500},
267     Date-Modified = {2011-02-04 18:54:58 -0500},
268     Do = {10.1021/ja9621760},
269     Isbn = {0002-7863},
270     Journal = {Journal of the American Chemical Society},
271     M3 = {doi: 10.1021/ja9621760},
272     Month = {01},
273     Number = {45},
274     Pages = {11225--11236},
275     Publisher = {American Chemical Society},
276     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
277     Ty = {JOUR},
278     Url = {http://dx.doi.org/10.1021/ja9621760},
279     Volume = {118},
280     Year = {1996},
281     Year1 = {1996/01/01},
282     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
283    
284     @article{TraPPE-UA.alkylbenzenes,
285     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
286     Date-Added = {2011-02-04 18:31:46 -0500},
287     Date-Modified = {2011-02-04 18:32:22 -0500},
288     Doi = {10.1021/jp001044x},
289     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
290     Journal = {The Journal of Physical Chemistry B},
291     Number = {33},
292     Pages = {8008-8016},
293     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
294     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
295     Volume = {104},
296     Year = {2000},
297     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
298     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
299    
300     @article{TraPPE-UA.alkanes,
301     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
302     Date-Added = {2011-02-04 18:01:31 -0500},
303     Date-Modified = {2011-02-04 18:02:19 -0500},
304     Doi = {10.1021/jp972543+},
305     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
306     Journal = {The Journal of Physical Chemistry B},
307     Number = {14},
308     Pages = {2569-2577},
309     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
310     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
311     Volume = {102},
312     Year = {1998},
313     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
314     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
315    
316     @article{TraPPE-UA.thiols,
317     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
318     Date-Added = {2011-02-04 17:51:03 -0500},
319     Date-Modified = {2011-02-04 17:54:20 -0500},
320     Doi = {10.1021/jp0549125},
321     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
322     Journal = {The Journal of Physical Chemistry B},
323     Number = {50},
324     Pages = {24100-24107},
325     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
326     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
327     Volume = {109},
328     Year = {2005},
329     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
330     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
331    
332     @article{vlugt:cpc2007154,
333     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
334     Date-Added = {2011-02-01 16:00:11 -0500},
335     Date-Modified = {2011-02-04 18:21:59 -0500},
336     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
337     Issn = {0010-4655},
338     Journal = {Computer Physics Communications},
339     Keywords = {Gold nanocrystals},
340     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
341     Number = {1-2},
342     Pages = {154 - 157},
343     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
344     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
345     Volume = {177},
346     Year = {2007},
347     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
348     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
349    
350     @article{packmol,
351     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
352     Bibsource = {DBLP, http://dblp.uni-trier.de},
353     Date-Added = {2011-02-01 15:13:02 -0500},
354     Date-Modified = {2011-02-01 15:14:25 -0500},
355     Ee = {http://dx.doi.org/10.1002/jcc.21224},
356     Journal = {Journal of Computational Chemistry},
357     Number = {13},
358     Pages = {2157-2164},
359     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
360     Volume = {30},
361     Year = {2009}}
362    
363     @article{kuang:164101,
364     Author = {Shenyu Kuang and J. Daniel Gezelter},
365     Date-Added = {2011-01-31 17:12:35 -0500},
366     Date-Modified = {2011-01-31 17:12:35 -0500},
367     Doi = {10.1063/1.3499947},
368     Eid = {164101},
369     Journal = {The Journal of Chemical Physics},
370     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
371     Number = {16},
372     Numpages = {9},
373     Pages = {164101},
374     Publisher = {AIP},
375     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
376     Url = {http://link.aip.org/link/?JCP/133/164101/1},
377     Volume = {133},
378     Year = {2010},
379     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
380     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
381    
382 skuang 3719 @article{muller:014102,
383     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
384     Date-Added = {2010-09-16 19:19:25 -0400},
385     Date-Modified = {2010-09-16 19:19:25 -0400},
386     Doi = {10.1063/1.2943312},
387     Eid = {014102},
388     Journal = {The Journal of Chemical Physics},
389     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
390     Number = {1},
391     Numpages = {8},
392     Pages = {014102},
393     Publisher = {AIP},
394     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
395     Url = {http://link.aip.org/link/?JCP/129/014102/1},
396     Volume = {129},
397     Year = {2008},
398     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
399     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
400    
401     @article{wolf:8254,
402     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
403     Date-Added = {2010-09-16 19:01:51 -0400},
404     Date-Modified = {2010-09-16 19:01:51 -0400},
405     Doi = {10.1063/1.478738},
406     Journal = {J. Chem. Phys.},
407     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
408     Number = {17},
409     Pages = {8254-8282},
410     Publisher = {AIP},
411     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
412     Url = {http://link.aip.org/link/?JCP/110/8254/1},
413     Volume = {110},
414     Year = {1999},
415     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
416     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
417    
418     @article{HeX:1993,
419     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
420     heat conduction is used to compute the thermal conductivity, thermal
421     diffusion factor, and heat of transfer in binary Lennard-Jones
422     mixtures. An internal energy flux is established with local source and
423     sink terms for kinetic energy.
424     Simulations of isotope mixtures covering a range of densities and mass
425     ratios show that the lighter component prefers the hot side of the
426     system at stationary state. This implies a positive thermal diffusion
427     factor in the definition we have adopted here. The molecular basis for
428     the Soret effect is studied by analysing the energy flux through the
429     system. In all cases we found that there is a difference in the
430     relative contributions when we compare the hot and cold sides of the
431     system. The contribution from the lighter component is predominantly
432     flux of kinetic energy, and this contribution increases from the cold
433     to the hot side. The contribution from the heavier component is
434     predominantly energy transfer through molecular interactions, and it
435     increases from the hot to the cold side. This explains why the thermal
436     diffusion factor is positive; heal is conducted more effectively
437     through the system if the lighter component is enriched at the hot
438     side. Even for very large heat fluxes, we find a linear or almost
439     linear temperature profile through the system, and a constant thermal
440     conductivity. The entropy production per unit volume and unit time
441     increases from the hot to the cold side.},
442     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
443     Date-Added = {2010-09-15 16:52:45 -0400},
444     Date-Modified = {2010-09-15 16:54:23 -0400},
445     Issn = {{0026-8976}},
446     Journal = {Mol. Phys.},
447     Month = {DEC},
448     Number = {6},
449     Pages = {1389-1412},
450     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
451     Unique-Id = {ISI:A1993MQ34500009},
452     Volume = {80},
453 skuang 3721 Year = {1993}}
454 skuang 3719
455     @article{HeX:1994,
456     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
457     dynamics, where a temperature gradient is established in a system with
458     periodic boundary conditions. At each time step in the simulation, a
459     fixed amount of energy is supplied to a hot region by scaling the
460     velocity of each particle in it, subject to conservation of total
461     momentum. An equal amount of energy is likewise withdrawn from a cold
462     region at each time step. Between the hot and cold regions is a region
463     through which an energy flux is established. Two configurations of hot
464     and cold regions are proposed. Using a stacked layer structure, the
465     instantaneous local energy flux for a 128-particle Lennard-Jones system
466     in liquid was found to be in good agreement with the macroscopic theory
467     of heat conduction at stationary state, except in and near the hot and
468     cold regions. Thermal conductivity calculated for the 128-particle
469     system was about 10\% smaller than the literature value obtained by
470     molecular dynamics calculations. One run with a 1024-particle system
471     showed an agreement with the literature value within statistical error
472     (1-2\%). Using a unit cell with a cold spherical region at the centre
473     and a hot region in the perimeter of the cube, an initial gaseous state
474     of argon was separated into gas and liquid phases. Energy fluxes due to
475     intermolecular energy transfer and transport of kinetic energy dominate
476     in the liquid and gas phases, respectively.},
477     Author = {Ikeshoji, T and Hafskjold, B},
478     Date-Added = {2010-09-15 16:52:45 -0400},
479     Date-Modified = {2010-09-15 16:54:37 -0400},
480     Issn = {0026-8976},
481     Journal = {Mol. Phys.},
482     Month = {FEB},
483     Number = {2},
484     Pages = {251-261},
485     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
486     Unique-Id = {ISI:A1994MY17400001},
487     Volume = {81},
488 skuang 3721 Year = {1994}}
489 skuang 3719
490     @article{plech:195423,
491     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
492     Date-Added = {2010-08-12 11:34:55 -0400},
493     Date-Modified = {2010-08-12 11:34:55 -0400},
494     Eid = {195423},
495     Journal = {Phys. Rev. B},
496     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
497     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
498     Number = {19},
499     Numpages = {7},
500     Pages = {195423},
501     Publisher = {APS},
502     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
503     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
504     Volume = {70},
505     Year = {2004},
506     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
507    
508     @article{Wilson:2002uq,
509     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
510     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
511     Date-Added = {2010-08-12 11:31:02 -0400},
512     Date-Modified = {2010-08-12 11:31:02 -0400},
513     Doi = {ARTN 224301},
514     Journal = {Phys. Rev. B},
515     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
516     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
517     Volume = {66},
518     Year = {2002},
519     Bdsk-Url-1 = {http://dx.doi.org/224301}}
520    
521     @article{RevModPhys.61.605,
522     Author = {Swartz, E. T. and Pohl, R. O.},
523     Date-Added = {2010-08-06 17:03:01 -0400},
524     Date-Modified = {2010-08-06 17:03:01 -0400},
525     Doi = {10.1103/RevModPhys.61.605},
526     Journal = {Rev. Mod. Phys.},
527     Month = {Jul},
528     Number = {3},
529     Numpages = {63},
530     Pages = {605--668},
531     Publisher = {American Physical Society},
532     Title = {Thermal boundary resistance},
533     Volume = {61},
534     Year = {1989},
535     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
536    
537     @article{cahill:793,
538     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
539     Date-Added = {2010-08-06 17:02:22 -0400},
540     Date-Modified = {2010-08-06 17:02:22 -0400},
541     Doi = {10.1063/1.1524305},
542     Journal = {J. Applied Phys.},
543     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
544     Number = {2},
545     Pages = {793-818},
546     Publisher = {AIP},
547     Title = {Nanoscale thermal transport},
548     Url = {http://link.aip.org/link/?JAP/93/793/1},
549     Volume = {93},
550     Year = {2003},
551     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
552     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
553    
554     @inbook{Hoffman:2001sf,
555     Address = {New York},
556     Annote = {LDR 01107cam 2200253 a 4500
557     001 12358442
558     005 20070910074423.0
559     008 010326s2001 nyua b 001 0 eng
560     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
561     925 0 $aacquire$b2 shelf copies$xpolicy default
562     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
563     010 $a 2001028633
564     020 $a0824704436 (acid-free paper)
565     040 $aDLC$cDLC$dDLC
566     050 00 $aQA297$b.H588 2001
567     082 00 $a519.4$221
568     100 1 $aHoffman, Joe D.,$d1934-
569     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
570     250 $a2nd ed., rev. and expanded.
571     260 $aNew York :$bMarcel Dekker,$cc2001.
572     300 $axi, 823 p. :$bill. ;$c26 cm.
573     504 $aIncludes bibliographical references (p. 775-777) and index.
574     650 0 $aNumerical analysis.
575     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
576     },
577     Author = {Hoffman, Joe D.},
578     Call-Number = {QA297},
579     Date-Added = {2010-07-15 16:32:02 -0400},
580     Date-Modified = {2010-07-19 16:49:37 -0400},
581     Dewey-Call-Number = {519.4},
582     Edition = {2nd ed., rev. and expanded},
583     Genre = {Numerical analysis},
584     Isbn = {0824704436 (acid-free paper)},
585     Library-Id = {2001028633},
586     Pages = {157},
587     Publisher = {Marcel Dekker},
588     Title = {Numerical methods for engineers and scientists},
589     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
590     Year = {2001},
591     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
592    
593     @article{Vardeman:2008fk,
594     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
595     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
596     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
597     Date-Added = {2010-07-13 11:48:22 -0400},
598     Date-Modified = {2010-07-19 16:20:01 -0400},
599     Doi = {DOI 10.1021/jp710063g},
600     Isi = {000253512400021},
601     Isi-Recid = {160903603},
602     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
603     Journal = {J. Phys. Chem. C},
604     Month = mar,
605     Number = {9},
606     Pages = {3283-3293},
607     Publisher = {AMER CHEMICAL SOC},
608     Times-Cited = {0},
609     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
610     Volume = {112},
611     Year = {2008},
612     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
613    
614     @article{PhysRevB.59.3527,
615     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
616     Date-Added = {2010-07-13 11:44:08 -0400},
617     Date-Modified = {2010-07-13 11:44:08 -0400},
618     Doi = {10.1103/PhysRevB.59.3527},
619     Journal = {Phys. Rev. B},
620     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
621     Month = {Feb},
622     Number = {5},
623     Numpages = {6},
624     Pages = {3527-3533},
625     Publisher = {American Physical Society},
626     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
627     Volume = {59},
628     Year = {1999},
629     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
630    
631     @article{Medasani:2007uq,
632     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
633     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
634     Date-Added = {2010-07-13 11:43:15 -0400},
635     Date-Modified = {2010-07-13 11:43:15 -0400},
636     Doi = {ARTN 235436},
637     Journal = {Phys. Rev. B},
638     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
639     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
640     Volume = {75},
641     Year = {2007},
642     Bdsk-Url-1 = {http://dx.doi.org/235436}}
643    
644     @article{Wang:2005qy,
645     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
646     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
647     Date-Added = {2010-07-13 11:42:50 -0400},
648     Date-Modified = {2010-07-13 11:42:50 -0400},
649     Doi = {DOI 10.1021/jp050116n},
650     Journal = {J. Phys. Chem. B},
651     Pages = {11683-11692},
652     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
653     Volume = {109},
654     Year = {2005},
655     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
656    
657     @article{Chui:2003fk,
658     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
659     Author = {Chui, YH and Chan, KY},
660     Date-Added = {2010-07-13 11:42:32 -0400},
661     Date-Modified = {2010-07-13 11:42:32 -0400},
662     Doi = {DOI 10.1039/b302122j},
663     Journal = {Phys. Chem. Chem. Phys.},
664     Pages = {2869-2874},
665     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
666     Volume = {5},
667     Year = {2003},
668     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
669    
670     @article{Sankaranarayanan:2005lr,
671     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
672     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
673     Date-Added = {2010-07-13 11:42:13 -0400},
674     Date-Modified = {2010-07-13 11:42:13 -0400},
675     Doi = {ARTN 195415},
676     Journal = {Phys. Rev. B},
677     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
678     Volume = {71},
679     Year = {2005},
680     Bdsk-Url-1 = {http://dx.doi.org/195415}}
681    
682     @article{Vardeman-II:2001jn,
683     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
684     Date-Added = {2010-07-13 11:41:50 -0400},
685     Date-Modified = {2010-07-13 11:41:50 -0400},
686     Journal = {J. Phys. Chem. A},
687     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
688     Number = {12},
689     Pages = {2568},
690     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
691     Volume = {105},
692     Year = {2001}}
693    
694     @article{ShibataT._ja026764r,
695     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
696     Date-Added = {2010-07-13 11:41:36 -0400},
697     Date-Modified = {2010-07-13 11:41:36 -0400},
698     Journal = {J. Amer. Chem. Soc.},
699     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
700     Number = {40},
701     Pages = {11989-11996},
702     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
703     Url = {http://dx.doi.org/10.1021/ja026764r},
704     Volume = {124},
705     Year = {2002},
706     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
707    
708     @article{Chen90,
709     Author = {A.~P. Sutton and J. Chen},
710     Date-Added = {2010-07-13 11:40:48 -0400},
711     Date-Modified = {2010-07-13 11:40:48 -0400},
712     Journal = {Phil. Mag. Lett.},
713     Pages = {139-146},
714     Title = {Long-Range Finnis Sinclair Potentials},
715     Volume = 61,
716     Year = {1990}}
717    
718     @article{PhysRevB.33.7983,
719     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
720     Date-Added = {2010-07-13 11:40:28 -0400},
721     Date-Modified = {2010-07-13 11:40:28 -0400},
722     Doi = {10.1103/PhysRevB.33.7983},
723     Journal = {Phys. Rev. B},
724     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
725     Month = {Jun},
726     Number = {12},
727     Numpages = {8},
728     Pages = {7983-7991},
729     Publisher = {American Physical Society},
730     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
731     Volume = {33},
732     Year = {1986},
733     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
734    
735     @article{hoover85,
736     Author = {W.~G. Hoover},
737     Date-Added = {2010-07-13 11:24:30 -0400},
738     Date-Modified = {2010-07-13 11:24:30 -0400},
739     Journal = pra,
740     Pages = 1695,
741     Title = {Canonical dynamics: Equilibrium phase-space distributions},
742     Volume = 31,
743     Year = 1985}
744    
745     @article{melchionna93,
746     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
747     Date-Added = {2010-07-13 11:22:17 -0400},
748     Date-Modified = {2010-07-13 11:22:17 -0400},
749     Journal = {Mol. Phys.},
750     Pages = {533-544},
751     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
752     Volume = 78,
753     Year = 1993}
754    
755     @misc{openmd,
756     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
757     Date-Added = {2010-07-13 11:16:00 -0400},
758     Date-Modified = {2010-07-19 16:27:45 -0400},
759     Howpublished = {Available at {\tt http://openmd.net}},
760     Title = {{OpenMD, an open source engine for molecular dynamics}}}
761    
762     @inbook{AshcroftMermin,
763 skuang 3721 Address = {Belmont, CA},
764 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
765     Date-Added = {2010-07-12 14:26:49 -0400},
766     Date-Modified = {2010-07-22 13:37:20 -0400},
767     Pages = {21},
768     Publisher = {Brooks Cole},
769     Title = {Solid State Physics},
770 skuang 3721 Year = {1976}}
771 skuang 3719
772     @book{WagnerKruse,
773     Address = {Berlin},
774     Author = {W. Wagner and A. Kruse},
775     Date-Added = {2010-07-12 14:10:29 -0400},
776     Date-Modified = {2010-07-12 14:13:44 -0400},
777     Publisher = {Springer-Verlag},
778     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
779 skuang 3721 Year = {1998}}
780 skuang 3719
781     @article{ISI:000266247600008,
782     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
783     hexafluorophosphate is investigated by non-equilibrium molecular
784     dynamics simulations with cosine-modulated force in the temperature
785     range from 360 to 480K. It is shown that this method is able to
786     correctly predict the shear viscosity. The simulation setting and
787     choice of the force field are discussed in detail. The all-atom force
788     field exhibits a bad convergence and the shear viscosity is
789     overestimated, while the simple united atom model predicts the kinetics
790     very well. The results are compared with the equilibrium molecular
791     dynamics simulations. The relationship between the diffusion
792     coefficient and viscosity is examined by means of the hydrodynamic
793     radii calculated from the Stokes-Einstein equation and the solvation
794     properties are discussed.},
795     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
796     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
797     Author = {Picalek, Jan and Kolafa, Jiri},
798     Author-Email = {jiri.kolafa@vscht.cz},
799     Date-Added = {2010-04-16 13:19:12 -0400},
800     Date-Modified = {2010-04-16 13:19:12 -0400},
801     Doc-Delivery-Number = {448FD},
802     Doi = {10.1080/08927020802680703},
803     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
804     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
805     Issn = {0892-7022},
806     Journal = {Mol. Simul.},
807     Journal-Iso = {Mol. Simul.},
808     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
809     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
810     Language = {English},
811     Number = {8},
812     Number-Of-Cited-References = {50},
813     Pages = {685-690},
814     Publisher = {TAYLOR \& FRANCIS LTD},
815     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
816     Times-Cited = {2},
817     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
818     Type = {Article},
819     Unique-Id = {ISI:000266247600008},
820     Volume = {35},
821     Year = {2009},
822     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
823    
824     @article{Vasquez:2004fk,
825     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
826     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
827     Date = {2004/11/02/},
828     Date-Added = {2010-04-16 13:18:48 -0400},
829     Date-Modified = {2010-04-16 13:18:48 -0400},
830     Day = {02},
831     Journal = {Int. J. Thermophys.},
832     M3 = {10.1007/s10765-004-7736-3},
833     Month = {11},
834     Number = {6},
835     Pages = {1799--1818},
836     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
837     Ty = {JOUR},
838     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
839     Volume = {25},
840     Year = {2004},
841     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
842    
843     @article{hess:209,
844     Author = {Berk Hess},
845     Date-Added = {2010-04-16 12:37:37 -0400},
846     Date-Modified = {2010-04-16 12:37:37 -0400},
847     Doi = {10.1063/1.1421362},
848     Journal = {J. Chem. Phys.},
849     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
850     Number = {1},
851     Pages = {209-217},
852     Publisher = {AIP},
853     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
854     Url = {http://link.aip.org/link/?JCP/116/209/1},
855     Volume = {116},
856     Year = {2002},
857     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
858     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
859    
860     @article{backer:154503,
861     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
862     Date-Added = {2010-04-16 12:37:37 -0400},
863     Date-Modified = {2010-04-16 12:37:37 -0400},
864     Doi = {10.1063/1.1883163},
865     Eid = {154503},
866     Journal = {J. Chem. Phys.},
867     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
868     Number = {15},
869     Numpages = {6},
870     Pages = {154503},
871     Publisher = {AIP},
872     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
873     Url = {http://link.aip.org/link/?JCP/122/154503/1},
874     Volume = {122},
875     Year = {2005},
876     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
877     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
878    
879     @article{daivis:541,
880     Author = {Peter J. Daivis and Denis J. Evans},
881     Date-Added = {2010-04-16 12:05:36 -0400},
882     Date-Modified = {2010-04-16 12:05:36 -0400},
883     Doi = {10.1063/1.466970},
884     Journal = {J. Chem. Phys.},
885     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
886     Number = {1},
887     Pages = {541-547},
888     Publisher = {AIP},
889     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
890     Url = {http://link.aip.org/link/?JCP/100/541/1},
891     Volume = {100},
892     Year = {1994},
893     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
894     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
895    
896     @article{mondello:9327,
897     Author = {Maurizio Mondello and Gary S. Grest},
898     Date-Added = {2010-04-16 12:05:36 -0400},
899     Date-Modified = {2010-04-16 12:05:36 -0400},
900     Doi = {10.1063/1.474002},
901     Journal = {J. Chem. Phys.},
902     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
903     Number = {22},
904     Pages = {9327-9336},
905     Publisher = {AIP},
906     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
907     Url = {http://link.aip.org/link/?JCP/106/9327/1},
908     Volume = {106},
909     Year = {1997},
910     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
911     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
912    
913     @article{ISI:A1988Q205300014,
914     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
915     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
916     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
917     Date-Added = {2010-04-14 16:20:24 -0400},
918     Date-Modified = {2010-04-14 16:20:24 -0400},
919     Doc-Delivery-Number = {Q2053},
920     Issn = {0026-8976},
921     Journal = {Mol. Phys.},
922     Journal-Iso = {Mol. Phys.},
923     Language = {English},
924     Month = {AUG 20},
925     Number = {6},
926     Number-Of-Cited-References = {14},
927     Pages = {1203-1213},
928     Publisher = {TAYLOR \& FRANCIS LTD},
929     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
930     Times-Cited = {12},
931     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
932     Type = {Article},
933     Unique-Id = {ISI:A1988Q205300014},
934     Volume = {64},
935     Year = {1988}}
936    
937     @article{ISI:000261835100054,
938     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
939     molecular dynamics simulation. The molecular models for the alcohols
940     are rigid, nonpolarizable, and of united-atom type. They were developed
941     in preceding work using experimental vapor-liquid equilibrium data
942     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
943     shear viscosity of methanol, ethanol, and their binary mixture are
944     determined using equilibrium molecular dynamics and the Green-Kubo
945     formalism. Nonequilibrium molecular dynamics is used for predicting the
946     thermal conductivity of the two pure substances. The transport
947     properties of the fluids are calculated over a wide temperature range
948     at ambient pressure and compared with experimental and simulation data
949     from the literature. Overall, a very good agreement with the experiment
950     is found. For instance, the self-diffusion coefficient and the shear
951     viscosity are predicted with average deviations of less than 8\% for
952     the pure alcohols and 12\% for the mixture. The predicted thermal
953     conductivity agrees on average within 5\% with the experimental data.
954     Additionally, some velocity and shear viscosity autocorrelation
955     functions are presented and discussed. Radial distribution functions
956     for ethanol are also presented. The predicted excess volume, excess
957     enthalpy, and the vapor-liquid equilibrium of the binary mixture
958     methanol + ethanol are assessed and agree well with experimental data.},
959     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
960     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
961     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
962     Author-Email = {vrabec@itt.uni-stuttgart.de},
963     Date-Added = {2010-04-14 15:43:29 -0400},
964     Date-Modified = {2010-04-14 15:43:29 -0400},
965     Doc-Delivery-Number = {385SY},
966     Doi = {10.1021/jp805584d},
967     Issn = {1520-6106},
968     Journal = {J. Phys. Chem. B},
969     Journal-Iso = {J. Phys. Chem. B},
970     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
971     Language = {English},
972     Month = {DEC 25},
973     Number = {51},
974     Number-Of-Cited-References = {86},
975     Pages = {16664-16674},
976     Publisher = {AMER CHEMICAL SOC},
977     Subject-Category = {Chemistry, Physical},
978     Times-Cited = {5},
979     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
980     Type = {Article},
981     Unique-Id = {ISI:000261835100054},
982     Volume = {112},
983     Year = {2008},
984     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
985    
986     @article{ISI:000258460400020,
987     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
988     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
989     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
990     9549) force fields have been employed to calculate the thermal
991     conductivity and other associated properties of methane hydrate over a
992     temperature range from 30 to 260 K. The calculated results are compared
993     to experimental data over this same range. The values of the thermal
994     conductivity calculated with the COS/G2 model are closer to the
995     experimental values than are those calculated with the nonpolarizable
996     SPC/E model. The calculations match the temperature trend in the
997     experimental data at temperatures below 50 K; however, they exhibit a
998     slight decrease in thermal conductivity at higher temperatures in
999     comparison to an opposite trend in the experimental data. The
1000     calculated thermal conductivity values are found to be relatively
1001     insensitive to the occupancy of the cages except at low (T <= 50 K)
1002     temperatures, which indicates that the differences between the two
1003     lattice structures may have a more dominant role than generally thought
1004     in explaining the low thermal conductivity of methane hydrate compared
1005     to ice Ih. The introduction of defects into the water lattice is found
1006     to cause a reduction in the thermal conductivity but to have a
1007     negligible impact on its temperature dependence.},
1008     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1009     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
1010     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
1011     Date-Added = {2010-04-14 15:38:14 -0400},
1012     Date-Modified = {2010-04-14 15:38:14 -0400},
1013     Doc-Delivery-Number = {337UG},
1014     Doi = {10.1021/jp802942v},
1015     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
1016     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
1017     Issn = {1520-6106},
1018     Journal = {J. Phys. Chem. B},
1019     Journal-Iso = {J. Phys. Chem. B},
1020     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
1021     Language = {English},
1022     Month = {AUG 21},
1023     Number = {33},
1024     Number-Of-Cited-References = {51},
1025     Pages = {10207-10216},
1026     Publisher = {AMER CHEMICAL SOC},
1027     Subject-Category = {Chemistry, Physical},
1028     Times-Cited = {8},
1029     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
1030     Type = {Article},
1031     Unique-Id = {ISI:000258460400020},
1032     Volume = {112},
1033     Year = {2008},
1034     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1035    
1036     @article{ISI:000184808400018,
1037     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1038     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1039     6082), for the non-equilibrium simulation of heat transport maintaining
1040     fixed the total momentum as well as the total energy of the system. The
1041     presented scheme preserves these properties but, unlike the original
1042     algorithm, is able to deal with multicomponent systems, that is with
1043     particles of different mass independently of their relative
1044     concentration. The main idea behind the new procedure is to consider an
1045     exchange of momentum and energy between the particles in the hot and
1046     cold regions, to maintain the non-equilibrium conditions, as if they
1047     undergo a hypothetical elastic collision. The new algorithm can also be
1048     employed in multicomponent systems for molecular fluids and in a wide
1049     range of thermodynamic conditions.},
1050     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1051     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1052     Author = {Nieto-Draghi, C and Avalos, JB},
1053     Date-Added = {2010-04-14 12:48:08 -0400},
1054     Date-Modified = {2010-04-14 12:48:08 -0400},
1055     Doc-Delivery-Number = {712QM},
1056     Doi = {10.1080/0026897031000154338},
1057     Issn = {0026-8976},
1058     Journal = {Mol. Phys.},
1059     Journal-Iso = {Mol. Phys.},
1060     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1061     Language = {English},
1062     Month = {JUL 20},
1063     Number = {14},
1064     Number-Of-Cited-References = {20},
1065     Pages = {2303-2307},
1066     Publisher = {TAYLOR \& FRANCIS LTD},
1067     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1068     Times-Cited = {13},
1069     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1070     Type = {Article},
1071     Unique-Id = {ISI:000184808400018},
1072     Volume = {101},
1073     Year = {2003},
1074     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1075    
1076     @article{Bedrov:2000-1,
1077     Abstract = {The thermal conductivity of liquid
1078     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1079     determined from imposed heat flux non-equilibrium molecular dynamics
1080     (NEMD) simulations using a previously published quantum chemistry-based
1081     atomistic potential. The thermal conductivity was determined in the
1082     temperature domain 550 less than or equal to T less than or equal to
1083     800 K, which corresponds approximately to the existence limits of the
1084     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1085     which comprise the first reported values for thermal conductivity of
1086     HMX liquid, were found to be consistent with measured values for
1087     crystalline HMX. The thermal conductivity of liquid HMX was found to
1088     exhibit a much weaker temperature dependence than the shear viscosity
1089     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1090     rights reserved.},
1091     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1092     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1093     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1094     Date-Added = {2010-04-14 12:26:59 -0400},
1095     Date-Modified = {2010-04-14 12:27:52 -0400},
1096     Doc-Delivery-Number = {330PF},
1097     Issn = {0009-2614},
1098     Journal = {Chem. Phys. Lett.},
1099     Journal-Iso = {Chem. Phys. Lett.},
1100     Keywords-Plus = {FORCE-FIELD},
1101     Language = {English},
1102     Month = {JUN 30},
1103     Number = {1-3},
1104     Number-Of-Cited-References = {17},
1105     Pages = {64-68},
1106     Publisher = {ELSEVIER SCIENCE BV},
1107     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1108     Times-Cited = {19},
1109     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1110     Type = {Article},
1111     Unique-Id = {ISI:000087969900011},
1112     Volume = {324},
1113     Year = {2000}}
1114    
1115     @article{ISI:000258840700015,
1116     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1117     (MD) simulations are carried out to calculate the viscosity and
1118     self-diffusion coefficient of liquid copper from the normal to the
1119     undercooled states. The simulated results are in reasonable agreement
1120     with the experimental values available above the melting temperature
1121     that is also predicted from a solid-liquid-solid sandwich structure.
1122     The relationship between the viscosity and the self-diffusion
1123     coefficient is evaluated. It is found that the Stokes-Einstein and
1124     Sutherland-Einstein relations qualitatively describe this relationship
1125     within the simulation temperature range. However, the predicted
1126     constant from MD simulation is close to 1/(3 pi), which is larger than
1127     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1128     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1129     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1130     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1131     Author-Email = {mchen@tsinghua.edu.cn},
1132     Date-Added = {2010-04-14 12:00:38 -0400},
1133     Date-Modified = {2010-04-14 12:00:38 -0400},
1134     Doc-Delivery-Number = {343GH},
1135     Doi = {10.1007/s10765-008-0489-7},
1136     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1137     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1138     Issn = {0195-928X},
1139     Journal = {Int. J. Thermophys.},
1140     Journal-Iso = {Int. J. Thermophys.},
1141     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1142     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1143     Language = {English},
1144     Month = {AUG},
1145     Number = {4},
1146     Number-Of-Cited-References = {39},
1147     Pages = {1408-1421},
1148     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1149     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1150     Times-Cited = {2},
1151     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1152     Type = {Article},
1153     Unique-Id = {ISI:000258840700015},
1154     Volume = {29},
1155     Year = {2008},
1156     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1157    
1158     @article{Muller-Plathe:2008,
1159     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1160     dynamics simulations were carried out to compute the shear viscosity of
1161     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1162     yielded consistent results which were also compared to experiments. The
1163     results showed that the reverse nonequilibrium molecular dynamics
1164     (RNEMD) methodology can successfully be applied to computation of
1165     highly viscous ionic liquids. Moreover, this study provides a
1166     validation of the atomistic force-field developed by Bhargava and
1167     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1168     properties.},
1169     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1170     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1171     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1172     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1173     Date-Added = {2010-04-14 11:53:37 -0400},
1174     Date-Modified = {2010-04-14 11:54:20 -0400},
1175     Doc-Delivery-Number = {321VS},
1176     Doi = {10.1021/jp8017869},
1177     Issn = {1520-6106},
1178     Journal = {J. Phys. Chem. B},
1179     Journal-Iso = {J. Phys. Chem. B},
1180     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1181     Language = {English},
1182     Month = {JUL 10},
1183     Number = {27},
1184     Number-Of-Cited-References = {49},
1185     Pages = {8129-8133},
1186     Publisher = {AMER CHEMICAL SOC},
1187     Subject-Category = {Chemistry, Physical},
1188     Times-Cited = {2},
1189     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1190     Type = {Article},
1191     Unique-Id = {ISI:000257335200022},
1192     Volume = {112},
1193     Year = {2008},
1194     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1195    
1196     @article{Muller-Plathe:2002,
1197     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1198     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1199     viscosity of Lennard-Jones liquids has been extended to atomistic
1200     models of molecular liquids. The method is improved to overcome the
1201     problems due to the detailed molecular models. The new technique is
1202     besides a test with a Lennard-Jones fluid, applied on different
1203     realistic systems: liquid nitrogen, water, and hexane, in order to
1204     cover a large range of interactions and systems/architectures. We show
1205     that all the advantages of the method itemized previously are still
1206     valid, and that it has a very good efficiency and accuracy making it
1207     very competitive. (C) 2002 American Institute of Physics.},
1208     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1209     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1210     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1211     Date-Added = {2010-04-14 11:34:42 -0400},
1212     Date-Modified = {2010-04-14 11:35:35 -0400},
1213     Doc-Delivery-Number = {521QV},
1214     Doi = {10.1063/1.1436124},
1215     Issn = {0021-9606},
1216     Journal = {J. Chem. Phys.},
1217     Journal-Iso = {J. Chem. Phys.},
1218     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1219     Language = {English},
1220     Month = {FEB 22},
1221     Number = {8},
1222     Number-Of-Cited-References = {47},
1223     Pages = {3362-3369},
1224     Publisher = {AMER INST PHYSICS},
1225     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1226     Times-Cited = {33},
1227     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1228     Type = {Article},
1229     Unique-Id = {ISI:000173853600023},
1230     Volume = {116},
1231     Year = {2002},
1232     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1233    
1234     @article{ISI:000207079300006,
1235     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1236     methods have been used to study the ability of
1237     Embedded Atom Method models of the metals copper and
1238     gold to reproduce the equilibrium and
1239     non-equilibrium behavior of metals at a stationary
1240     and at a moving solid/liquid interface. The
1241     equilibrium solid/vapor interface was shown to
1242     display a simple termination of the bulk until the
1243     temperature of the solid reaches approximate to 90\%
1244     of the bulk melting point. At and above such
1245     temperatures the systems exhibit a surface
1246     disodering known as surface melting. Non-equilibrium
1247     simulations emulating the action of a picosecond
1248     laser on the metal were performed to determine the
1249     regrowth velocity. For copper, the action of a 20 ps
1250     laser with an absorbed energy of 2-5 mJ/cm(2)
1251     produced a regrowth velocity of 83-100 m/s, in
1252     reasonable agreement with the value obtained by
1253     experiment (>60 m/s). For gold, similar conditions
1254     produced a slower regrowth velocity of 63 m/s at an
1255     absorbed energy of 5 mJ/cm(2). This is almost a
1256     factor of two too low in comparison to experiment
1257     (>100 m/s). The regrowth velocities of the metals
1258     seems unexpectedly close to experiment considering
1259     that the free-electron contribution is ignored in
1260     the Embeeded Atom Method models used.},
1261     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1262     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1263     Author = {Richardson, Clifton F. and Clancy, Paulette},
1264     Date-Added = {2010-04-07 11:24:36 -0400},
1265     Date-Modified = {2010-04-07 11:24:36 -0400},
1266     Doc-Delivery-Number = {V04SY},
1267     Issn = {0892-7022},
1268     Journal = {Mol. Simul.},
1269     Journal-Iso = {Mol. Simul.},
1270     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1271     Language = {English},
1272     Number = {5-6},
1273     Number-Of-Cited-References = {36},
1274     Pages = {335-355},
1275     Publisher = {TAYLOR \& FRANCIS LTD},
1276     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1277     Times-Cited = {7},
1278     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1279     Type = {Article},
1280     Unique-Id = {ISI:000207079300006},
1281     Volume = {7},
1282     Year = {1991}}
1283    
1284     @article{ISI:000167766600035,
1285     Abstract = {Molecular dynamics simulations are used to
1286     investigate the separation of water films adjacent
1287     to a hot metal surface. The simulations clearly show
1288     that the water layers nearest the surface overheat
1289     and undergo explosive boiling. For thick films, the
1290     expansion of the vaporized molecules near the
1291     surface forces the outer water layers to move away
1292     from the surface. These results are of interest for
1293     mass spectrometry of biological molecules, steam
1294     cleaning of surfaces, and medical procedures.},
1295     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1296     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1297     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1298     Date-Added = {2010-03-11 15:32:14 -0500},
1299     Date-Modified = {2010-03-11 15:32:14 -0500},
1300     Doc-Delivery-Number = {416ED},
1301     Issn = {1089-5639},
1302     Journal = {J. Phys. Chem. A},
1303     Journal-Iso = {J. Phys. Chem. A},
1304     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1305     Language = {English},
1306     Month = {MAR 29},
1307     Number = {12},
1308     Number-Of-Cited-References = {65},
1309     Pages = {2748-2755},
1310     Publisher = {AMER CHEMICAL SOC},
1311     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1312     Times-Cited = {66},
1313     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1314     Type = {Article},
1315     Unique-Id = {ISI:000167766600035},
1316     Volume = {105},
1317     Year = {2001}}
1318    
1319     @article{Maginn:2010,
1320     Abstract = {The reverse nonequilibrium molecular dynamics
1321     (RNEMD) method calculates the shear viscosity of a
1322     fluid by imposing a nonphysical exchange of momentum
1323     and measuring the resulting shear velocity
1324     gradient. In this study we investigate the range of
1325     momentum flux values over which RNEMD yields usable
1326     (linear) velocity gradients. We find that nonlinear
1327     velocity profiles result primarily from gradients in
1328     fluid temperature and density. The temperature
1329     gradient results from conversion of heat into bulk
1330     kinetic energy, which is transformed back into heat
1331     elsewhere via viscous heating. An expression is
1332     derived to predict the temperature profile resulting
1333     from a specified momentum flux for a given fluid and
1334     simulation cell. Although primarily bounded above,
1335     we also describe milder low-flux limitations. RNEMD
1336     results for a Lennard-Jones fluid agree with
1337     equilibrium molecular dynamics and conventional
1338     nonequilibrium molecular dynamics calculations at
1339     low shear, but RNEMD underpredicts viscosity
1340     relative to conventional NEMD at high shear.},
1341     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1342     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1343     Article-Number = {014103},
1344     Author = {Tenney, Craig M. and Maginn, Edward J.},
1345     Author-Email = {ed@nd.edu},
1346     Date-Added = {2010-03-09 13:08:41 -0500},
1347     Date-Modified = {2010-07-19 16:21:35 -0400},
1348     Doc-Delivery-Number = {542DQ},
1349     Doi = {10.1063/1.3276454},
1350     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1351     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1352     Issn = {0021-9606},
1353     Journal = {J. Chem. Phys.},
1354     Journal-Iso = {J. Chem. Phys.},
1355     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1356     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1357     Language = {English},
1358     Month = {JAN 7},
1359     Number = {1},
1360     Number-Of-Cited-References = {20},
1361     Pages = {014103},
1362     Publisher = {AMER INST PHYSICS},
1363     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1364     Times-Cited = {0},
1365     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1366     Type = {Article},
1367     Unique-Id = {ISI:000273472300004},
1368     Volume = {132},
1369     Year = {2010},
1370     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1371    
1372     @article{Clancy:1992,
1373     Abstract = {The regrowth velocity of a crystal from a melt
1374     depends on contributions from the thermal
1375     conductivity, heat gradient, and latent heat. The
1376     relative contributions of these terms to the
1377     regrowth velocity of the pure metals copper and gold
1378     during liquid-phase epitaxy are evaluated. These
1379     results are used to explain how results from
1380     previous nonequilibrium molecular-dynamics
1381     simulations using classical potentials are able to
1382     predict regrowth velocities that are close to the
1383     experimental values. Results from equilibrium
1384     molecular dynamics showing the nature of the
1385     solid-vapor interface of an
1386     embedded-atom-method-modeled Cu57Ni43 alloy at a
1387     temperature corresponding to 62\% of the melting
1388     point are presented. The regrowth of this alloy
1389     following a simulation of a laser-processing
1390     experiment is also given, with use of nonequilibrium
1391     molecular-dynamics techniques. The thermal
1392     conductivity and temperature gradient in the
1393     simulation of the alloy are compared to those for
1394     the pure metals.},
1395     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1396     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1397     Author = {Richardson, C.~F. and Clancy, P},
1398     Date-Added = {2010-01-12 16:17:33 -0500},
1399     Date-Modified = {2010-04-08 17:18:25 -0400},
1400     Doc-Delivery-Number = {HX378},
1401     Issn = {0163-1829},
1402     Journal = {Phys. Rev. B},
1403     Journal-Iso = {Phys. Rev. B},
1404     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1405     Language = {English},
1406     Month = {JUN 1},
1407     Number = {21},
1408     Number-Of-Cited-References = {24},
1409     Pages = {12260-12268},
1410     Publisher = {AMERICAN PHYSICAL SOC},
1411     Subject-Category = {Physics, Condensed Matter},
1412     Times-Cited = {11},
1413     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1414     Type = {Article},
1415     Unique-Id = {ISI:A1992HX37800010},
1416     Volume = {45},
1417     Year = {1992}}
1418    
1419     @article{Bedrov:2000,
1420     Abstract = {We have applied a new nonequilibrium molecular
1421     dynamics (NEMD) method {[}F. Muller-Plathe,
1422     J. Chem. Phys. 106, 6082 (1997)] previously applied
1423     to monatomic Lennard-Jones fluids in the
1424     determination of the thermal conductivity of
1425     molecular fluids. The method was modified in order
1426     to be applicable to systems with holonomic
1427     constraints. Because the method involves imposing a
1428     known heat flux it is particularly attractive for
1429     systems involving long-range and many-body
1430     interactions where calculation of the microscopic
1431     heat flux is difficult. The predicted thermal
1432     conductivities of liquid n-butane and water using
1433     the imposed-flux NEMD method were found to be in a
1434     good agreement with previous simulations and
1435     experiment. (C) 2000 American Institute of
1436     Physics. {[}S0021-9606(00)50841-1].},
1437     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1438     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1439     Author = {Bedrov, D and Smith, GD},
1440     Date-Added = {2009-11-05 18:21:18 -0500},
1441     Date-Modified = {2010-04-14 11:50:48 -0400},
1442     Doc-Delivery-Number = {369BF},
1443     Issn = {0021-9606},
1444     Journal = {J. Chem. Phys.},
1445     Journal-Iso = {J. Chem. Phys.},
1446     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1447     Language = {English},
1448     Month = {NOV 8},
1449     Number = {18},
1450     Number-Of-Cited-References = {26},
1451     Pages = {8080-8084},
1452     Publisher = {AMER INST PHYSICS},
1453     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1454     Times-Cited = {23},
1455     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1456     Type = {Article},
1457     Unique-Id = {ISI:000090151400044},
1458     Volume = {113},
1459     Year = {2000}}
1460    
1461     @article{ISI:000231042800044,
1462     Abstract = {The reverse nonequilibrium molecular dynamics
1463     method for thermal conductivities is adapted to the
1464     investigation of molecular fluids. The method
1465     generates a heat flux through the system by suitably
1466     exchanging velocities of particles located in
1467     different regions. From the resulting temperature
1468     gradient, the thermal conductivity is then
1469     calculated. Different variants of the algorithm and
1470     their combinations with other system parameters are
1471     tested: exchange of atomic velocities versus
1472     exchange of molecular center-of-mass velocities,
1473     different exchange frequencies, molecular models
1474     with bond constraints versus models with flexible
1475     bonds, united-atom versus all-atom models, and
1476     presence versus absence of a thermostat. To help
1477     establish the range of applicability, the algorithm
1478     is tested on different models of benzene,
1479     cyclohexane, water, and n-hexane. We find that the
1480     algorithm is robust and that the calculated thermal
1481     conductivities are insensitive to variations in its
1482     control parameters. The force field, in contrast,
1483     has a major influence on the value of the thermal
1484     conductivity. While calculated and experimental
1485     thermal conductivities fall into the same order of
1486     magnitude, in most cases the calculated values are
1487     systematically larger. United-atom force fields seem
1488     to do better than all-atom force fields, possibly
1489     because they remove high-frequency degrees of
1490     freedom from the simulation, which, in nature, are
1491     quantum-mechanical oscillators in their ground state
1492     and do not contribute to heat conduction.},
1493     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1494     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1495     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1496     Date-Added = {2009-11-05 18:17:33 -0500},
1497     Date-Modified = {2009-11-05 18:17:33 -0500},
1498     Doc-Delivery-Number = {952YQ},
1499     Doi = {10.1021/jp0512255},
1500     Issn = {1520-6106},
1501     Journal = {J. Phys. Chem. B},
1502     Journal-Iso = {J. Phys. Chem. B},
1503     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1504     Language = {English},
1505     Month = {AUG 11},
1506     Number = {31},
1507     Number-Of-Cited-References = {42},
1508     Pages = {15060-15067},
1509     Publisher = {AMER CHEMICAL SOC},
1510     Subject-Category = {Chemistry, Physical},
1511     Times-Cited = {17},
1512     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1513     Type = {Article},
1514     Unique-Id = {ISI:000231042800044},
1515     Volume = {109},
1516     Year = {2005},
1517     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1518    
1519     @article{ISI:A1997YC32200056,
1520     Abstract = {Equilibrium molecular dynamics simulations have
1521     been carried out in the microcanonical ensemble at
1522     300 and 255 K on the extended simple point charge
1523     (SPC/E) model of water {[}Berendsen et al.,
1524     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1525     number of static and dynamic properties, thermal
1526     conductivity lambda has been calculated via
1527     Green-Kubo integration of the heat current time
1528     correlation functions (CF's) in the atomic and
1529     molecular formalism, at wave number k=0. The
1530     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1531     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1532     with the experimental data (0.61 W/mK at 300 K and
1533     0.49 W/mK at 255 K). A negative long-time tail of
1534     the heat current CF, more apparent at 255 K, is
1535     responsible for the anomalous decrease of lambda
1536     with temperature. An analysis of the dynamical modes
1537     contributing to lambda has shown that its value is
1538     due to two low-frequency exponential-like modes, a
1539     faster collisional mode, with positive contribution,
1540     and a slower one, which determines the negative
1541     long-time tail. A comparison of the molecular and
1542     atomic spectra of the heat current CF has suggested
1543     that higher-frequency modes should not contribute to
1544     lambda in this temperature range. Generalized
1545     thermal diffusivity D-T(k) decreases as a function
1546     of k, after an initial minor increase at k =
1547     k(min). The k dependence of the generalized
1548     thermodynamic properties has been calculated in the
1549     atomic and molecular formalisms. The observed
1550     differences have been traced back to intramolecular
1551     or intermolecular rotational effects and related to
1552     the partial structure functions. Finally, from the
1553     results we calculated it appears that the SPC/E
1554     model gives results in better agreement with
1555     experimental data than the transferable
1556     intermolecular potential with four points TIP4P
1557     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1558     926 (1983)], with a larger improvement for, e.g.,
1559     diffusion, viscosities, and dielectric properties
1560     and a smaller one for thermal conductivity. The
1561     SPC/E model shares, to a smaller extent, the
1562     insufficient slowing down of dynamics at low
1563     temperature already found for the TIP4P water
1564     model.},
1565     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1566     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1567     Author = {Bertolini, D and Tani, A},
1568     Date-Added = {2009-10-30 15:41:21 -0400},
1569     Date-Modified = {2009-10-30 15:41:21 -0400},
1570     Doc-Delivery-Number = {YC322},
1571     Issn = {1063-651X},
1572     Journal = {Phys. Rev. E},
1573     Journal-Iso = {Phys. Rev. E},
1574     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1575     Language = {English},
1576     Month = {OCT},
1577     Number = {4},
1578     Number-Of-Cited-References = {35},
1579     Pages = {4135-4151},
1580     Publisher = {AMERICAN PHYSICAL SOC},
1581     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1582     Times-Cited = {18},
1583     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1584     Type = {Article},
1585     Unique-Id = {ISI:A1997YC32200056},
1586     Volume = {56},
1587     Year = {1997}}
1588    
1589     @article{Meineke:2005gd,
1590     Abstract = {OOPSE is a new molecular dynamics simulation program
1591     that is capable of efficiently integrating equations
1592     of motion for atom types with orientational degrees
1593     of freedom (e.g. #sticky# atoms and point
1594     dipoles). Transition metals can also be simulated
1595     using the embedded atom method (EAM) potential
1596     included in the code. Parallel simulations are
1597     carried out using the force-based decomposition
1598     method. Simulations are specified using a very
1599     simple C-based meta-data language. A number of
1600     advanced integrators are included, and the basic
1601     integrator for orientational dynamics provides
1602     substantial improvements over older quaternion-based
1603     schemes.},
1604     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1605     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1606     Date-Added = {2009-10-01 18:43:03 -0400},
1607     Date-Modified = {2010-04-13 09:11:16 -0400},
1608     Doi = {DOI 10.1002/jcc.20161},
1609     Isi = {000226558200006},
1610     Isi-Recid = {142688207},
1611     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1612     Journal = {J. Comp. Chem.},
1613     Keywords = {OOPSE; molecular dynamics},
1614     Month = feb,
1615     Number = {3},
1616     Pages = {252-271},
1617     Publisher = {JOHN WILEY \& SONS INC},
1618     Times-Cited = {9},
1619     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1620     Volume = {26},
1621     Year = {2005},
1622     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1623     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1624    
1625     @article{ISI:000080382700030,
1626     Abstract = {A nonequilibrium method for calculating the shear
1627     viscosity is presented. It reverses the
1628     cause-and-effect picture customarily used in
1629     nonequilibrium molecular dynamics: the effect, the
1630     momentum flux or stress, is imposed, whereas the
1631     cause, the velocity gradient or shear rate, is
1632     obtained from the simulation. It differs from other
1633     Norton-ensemble methods by the way in which the
1634     steady-state momentum flux is maintained. This
1635     method involves a simple exchange of particle
1636     momenta, which is easy to implement. Moreover, it
1637     can be made to conserve the total energy as well as
1638     the total linear momentum, so no coupling to an
1639     external temperature bath is needed. The resulting
1640     raw data, the velocity profile, is a robust and
1641     rapidly converging property. The method is tested on
1642     the Lennard-Jones fluid near its triple point. It
1643     yields a viscosity of 3.2-3.3, in Lennard-Jones
1644     reduced units, in agreement with literature
1645     results. {[}S1063-651X(99)03105-0].},
1646     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1647     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1648     Author = {M\"{u}ller-Plathe, F},
1649     Date-Added = {2009-10-01 14:07:30 -0400},
1650     Date-Modified = {2009-10-01 14:07:30 -0400},
1651     Doc-Delivery-Number = {197TX},
1652     Issn = {1063-651X},
1653     Journal = {Phys. Rev. E},
1654     Journal-Iso = {Phys. Rev. E},
1655     Language = {English},
1656     Month = {MAY},
1657     Number = {5, Part A},
1658     Number-Of-Cited-References = {17},
1659     Pages = {4894-4898},
1660     Publisher = {AMERICAN PHYSICAL SOC},
1661     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1662     Times-Cited = {57},
1663     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1664     Type = {Article},
1665     Unique-Id = {ISI:000080382700030},
1666     Volume = {59},
1667     Year = {1999}}
1668    
1669     @article{Maginn:2007,
1670     Abstract = {Atomistic simulations are conducted to examine the
1671     dependence of the viscosity of
1672     1-ethyl-3-methylimidazolium
1673     bis(trifluoromethanesulfonyl)imide on temperature
1674     and water content. A nonequilibrium molecular
1675     dynamics procedure is utilized along with an
1676     established fixed charge force field. It is found
1677     that the simulations quantitatively capture the
1678     temperature dependence of the viscosity as well as
1679     the drop in viscosity that occurs with increasing
1680     water content. Using mixture viscosity models, we
1681     show that the relative drop in viscosity with water
1682     content is actually less than that that would be
1683     predicted for an ideal system. This finding is at
1684     odds with the popular notion that small amounts of
1685     water cause an unusually large drop in the viscosity
1686     of ionic liquids. The simulations suggest that, due
1687     to preferential association of water with anions and
1688     the formation of water clusters, the excess molar
1689     volume is negative. This means that dissolved water
1690     is actually less effective at lowering the viscosity
1691     of these mixtures when compared to a solute obeying
1692     ideal mixing behavior. The use of a nonequilibrium
1693     simulation technique enables diffusive behavior to
1694     be observed on the time scale of the simulations,
1695     and standard equilibrium molecular dynamics resulted
1696     in sub-diffusive behavior even over 2 ns of
1697     simulation time.},
1698     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1699     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1700     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1701     Author-Email = {ed@nd.edu},
1702     Date-Added = {2009-09-29 17:07:17 -0400},
1703     Date-Modified = {2010-04-14 12:51:02 -0400},
1704     Doc-Delivery-Number = {163VA},
1705     Doi = {10.1021/jp0686893},
1706     Issn = {1520-6106},
1707     Journal = {J. Phys. Chem. B},
1708     Journal-Iso = {J. Phys. Chem. B},
1709     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1710     Language = {English},
1711     Month = {MAY 10},
1712     Number = {18},
1713     Number-Of-Cited-References = {57},
1714     Pages = {4867-4876},
1715     Publisher = {AMER CHEMICAL SOC},
1716     Subject-Category = {Chemistry, Physical},
1717     Times-Cited = {35},
1718     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1719     Type = {Article},
1720     Unique-Id = {ISI:000246190100032},
1721     Volume = {111},
1722     Year = {2007},
1723     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1724     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1725    
1726     @article{MullerPlathe:1997xw,
1727     Abstract = {A nonequilibrium molecular dynamics method for
1728     calculating the thermal conductivity is
1729     presented. It reverses the usual cause and effect
1730     picture. The ''effect,'' the heat flux, is imposed
1731     on the system and the ''cause,'' the temperature
1732     gradient is obtained from the simulation. Besides
1733     being very simple to implement, the scheme offers
1734     several advantages such as compatibility with
1735     periodic boundary conditions, conservation of total
1736     energy and total linear momentum, and the sampling
1737     of a rapidly converging quantity (temperature
1738     gradient) rather than a slowly converging one (heat
1739     flux). The scheme is tested on the Lennard-Jones
1740     fluid. (C) 1997 American Institute of Physics.},
1741     Address = {WOODBURY},
1742     Author = {M\"{u}ller-Plathe, F.},
1743     Cited-Reference-Count = {13},
1744     Date = {APR 8},
1745     Date-Added = {2009-09-21 16:51:21 -0400},
1746     Date-Modified = {2009-09-21 16:51:21 -0400},
1747     Document-Type = {Article},
1748     Isi = {ISI:A1997WR62000032},
1749     Isi-Document-Delivery-Number = {WR620},
1750     Iso-Source-Abbreviation = {J. Chem. Phys.},
1751     Issn = {0021-9606},
1752     Journal = {J. Chem. Phys.},
1753     Language = {English},
1754     Month = {Apr},
1755     Number = {14},
1756     Page-Count = {4},
1757     Pages = {6082--6085},
1758     Publication-Type = {J},
1759     Publisher = {AMER INST PHYSICS},
1760     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1761     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1762     Source = {J CHEM PHYS},
1763     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1764     Times-Cited = {106},
1765     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1766     Volume = {106},
1767     Year = {1997}}
1768    
1769     @article{Muller-Plathe:1999ek,
1770     Abstract = {A novel non-equilibrium method for calculating
1771     transport coefficients is presented. It reverses the
1772     experimental cause-and-effect picture, e.g. for the
1773     calculation of viscosities: the effect, the momentum
1774     flux or stress, is imposed, whereas the cause, the
1775     velocity gradient or shear rates, is obtained from
1776     the simulation. It differs from other
1777     Norton-ensemble methods by the way, in which the
1778     steady-state fluxes are maintained. This method
1779     involves a simple exchange of particle momenta,
1780     which is easy to implement and to analyse. Moreover,
1781     it can be made to conserve the total energy as well
1782     as the total linear momentum, so no thermostatting
1783     is needed. The resulting raw data are robust and
1784     rapidly converging. The method is tested on the
1785     calculation of the shear viscosity, the thermal
1786     conductivity and the Soret coefficient (thermal
1787     diffusion) for the Lennard-Jones (LJ) fluid near its
1788     triple point. Possible applications to other
1789     transport coefficients and more complicated systems
1790     are discussed. (C) 1999 Elsevier Science Ltd. All
1791     rights reserved.},
1792     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1793     Author = {M\"{u}ller-Plathe, F and Reith, D},
1794     Date-Added = {2009-09-21 16:47:07 -0400},
1795     Date-Modified = {2009-09-21 16:47:07 -0400},
1796     Isi = {000082266500004},
1797     Isi-Recid = {111564960},
1798     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1799     Journal = {Computational and Theoretical Polymer Science},
1800     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1801     Number = {3-4},
1802     Pages = {203-209},
1803     Publisher = {ELSEVIER SCI LTD},
1804     Times-Cited = {15},
1805     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1806     Volume = {9},
1807     Year = {1999},
1808     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1809    
1810     @article{Viscardy:2007lq,
1811     Abstract = {The thermal conductivity is calculated with the
1812     Helfand-moment method in the Lennard-Jones fluid
1813     near the triple point. The Helfand moment of thermal
1814     conductivity is here derived for molecular dynamics
1815     with periodic boundary conditions. Thermal
1816     conductivity is given by a generalized Einstein
1817     relation with this Helfand moment. The authors
1818     compute thermal conductivity by this new method and
1819     compare it with their own values obtained by the
1820     standard Green-Kubo method. The agreement is
1821     excellent. (C) 2007 American Institute of Physics.},
1822     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1823     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1824     Date-Added = {2009-09-21 16:37:20 -0400},
1825     Date-Modified = {2010-07-19 16:18:44 -0400},
1826     Doi = {DOI 10.1063/1.2724821},
1827     Isi = {000246453900035},
1828     Isi-Recid = {156192451},
1829     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1830     Journal = {J. Chem. Phys.},
1831     Month = may,
1832     Number = {18},
1833     Pages = {184513},
1834     Publisher = {AMER INST PHYSICS},
1835     Times-Cited = {3},
1836     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1837     Volume = {126},
1838     Year = {2007},
1839     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1840     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1841    
1842     @article{Viscardy:2007bh,
1843     Abstract = {The authors propose a new method, the Helfand-moment
1844     method, to compute the shear viscosity by
1845     equilibrium molecular dynamics in periodic
1846     systems. In this method, the shear viscosity is
1847     written as an Einstein-type relation in terms of the
1848     variance of the so-called Helfand moment. This
1849     quantity is modified in order to satisfy systems
1850     with periodic boundary conditions usually considered
1851     in molecular dynamics. They calculate the shear
1852     viscosity in the Lennard-Jones fluid near the triple
1853     point thanks to this new technique. They show that
1854     the results of the Helfand-moment method are in
1855     excellent agreement with the results of the standard
1856     Green-Kubo method. (C) 2007 American Institute of
1857     Physics.},
1858     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1859     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1860     Date-Added = {2009-09-21 16:37:19 -0400},
1861     Date-Modified = {2010-07-19 16:19:03 -0400},
1862     Doi = {DOI 10.1063/1.2724820},
1863     Isi = {000246453900034},
1864     Isi-Recid = {156192449},
1865     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1866     Journal = {J. Chem. Phys.},
1867     Month = may,
1868     Number = {18},
1869     Pages = {184512},
1870     Publisher = {AMER INST PHYSICS},
1871     Times-Cited = {1},
1872     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1873     Volume = {126},
1874     Year = {2007},
1875     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1876     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1877    
1878     @inproceedings{384119,
1879     Address = {New York, NY, USA},
1880     Author = {Fortune, Steven},
1881     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1882     Doi = {http://doi.acm.org/10.1145/384101.384119},
1883     Isbn = {1-58113-417-7},
1884     Location = {London, Ontario, Canada},
1885     Pages = {121--128},
1886     Publisher = {ACM},
1887     Title = {Polynomial root finding using iterated Eigenvalue computation},
1888     Year = {2001},
1889     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1890    
1891     @article{Fennell06,
1892 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1893     Date-Added = {2006-08-24 09:49:57 -0400},
1894     Date-Modified = {2006-08-24 09:49:57 -0400},
1895     Doi = {10.1063/1.2206581},
1896     Journal = {J. Chem. Phys.},
1897     Number = {23},
1898     Pages = {234104(12)},
1899     Rating = {5},
1900     Read = {Yes},
1901     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1902     Volume = {124},
1903     Year = {2006},
1904     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1905 skuang 3719
1906 skuang 3721 @book{Sommese2005,
1907     Address = {Singapore},
1908     Author = {Andrew J. Sommese and Charles W. Wampler},
1909     Publisher = {World Scientific Press},
1910     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1911     Year = 2005}