ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3737
Committed: Tue Jul 12 22:11:11 2011 UTC (14 years, 2 months ago) by skuang
File size: 112041 byte(s)
Log Message:
revisions. add missing citations.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3737 %% Created for Shenyu Kuang at 2011-07-12 17:52:09 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3737 @article{doi:10.1021/la026493y,
13     Abstract = { We have studied butanethiol self-assembled monolayers on Au(100) using cyclic voltammetry and in situ scanning tunneling microscopy (STM). The butanethiol adlayer shows ordered domains with a striped structure, the stripes running parallel to the main crystallographic axes of the substrate. After modification the surface reveals a 50% coverage of monoatomic high gold islands, but no vacancy islands were observed. Reductive and oxidative desorption of the film, previously studied by electrochemistry, were monitored by STM. },
14     Author = {Loglio, F. and Schweizer, M. and Kolb, D. M.},
15     Date-Added = {2011-07-12 17:52:01 -0400},
16     Date-Modified = {2011-07-12 17:52:01 -0400},
17     Doi = {10.1021/la026493y},
18     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la026493y},
19     Journal = {Langmuir},
20     Number = {3},
21     Pages = {830-834},
22     Title = {In Situ Characterization of Self-Assembled Butanethiol Monolayers on Au(100) Electrodes},
23     Url = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
24     Volume = {19},
25     Year = {2003},
26     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la026493y},
27     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la026493y}}
28    
29     @article{doi:10.1021/j100035a033,
30     Author = {McDermott, Christie A. and McDermott, Mark T. and Green, John-Bruce and Porter, Marc D.},
31     Date-Added = {2011-07-12 17:51:55 -0400},
32     Date-Modified = {2011-07-12 17:51:55 -0400},
33     Doi = {10.1021/j100035a033},
34     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/j100035a033},
35     Journal = {The Journal of Physical Chemistry},
36     Number = {35},
37     Pages = {13257-13267},
38     Title = {Structural Origins of the Surface Depressions at Alkanethiolate Monolayers on Au(111): A Scanning Tunneling and Atomic Force Microscopic Investigation},
39     Url = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
40     Volume = {99},
41     Year = {1995},
42     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/j100035a033},
43     Bdsk-Url-2 = {http://dx.doi.org/10.1021/j100035a033}}
44    
45 skuang 3736 @article{hautman:4994,
46     Author = {Joseph Hautman and Michael L. Klein},
47     Date-Added = {2011-07-11 18:27:57 -0400},
48     Date-Modified = {2011-07-11 18:27:57 -0400},
49     Doi = {10.1063/1.457621},
50     Journal = {The Journal of Chemical Physics},
51     Keywords = {MOLECULAR DYNAMICS CALCULATIONS; SIMULATION; MONOLAYERS; THIOLS; ALKYL COMPOUNDS; CHAINS; SURFACE STRUCTURE; GOLD; SUBSTRATES; CHEMISORPTION; SURFACE PROPERTIES},
52     Number = {8},
53     Pages = {4994-5001},
54     Publisher = {AIP},
55     Title = {Simulation of a monolayer of alkyl thiol chains},
56     Url = {http://link.aip.org/link/?JCP/91/4994/1},
57     Volume = {91},
58     Year = {1989},
59     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/91/4994/1},
60     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.457621}}
61    
62     @article{landman:1998,
63     Abstract = { Equilibrium structures and thermodynamic properties of dodecanethiol self-assembled monolayers on small (Au140) and larger (Au1289) gold nanocrystallites were investigated with the use of molecular dynamics simulations. Compact passivating monolayers are formed on the (111) and (100) facets of the nanocrystallites, with adsorption site geometries differing from those found on extended flat Au(111) and Au(100) surfaces, as well as with higher packing densities. At lower temperatures the passivating molecules organize into preferentially oriented molecular bundles with the molecules in the bundles aligned approximately parallel to each other. Thermal disordering starts at T ≳200 K, initiating at the boundaries of the bundles and involving generation of intramolecular conformational (gauche) defects which occur first at bonds near the chains' outer terminus and propagate inward toward the underlying gold nanocrystalline surface as the temperature is increased. The disordering process culminates in melting of the molecular bundles, resulting in a uniform orientational distribution of the molecules around the gold nanocrystallites. From the inflection points in the calculated caloric curves, melting temperatures were determined as 280 and 294 K for the monolayers adsorbed on the smaller and larger gold nanocrystallites, respectively. These temperatures are significantly lower than the melting temperature estimated for a self-assembled monolayer of dodecanethiol adsorbed on an extended Au(111) surface. The theoretically predicted disordering mechanisms and melting scenario, resulting in a temperature-broadened transition, support recent experimental investigations. },
64     Author = {Luedtke, W. D. and Landman, Uzi},
65     Date-Added = {2011-07-11 18:22:20 -0400},
66     Date-Modified = {2011-07-11 18:22:54 -0400},
67     Doi = {10.1021/jp981745i},
68     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp981745i},
69     Journal = {The Journal of Physical Chemistry B},
70     Number = {34},
71     Pages = {6566-6572},
72     Title = {Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites},
73     Url = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
74     Volume = {102},
75     Year = {1998},
76     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp981745i},
77     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp981745i}}
78    
79     @article{hase:2010,
80     Abstract = {Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang{,} J. A. Carter{,} A. Lagutchev{,} Y. K. Koh{,} N.-H. Seong{,} D. G. Cahill{,} and D. D. Dlott{,} Science{,} 2007{,} 317{,} 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface{,} and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly{,} much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM{,} perpendicular to the interface{,} results in nearly identical temperatures for the CH2 and CH3 groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate{,} the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM{,} there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.},
81     Author = {Zhang, Yue and Barnes, George L. and Yan, Tianying and Hase, William L.},
82     Date-Added = {2011-07-11 16:02:11 -0400},
83     Date-Modified = {2011-07-11 16:06:39 -0400},
84     Doi = {10.1039/B923858C},
85     Issue = {17},
86     Journal = {Phys. Chem. Chem. Phys.},
87     Pages = {4435-4445},
88     Publisher = {The Royal Society of Chemistry},
89     Title = {Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer},
90     Url = {http://dx.doi.org/10.1039/B923858C},
91     Volume = {12},
92     Year = {2010},
93     Bdsk-Url-1 = {http://dx.doi.org/10.1039/B923858C}}
94    
95     @article{jiang:2002,
96 skuang 3733 Abstract = { A review is presented of this group's recent molecular simulation studies of self-assembled monolayers (SAMs) of alkanethiols on Au(111) surfaces. SAMs are very useful for the systematic alteration of the chemical and structural properties of a surface by varying chain length, tail group and composition. The scientific and technological importance of SAMs cannot be overestimated. The present work has been centred on studies of atomic scale surface properties of SAMs. First, configurational-bias Monte Carlo simulations were performed in both semigrand canonical and canonical ensembles to investigate the preferential adsorption and phase behaviour of mixed SAMs on Au(111) surfaces. Second, a novel hybrid molecular simulation technique was developed to simulate atomic force microscopy (AFM) over experimental timescales. The method combines a dynamic element model for the tip-cantilever system in AFM and a molecular dynamics relaxation approach for the sample. The hybrid simulation technique was applied to investigate atomic scale friction and adhesion properties of SAMs as a function of chain length. Third, dual-control-volume grand canonical molecular dynamics (DCV-GCMD) simulations were performed of transport diffusion of liquid water and methanol through a slit pore with both inner walls consisting of Au(111) surfaces covered by SAMs under a chemical potential gradient. Surface hydrophobicity was adjusted by varying the terminal group of CH3 (hydrophobic) or OH (hydrophilic) of the SAMs. Finally, ab initio quantum chemical calculations were performed on both clusters and periodic systems of methylthiols on Au(111) surfaces. Based on the ab initio results, an accurate force field capable of predicting c(4×2) superlattice structures over a wide range of temepratures for alkanethiols on Au(111) was developed. The extension of current work is discussed briefly. },
97     Author = {JIANG, SHAOYI},
98     Date-Added = {2011-07-08 17:51:59 -0400},
99 skuang 3736 Date-Modified = {2011-07-11 16:11:38 -0400},
100 skuang 3733 Doi = {10.1080/00268970210130948},
101     Eprint = {http://www.tandfonline.com/doi/pdf/10.1080/00268970210130948},
102     Journal = {Molecular Physics},
103     Number = {14},
104     Pages = {2261-2275},
105     Title = {Molecular simulation studies of self-assembled monolayers of alkanethiols on Au(111)},
106     Url = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
107     Volume = {100},
108     Year = {2002},
109     Bdsk-Url-1 = {http://www.tandfonline.com/doi/abs/10.1080/00268970210130948},
110     Bdsk-Url-2 = {http://dx.doi.org/10.1080/00268970210130948}}
111    
112     @article{doi:10.1021/la904855s,
113     Author = {Alper, Joshua and Hamad-Schifferli, Kimberly},
114     Date-Added = {2011-07-08 17:18:53 -0400},
115     Date-Modified = {2011-07-08 17:18:53 -0400},
116     Doi = {10.1021/la904855s},
117     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/la904855s},
118     Journal = {Langmuir},
119     Note = {PMID: 20166728},
120     Number = {6},
121     Pages = {3786-3789},
122     Title = {Effect of Ligands on Thermal Dissipation from Gold Nanorods},
123     Url = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
124     Volume = {26},
125     Year = {2010},
126     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/la904855s},
127     Bdsk-Url-2 = {http://dx.doi.org/10.1021/la904855s}}
128    
129     @article{doi:10.1021/jp8051888,
130     Abstract = { Thermal transport between CTAB passivated gold nanorods and solvent is studied by an optical pump−probe technique. Increasing the free CTAB concentration from 1 mM to 10 mM causes a ∼3× increase in the CTAB layer's effective thermal interface conductance and a corresponding shift in the longitudinal surface plasmon resonance. The transition occurs near the CTAB critical micelle concentration, revealing the importance of the role of free ligand on thermal transport. },
131     Author = {Schmidt, Aaron J. and Alper, Joshua D. and Chiesa, Matteo and Chen, Gang and Das, Sarit K. and Hamad-Schifferli, Kimberly},
132     Date-Added = {2011-07-08 17:04:34 -0400},
133     Date-Modified = {2011-07-08 17:04:34 -0400},
134     Doi = {10.1021/jp8051888},
135     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp8051888},
136     Journal = {The Journal of Physical Chemistry C},
137     Number = {35},
138     Pages = {13320-13323},
139     Title = {Probing the Gold Nanorod−Ligand−Solvent Interface by Plasmonic Absorption and Thermal Decay},
140     Url = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
141     Volume = {112},
142     Year = {2008},
143     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp8051888},
144     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp8051888}}
145    
146     @article{PhysRevB.80.195406,
147     Author = {Juv\'e, Vincent and Scardamaglia, Mattia and Maioli, Paolo and Crut, Aur\'elien and Merabia, Samy and Joly, Laurent and Del Fatti, Natalia and Vall\'ee, Fabrice},
148     Date-Added = {2011-07-08 16:36:39 -0400},
149     Date-Modified = {2011-07-08 16:36:39 -0400},
150     Doi = {10.1103/PhysRevB.80.195406},
151     Journal = {Phys. Rev. B},
152     Month = {Nov},
153     Number = {19},
154     Numpages = {6},
155     Pages = {195406},
156     Publisher = {American Physical Society},
157     Title = {Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles},
158     Volume = {80},
159     Year = {2009},
160     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.80.195406}}
161    
162     @article{Wang10082007,
163     Abstract = {At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.},
164     Author = {Wang, Zhaohui and Carter, Jeffrey A. and Lagutchev, Alexei and Koh, Yee Kan and Seong, Nak-Hyun and Cahill, David G. and Dlott, Dana D.},
165     Date-Added = {2011-07-08 16:20:05 -0400},
166     Date-Modified = {2011-07-08 16:20:05 -0400},
167     Doi = {10.1126/science.1145220},
168     Eprint = {http://www.sciencemag.org/content/317/5839/787.full.pdf},
169     Journal = {Science},
170     Number = {5839},
171     Pages = {787-790},
172     Title = {Ultrafast Flash Thermal Conductance of Molecular Chains},
173     Url = {http://www.sciencemag.org/content/317/5839/787.abstract},
174     Volume = {317},
175     Year = {2007},
176     Bdsk-Url-1 = {http://www.sciencemag.org/content/317/5839/787.abstract},
177     Bdsk-Url-2 = {http://dx.doi.org/10.1126/science.1145220}}
178    
179 skuang 3736 @article{hase:2011,
180 skuang 3733 Abstract = { In a previous article (Phys. Chem. Chem. Phys.2010, 12, 4435), nonequilibrium molecular dynamics (MD) simulations of heat transfer from a hot Au{111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) were presented. The simulations were performed for an H-SAM chain length of eight carbon atoms, and a qualitative agreement with the experiments of Wang et al. (Science2007, 317, 787) was found. Here, simulation results are presented for heat transfer to H-SAM surfaces with carbon chain lengths of 10--20 carbon atoms. Relaxation times for heat transfer are extracted, compared with experiment, and a qualitative agreement is obtained. The same relaxation time is found from either the temperature of the H-SAM or the orientational disorder of the H-SAM versus time. For a simulation model with the Au substrate thermally equilibrated, the relaxation times determined from the simulations are approximately a factor of 4 larger than the experimental values. },
181     Author = {Manikandan, Paranjothy and Carter, Jeffrey A. and Dlott, Dana D. and Hase, William L.},
182     Date-Added = {2011-07-08 13:36:39 -0400},
183 skuang 3736 Date-Modified = {2011-07-11 16:07:01 -0400},
184 skuang 3733 Doi = {10.1021/jp200672e},
185     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp200672e},
186     Journal = {The Journal of Physical Chemistry C},
187     Number = {19},
188     Pages = {9622-9628},
189     Title = {Effect of Carbon Chain Length on the Dynamics of Heat Transfer at a Gold/Hydrocarbon Interface: Comparison of Simulation with Experiment},
190     Url = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
191     Volume = {115},
192     Year = {2011},
193     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp200672e},
194     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp200672e}}
195    
196 skuang 3729 @article{doi:10.1021/ja00051a040,
197     Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
198     Date-Added = {2011-06-29 14:04:33 -0400},
199     Date-Modified = {2011-06-29 14:04:33 -0400},
200     Doi = {10.1021/ja00051a040},
201     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
202     Journal = {Journal of the American Chemical Society},
203     Number = {25},
204     Pages = {10024-10035},
205     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
206     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
207     Volume = {114},
208     Year = {1992},
209     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
210     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
211    
212 skuang 3724 @article{doi:10.1021/jp034405s,
213     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
214     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
215     Date-Added = {2011-04-28 11:23:28 -0400},
216     Date-Modified = {2011-04-28 11:23:28 -0400},
217     Doi = {10.1021/jp034405s},
218     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
219     Journal = {The Journal of Physical Chemistry B},
220     Number = {43},
221     Pages = {11940-11950},
222     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
223     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
224     Volume = {107},
225     Year = {2003},
226     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
227     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
228    
229 skuang 3721 @article{OPLSAA,
230     Abstract = {null},
231     Annote = {doi: 10.1021/ja9621760},
232     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
233     Date = {1996/01/01},
234     Date-Added = {2011-02-04 18:54:58 -0500},
235     Date-Modified = {2011-02-04 18:54:58 -0500},
236     Do = {10.1021/ja9621760},
237     Isbn = {0002-7863},
238     Journal = {Journal of the American Chemical Society},
239     M3 = {doi: 10.1021/ja9621760},
240     Month = {01},
241     Number = {45},
242     Pages = {11225--11236},
243     Publisher = {American Chemical Society},
244     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
245     Ty = {JOUR},
246     Url = {http://dx.doi.org/10.1021/ja9621760},
247     Volume = {118},
248     Year = {1996},
249     Year1 = {1996/01/01},
250     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
251    
252     @article{TraPPE-UA.alkylbenzenes,
253     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
254     Date-Added = {2011-02-04 18:31:46 -0500},
255     Date-Modified = {2011-02-04 18:32:22 -0500},
256     Doi = {10.1021/jp001044x},
257     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
258     Journal = {The Journal of Physical Chemistry B},
259     Number = {33},
260     Pages = {8008-8016},
261     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
262     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
263     Volume = {104},
264     Year = {2000},
265     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
266     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
267    
268     @article{TraPPE-UA.alkanes,
269     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
270     Date-Added = {2011-02-04 18:01:31 -0500},
271     Date-Modified = {2011-02-04 18:02:19 -0500},
272     Doi = {10.1021/jp972543+},
273     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
274     Journal = {The Journal of Physical Chemistry B},
275     Number = {14},
276     Pages = {2569-2577},
277     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
278     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
279     Volume = {102},
280     Year = {1998},
281     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
282     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
283    
284     @article{TraPPE-UA.thiols,
285     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
286     Date-Added = {2011-02-04 17:51:03 -0500},
287     Date-Modified = {2011-02-04 17:54:20 -0500},
288     Doi = {10.1021/jp0549125},
289     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
290     Journal = {The Journal of Physical Chemistry B},
291     Number = {50},
292     Pages = {24100-24107},
293     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
294     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
295     Volume = {109},
296     Year = {2005},
297     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
298     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
299    
300     @article{vlugt:cpc2007154,
301     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
302     Date-Added = {2011-02-01 16:00:11 -0500},
303     Date-Modified = {2011-02-04 18:21:59 -0500},
304     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
305     Issn = {0010-4655},
306     Journal = {Computer Physics Communications},
307     Keywords = {Gold nanocrystals},
308     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
309     Number = {1-2},
310     Pages = {154 - 157},
311     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
312     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
313     Volume = {177},
314     Year = {2007},
315     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
316     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
317    
318     @article{packmol,
319     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
320     Bibsource = {DBLP, http://dblp.uni-trier.de},
321     Date-Added = {2011-02-01 15:13:02 -0500},
322     Date-Modified = {2011-02-01 15:14:25 -0500},
323     Ee = {http://dx.doi.org/10.1002/jcc.21224},
324     Journal = {Journal of Computational Chemistry},
325     Number = {13},
326     Pages = {2157-2164},
327     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
328     Volume = {30},
329     Year = {2009}}
330    
331     @article{kuang:164101,
332     Author = {Shenyu Kuang and J. Daniel Gezelter},
333     Date-Added = {2011-01-31 17:12:35 -0500},
334     Date-Modified = {2011-01-31 17:12:35 -0500},
335     Doi = {10.1063/1.3499947},
336     Eid = {164101},
337     Journal = {The Journal of Chemical Physics},
338     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
339     Number = {16},
340     Numpages = {9},
341     Pages = {164101},
342     Publisher = {AIP},
343     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
344     Url = {http://link.aip.org/link/?JCP/133/164101/1},
345     Volume = {133},
346     Year = {2010},
347     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
348     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
349    
350 skuang 3719 @article{muller:014102,
351     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
352     Date-Added = {2010-09-16 19:19:25 -0400},
353     Date-Modified = {2010-09-16 19:19:25 -0400},
354     Doi = {10.1063/1.2943312},
355     Eid = {014102},
356     Journal = {The Journal of Chemical Physics},
357     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
358     Number = {1},
359     Numpages = {8},
360     Pages = {014102},
361     Publisher = {AIP},
362     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
363     Url = {http://link.aip.org/link/?JCP/129/014102/1},
364     Volume = {129},
365     Year = {2008},
366     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
367     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
368    
369     @article{wolf:8254,
370     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
371     Date-Added = {2010-09-16 19:01:51 -0400},
372     Date-Modified = {2010-09-16 19:01:51 -0400},
373     Doi = {10.1063/1.478738},
374     Journal = {J. Chem. Phys.},
375     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
376     Number = {17},
377     Pages = {8254-8282},
378     Publisher = {AIP},
379     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
380     Url = {http://link.aip.org/link/?JCP/110/8254/1},
381     Volume = {110},
382     Year = {1999},
383     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
384     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
385    
386     @article{HeX:1993,
387     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
388     heat conduction is used to compute the thermal conductivity, thermal
389     diffusion factor, and heat of transfer in binary Lennard-Jones
390     mixtures. An internal energy flux is established with local source and
391     sink terms for kinetic energy.
392     Simulations of isotope mixtures covering a range of densities and mass
393     ratios show that the lighter component prefers the hot side of the
394     system at stationary state. This implies a positive thermal diffusion
395     factor in the definition we have adopted here. The molecular basis for
396     the Soret effect is studied by analysing the energy flux through the
397     system. In all cases we found that there is a difference in the
398     relative contributions when we compare the hot and cold sides of the
399     system. The contribution from the lighter component is predominantly
400     flux of kinetic energy, and this contribution increases from the cold
401     to the hot side. The contribution from the heavier component is
402     predominantly energy transfer through molecular interactions, and it
403     increases from the hot to the cold side. This explains why the thermal
404     diffusion factor is positive; heal is conducted more effectively
405     through the system if the lighter component is enriched at the hot
406     side. Even for very large heat fluxes, we find a linear or almost
407     linear temperature profile through the system, and a constant thermal
408     conductivity. The entropy production per unit volume and unit time
409     increases from the hot to the cold side.},
410     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
411     Date-Added = {2010-09-15 16:52:45 -0400},
412     Date-Modified = {2010-09-15 16:54:23 -0400},
413     Issn = {{0026-8976}},
414     Journal = {Mol. Phys.},
415     Month = {DEC},
416     Number = {6},
417     Pages = {1389-1412},
418     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
419     Unique-Id = {ISI:A1993MQ34500009},
420     Volume = {80},
421 skuang 3721 Year = {1993}}
422 skuang 3719
423     @article{HeX:1994,
424     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
425     dynamics, where a temperature gradient is established in a system with
426     periodic boundary conditions. At each time step in the simulation, a
427     fixed amount of energy is supplied to a hot region by scaling the
428     velocity of each particle in it, subject to conservation of total
429     momentum. An equal amount of energy is likewise withdrawn from a cold
430     region at each time step. Between the hot and cold regions is a region
431     through which an energy flux is established. Two configurations of hot
432     and cold regions are proposed. Using a stacked layer structure, the
433     instantaneous local energy flux for a 128-particle Lennard-Jones system
434     in liquid was found to be in good agreement with the macroscopic theory
435     of heat conduction at stationary state, except in and near the hot and
436     cold regions. Thermal conductivity calculated for the 128-particle
437     system was about 10\% smaller than the literature value obtained by
438     molecular dynamics calculations. One run with a 1024-particle system
439     showed an agreement with the literature value within statistical error
440     (1-2\%). Using a unit cell with a cold spherical region at the centre
441     and a hot region in the perimeter of the cube, an initial gaseous state
442     of argon was separated into gas and liquid phases. Energy fluxes due to
443     intermolecular energy transfer and transport of kinetic energy dominate
444     in the liquid and gas phases, respectively.},
445     Author = {Ikeshoji, T and Hafskjold, B},
446     Date-Added = {2010-09-15 16:52:45 -0400},
447     Date-Modified = {2010-09-15 16:54:37 -0400},
448     Issn = {0026-8976},
449     Journal = {Mol. Phys.},
450     Month = {FEB},
451     Number = {2},
452     Pages = {251-261},
453     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
454     Unique-Id = {ISI:A1994MY17400001},
455     Volume = {81},
456 skuang 3721 Year = {1994}}
457 skuang 3719
458     @article{plech:195423,
459     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
460     Date-Added = {2010-08-12 11:34:55 -0400},
461     Date-Modified = {2010-08-12 11:34:55 -0400},
462     Eid = {195423},
463     Journal = {Phys. Rev. B},
464     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
465     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
466     Number = {19},
467     Numpages = {7},
468     Pages = {195423},
469     Publisher = {APS},
470     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
471     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
472     Volume = {70},
473     Year = {2004},
474     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
475    
476     @article{Wilson:2002uq,
477     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
478     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
479     Date-Added = {2010-08-12 11:31:02 -0400},
480     Date-Modified = {2010-08-12 11:31:02 -0400},
481     Doi = {ARTN 224301},
482     Journal = {Phys. Rev. B},
483     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
484     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
485     Volume = {66},
486     Year = {2002},
487     Bdsk-Url-1 = {http://dx.doi.org/224301}}
488    
489     @article{RevModPhys.61.605,
490     Author = {Swartz, E. T. and Pohl, R. O.},
491     Date-Added = {2010-08-06 17:03:01 -0400},
492     Date-Modified = {2010-08-06 17:03:01 -0400},
493     Doi = {10.1103/RevModPhys.61.605},
494     Journal = {Rev. Mod. Phys.},
495     Month = {Jul},
496     Number = {3},
497     Numpages = {63},
498     Pages = {605--668},
499     Publisher = {American Physical Society},
500     Title = {Thermal boundary resistance},
501     Volume = {61},
502     Year = {1989},
503     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
504    
505     @article{cahill:793,
506     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
507     Date-Added = {2010-08-06 17:02:22 -0400},
508     Date-Modified = {2010-08-06 17:02:22 -0400},
509     Doi = {10.1063/1.1524305},
510     Journal = {J. Applied Phys.},
511     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
512     Number = {2},
513     Pages = {793-818},
514     Publisher = {AIP},
515     Title = {Nanoscale thermal transport},
516     Url = {http://link.aip.org/link/?JAP/93/793/1},
517     Volume = {93},
518     Year = {2003},
519     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
520     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
521    
522     @inbook{Hoffman:2001sf,
523     Address = {New York},
524     Annote = {LDR 01107cam 2200253 a 4500
525     001 12358442
526     005 20070910074423.0
527     008 010326s2001 nyua b 001 0 eng
528     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
529     925 0 $aacquire$b2 shelf copies$xpolicy default
530     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
531     010 $a 2001028633
532     020 $a0824704436 (acid-free paper)
533     040 $aDLC$cDLC$dDLC
534     050 00 $aQA297$b.H588 2001
535     082 00 $a519.4$221
536     100 1 $aHoffman, Joe D.,$d1934-
537     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
538     250 $a2nd ed., rev. and expanded.
539     260 $aNew York :$bMarcel Dekker,$cc2001.
540     300 $axi, 823 p. :$bill. ;$c26 cm.
541     504 $aIncludes bibliographical references (p. 775-777) and index.
542     650 0 $aNumerical analysis.
543     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
544     },
545     Author = {Hoffman, Joe D.},
546     Call-Number = {QA297},
547     Date-Added = {2010-07-15 16:32:02 -0400},
548     Date-Modified = {2010-07-19 16:49:37 -0400},
549     Dewey-Call-Number = {519.4},
550     Edition = {2nd ed., rev. and expanded},
551     Genre = {Numerical analysis},
552     Isbn = {0824704436 (acid-free paper)},
553     Library-Id = {2001028633},
554     Pages = {157},
555     Publisher = {Marcel Dekker},
556     Title = {Numerical methods for engineers and scientists},
557     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
558     Year = {2001},
559     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
560    
561     @article{Vardeman:2008fk,
562     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
563     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
564     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
565     Date-Added = {2010-07-13 11:48:22 -0400},
566     Date-Modified = {2010-07-19 16:20:01 -0400},
567     Doi = {DOI 10.1021/jp710063g},
568     Isi = {000253512400021},
569     Isi-Recid = {160903603},
570     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
571     Journal = {J. Phys. Chem. C},
572     Month = mar,
573     Number = {9},
574     Pages = {3283-3293},
575     Publisher = {AMER CHEMICAL SOC},
576     Times-Cited = {0},
577     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
578     Volume = {112},
579     Year = {2008},
580     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
581    
582     @article{PhysRevB.59.3527,
583     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
584     Date-Added = {2010-07-13 11:44:08 -0400},
585     Date-Modified = {2010-07-13 11:44:08 -0400},
586     Doi = {10.1103/PhysRevB.59.3527},
587     Journal = {Phys. Rev. B},
588     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
589     Month = {Feb},
590     Number = {5},
591     Numpages = {6},
592     Pages = {3527-3533},
593     Publisher = {American Physical Society},
594     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
595     Volume = {59},
596     Year = {1999},
597     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
598    
599     @article{Medasani:2007uq,
600     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
601     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
602     Date-Added = {2010-07-13 11:43:15 -0400},
603     Date-Modified = {2010-07-13 11:43:15 -0400},
604     Doi = {ARTN 235436},
605     Journal = {Phys. Rev. B},
606     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
607     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
608     Volume = {75},
609     Year = {2007},
610     Bdsk-Url-1 = {http://dx.doi.org/235436}}
611    
612     @article{Wang:2005qy,
613     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
614     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
615     Date-Added = {2010-07-13 11:42:50 -0400},
616     Date-Modified = {2010-07-13 11:42:50 -0400},
617     Doi = {DOI 10.1021/jp050116n},
618     Journal = {J. Phys. Chem. B},
619     Pages = {11683-11692},
620     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
621     Volume = {109},
622     Year = {2005},
623     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
624    
625     @article{Chui:2003fk,
626     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
627     Author = {Chui, YH and Chan, KY},
628     Date-Added = {2010-07-13 11:42:32 -0400},
629     Date-Modified = {2010-07-13 11:42:32 -0400},
630     Doi = {DOI 10.1039/b302122j},
631     Journal = {Phys. Chem. Chem. Phys.},
632     Pages = {2869-2874},
633     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
634     Volume = {5},
635     Year = {2003},
636     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
637    
638     @article{Sankaranarayanan:2005lr,
639     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
640     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
641     Date-Added = {2010-07-13 11:42:13 -0400},
642     Date-Modified = {2010-07-13 11:42:13 -0400},
643     Doi = {ARTN 195415},
644     Journal = {Phys. Rev. B},
645     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
646     Volume = {71},
647     Year = {2005},
648     Bdsk-Url-1 = {http://dx.doi.org/195415}}
649    
650     @article{Vardeman-II:2001jn,
651     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
652     Date-Added = {2010-07-13 11:41:50 -0400},
653     Date-Modified = {2010-07-13 11:41:50 -0400},
654     Journal = {J. Phys. Chem. A},
655     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
656     Number = {12},
657     Pages = {2568},
658     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
659     Volume = {105},
660     Year = {2001}}
661    
662     @article{ShibataT._ja026764r,
663     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
664     Date-Added = {2010-07-13 11:41:36 -0400},
665     Date-Modified = {2010-07-13 11:41:36 -0400},
666     Journal = {J. Amer. Chem. Soc.},
667     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
668     Number = {40},
669     Pages = {11989-11996},
670     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
671     Url = {http://dx.doi.org/10.1021/ja026764r},
672     Volume = {124},
673     Year = {2002},
674     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
675    
676     @article{Chen90,
677     Author = {A.~P. Sutton and J. Chen},
678     Date-Added = {2010-07-13 11:40:48 -0400},
679     Date-Modified = {2010-07-13 11:40:48 -0400},
680     Journal = {Phil. Mag. Lett.},
681     Pages = {139-146},
682     Title = {Long-Range Finnis Sinclair Potentials},
683     Volume = 61,
684     Year = {1990}}
685    
686     @article{PhysRevB.33.7983,
687     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
688     Date-Added = {2010-07-13 11:40:28 -0400},
689     Date-Modified = {2010-07-13 11:40:28 -0400},
690     Doi = {10.1103/PhysRevB.33.7983},
691     Journal = {Phys. Rev. B},
692     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
693     Month = {Jun},
694     Number = {12},
695     Numpages = {8},
696     Pages = {7983-7991},
697     Publisher = {American Physical Society},
698     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
699     Volume = {33},
700     Year = {1986},
701     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
702    
703     @article{hoover85,
704     Author = {W.~G. Hoover},
705     Date-Added = {2010-07-13 11:24:30 -0400},
706     Date-Modified = {2010-07-13 11:24:30 -0400},
707     Journal = pra,
708     Pages = 1695,
709     Title = {Canonical dynamics: Equilibrium phase-space distributions},
710     Volume = 31,
711     Year = 1985}
712    
713     @article{melchionna93,
714     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
715     Date-Added = {2010-07-13 11:22:17 -0400},
716     Date-Modified = {2010-07-13 11:22:17 -0400},
717     Journal = {Mol. Phys.},
718     Pages = {533-544},
719     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
720     Volume = 78,
721     Year = 1993}
722    
723     @misc{openmd,
724     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
725     Date-Added = {2010-07-13 11:16:00 -0400},
726     Date-Modified = {2010-07-19 16:27:45 -0400},
727     Howpublished = {Available at {\tt http://openmd.net}},
728     Title = {{OpenMD, an open source engine for molecular dynamics}}}
729    
730     @inbook{AshcroftMermin,
731 skuang 3721 Address = {Belmont, CA},
732 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
733     Date-Added = {2010-07-12 14:26:49 -0400},
734     Date-Modified = {2010-07-22 13:37:20 -0400},
735     Pages = {21},
736     Publisher = {Brooks Cole},
737     Title = {Solid State Physics},
738 skuang 3721 Year = {1976}}
739 skuang 3719
740     @book{WagnerKruse,
741     Address = {Berlin},
742     Author = {W. Wagner and A. Kruse},
743     Date-Added = {2010-07-12 14:10:29 -0400},
744     Date-Modified = {2010-07-12 14:13:44 -0400},
745     Publisher = {Springer-Verlag},
746     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
747 skuang 3721 Year = {1998}}
748 skuang 3719
749     @article{ISI:000266247600008,
750     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
751     hexafluorophosphate is investigated by non-equilibrium molecular
752     dynamics simulations with cosine-modulated force in the temperature
753     range from 360 to 480K. It is shown that this method is able to
754     correctly predict the shear viscosity. The simulation setting and
755     choice of the force field are discussed in detail. The all-atom force
756     field exhibits a bad convergence and the shear viscosity is
757     overestimated, while the simple united atom model predicts the kinetics
758     very well. The results are compared with the equilibrium molecular
759     dynamics simulations. The relationship between the diffusion
760     coefficient and viscosity is examined by means of the hydrodynamic
761     radii calculated from the Stokes-Einstein equation and the solvation
762     properties are discussed.},
763     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
764     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
765     Author = {Picalek, Jan and Kolafa, Jiri},
766     Author-Email = {jiri.kolafa@vscht.cz},
767     Date-Added = {2010-04-16 13:19:12 -0400},
768     Date-Modified = {2010-04-16 13:19:12 -0400},
769     Doc-Delivery-Number = {448FD},
770     Doi = {10.1080/08927020802680703},
771     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
772     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
773     Issn = {0892-7022},
774     Journal = {Mol. Simul.},
775     Journal-Iso = {Mol. Simul.},
776     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
777     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
778     Language = {English},
779     Number = {8},
780     Number-Of-Cited-References = {50},
781     Pages = {685-690},
782     Publisher = {TAYLOR \& FRANCIS LTD},
783     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
784     Times-Cited = {2},
785     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
786     Type = {Article},
787     Unique-Id = {ISI:000266247600008},
788     Volume = {35},
789     Year = {2009},
790     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
791    
792     @article{Vasquez:2004fk,
793     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
794     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
795     Date = {2004/11/02/},
796     Date-Added = {2010-04-16 13:18:48 -0400},
797     Date-Modified = {2010-04-16 13:18:48 -0400},
798     Day = {02},
799     Journal = {Int. J. Thermophys.},
800     M3 = {10.1007/s10765-004-7736-3},
801     Month = {11},
802     Number = {6},
803     Pages = {1799--1818},
804     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
805     Ty = {JOUR},
806     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
807     Volume = {25},
808     Year = {2004},
809     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
810    
811     @article{hess:209,
812     Author = {Berk Hess},
813     Date-Added = {2010-04-16 12:37:37 -0400},
814     Date-Modified = {2010-04-16 12:37:37 -0400},
815     Doi = {10.1063/1.1421362},
816     Journal = {J. Chem. Phys.},
817     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
818     Number = {1},
819     Pages = {209-217},
820     Publisher = {AIP},
821     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
822     Url = {http://link.aip.org/link/?JCP/116/209/1},
823     Volume = {116},
824     Year = {2002},
825     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
826     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
827    
828     @article{backer:154503,
829     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
830     Date-Added = {2010-04-16 12:37:37 -0400},
831     Date-Modified = {2010-04-16 12:37:37 -0400},
832     Doi = {10.1063/1.1883163},
833     Eid = {154503},
834     Journal = {J. Chem. Phys.},
835     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
836     Number = {15},
837     Numpages = {6},
838     Pages = {154503},
839     Publisher = {AIP},
840     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
841     Url = {http://link.aip.org/link/?JCP/122/154503/1},
842     Volume = {122},
843     Year = {2005},
844     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
845     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
846    
847     @article{daivis:541,
848     Author = {Peter J. Daivis and Denis J. Evans},
849     Date-Added = {2010-04-16 12:05:36 -0400},
850     Date-Modified = {2010-04-16 12:05:36 -0400},
851     Doi = {10.1063/1.466970},
852     Journal = {J. Chem. Phys.},
853     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
854     Number = {1},
855     Pages = {541-547},
856     Publisher = {AIP},
857     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
858     Url = {http://link.aip.org/link/?JCP/100/541/1},
859     Volume = {100},
860     Year = {1994},
861     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
862     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
863    
864     @article{mondello:9327,
865     Author = {Maurizio Mondello and Gary S. Grest},
866     Date-Added = {2010-04-16 12:05:36 -0400},
867     Date-Modified = {2010-04-16 12:05:36 -0400},
868     Doi = {10.1063/1.474002},
869     Journal = {J. Chem. Phys.},
870     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
871     Number = {22},
872     Pages = {9327-9336},
873     Publisher = {AIP},
874     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
875     Url = {http://link.aip.org/link/?JCP/106/9327/1},
876     Volume = {106},
877     Year = {1997},
878     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
879     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
880    
881     @article{ISI:A1988Q205300014,
882     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
883     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
884     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
885     Date-Added = {2010-04-14 16:20:24 -0400},
886     Date-Modified = {2010-04-14 16:20:24 -0400},
887     Doc-Delivery-Number = {Q2053},
888     Issn = {0026-8976},
889     Journal = {Mol. Phys.},
890     Journal-Iso = {Mol. Phys.},
891     Language = {English},
892     Month = {AUG 20},
893     Number = {6},
894     Number-Of-Cited-References = {14},
895     Pages = {1203-1213},
896     Publisher = {TAYLOR \& FRANCIS LTD},
897     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
898     Times-Cited = {12},
899     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
900     Type = {Article},
901     Unique-Id = {ISI:A1988Q205300014},
902     Volume = {64},
903     Year = {1988}}
904    
905     @article{ISI:000261835100054,
906     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
907     molecular dynamics simulation. The molecular models for the alcohols
908     are rigid, nonpolarizable, and of united-atom type. They were developed
909     in preceding work using experimental vapor-liquid equilibrium data
910     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
911     shear viscosity of methanol, ethanol, and their binary mixture are
912     determined using equilibrium molecular dynamics and the Green-Kubo
913     formalism. Nonequilibrium molecular dynamics is used for predicting the
914     thermal conductivity of the two pure substances. The transport
915     properties of the fluids are calculated over a wide temperature range
916     at ambient pressure and compared with experimental and simulation data
917     from the literature. Overall, a very good agreement with the experiment
918     is found. For instance, the self-diffusion coefficient and the shear
919     viscosity are predicted with average deviations of less than 8\% for
920     the pure alcohols and 12\% for the mixture. The predicted thermal
921     conductivity agrees on average within 5\% with the experimental data.
922     Additionally, some velocity and shear viscosity autocorrelation
923     functions are presented and discussed. Radial distribution functions
924     for ethanol are also presented. The predicted excess volume, excess
925     enthalpy, and the vapor-liquid equilibrium of the binary mixture
926     methanol + ethanol are assessed and agree well with experimental data.},
927     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
928     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
929     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
930     Author-Email = {vrabec@itt.uni-stuttgart.de},
931     Date-Added = {2010-04-14 15:43:29 -0400},
932     Date-Modified = {2010-04-14 15:43:29 -0400},
933     Doc-Delivery-Number = {385SY},
934     Doi = {10.1021/jp805584d},
935     Issn = {1520-6106},
936     Journal = {J. Phys. Chem. B},
937     Journal-Iso = {J. Phys. Chem. B},
938     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
939     Language = {English},
940     Month = {DEC 25},
941     Number = {51},
942     Number-Of-Cited-References = {86},
943     Pages = {16664-16674},
944     Publisher = {AMER CHEMICAL SOC},
945     Subject-Category = {Chemistry, Physical},
946     Times-Cited = {5},
947     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
948     Type = {Article},
949     Unique-Id = {ISI:000261835100054},
950     Volume = {112},
951     Year = {2008},
952     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
953    
954     @article{ISI:000258460400020,
955     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
956     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
957     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
958     9549) force fields have been employed to calculate the thermal
959     conductivity and other associated properties of methane hydrate over a
960     temperature range from 30 to 260 K. The calculated results are compared
961     to experimental data over this same range. The values of the thermal
962     conductivity calculated with the COS/G2 model are closer to the
963     experimental values than are those calculated with the nonpolarizable
964     SPC/E model. The calculations match the temperature trend in the
965     experimental data at temperatures below 50 K; however, they exhibit a
966     slight decrease in thermal conductivity at higher temperatures in
967     comparison to an opposite trend in the experimental data. The
968     calculated thermal conductivity values are found to be relatively
969     insensitive to the occupancy of the cages except at low (T <= 50 K)
970     temperatures, which indicates that the differences between the two
971     lattice structures may have a more dominant role than generally thought
972     in explaining the low thermal conductivity of methane hydrate compared
973     to ice Ih. The introduction of defects into the water lattice is found
974     to cause a reduction in the thermal conductivity but to have a
975     negligible impact on its temperature dependence.},
976     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
977     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
978     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
979     Date-Added = {2010-04-14 15:38:14 -0400},
980     Date-Modified = {2010-04-14 15:38:14 -0400},
981     Doc-Delivery-Number = {337UG},
982     Doi = {10.1021/jp802942v},
983     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
984     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
985     Issn = {1520-6106},
986     Journal = {J. Phys. Chem. B},
987     Journal-Iso = {J. Phys. Chem. B},
988     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
989     Language = {English},
990     Month = {AUG 21},
991     Number = {33},
992     Number-Of-Cited-References = {51},
993     Pages = {10207-10216},
994     Publisher = {AMER CHEMICAL SOC},
995     Subject-Category = {Chemistry, Physical},
996     Times-Cited = {8},
997     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
998     Type = {Article},
999     Unique-Id = {ISI:000258460400020},
1000     Volume = {112},
1001     Year = {2008},
1002     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
1003    
1004     @article{ISI:000184808400018,
1005     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
1006     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
1007     6082), for the non-equilibrium simulation of heat transport maintaining
1008     fixed the total momentum as well as the total energy of the system. The
1009     presented scheme preserves these properties but, unlike the original
1010     algorithm, is able to deal with multicomponent systems, that is with
1011     particles of different mass independently of their relative
1012     concentration. The main idea behind the new procedure is to consider an
1013     exchange of momentum and energy between the particles in the hot and
1014     cold regions, to maintain the non-equilibrium conditions, as if they
1015     undergo a hypothetical elastic collision. The new algorithm can also be
1016     employed in multicomponent systems for molecular fluids and in a wide
1017     range of thermodynamic conditions.},
1018     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1019     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
1020     Author = {Nieto-Draghi, C and Avalos, JB},
1021     Date-Added = {2010-04-14 12:48:08 -0400},
1022     Date-Modified = {2010-04-14 12:48:08 -0400},
1023     Doc-Delivery-Number = {712QM},
1024     Doi = {10.1080/0026897031000154338},
1025     Issn = {0026-8976},
1026     Journal = {Mol. Phys.},
1027     Journal-Iso = {Mol. Phys.},
1028     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
1029     Language = {English},
1030     Month = {JUL 20},
1031     Number = {14},
1032     Number-Of-Cited-References = {20},
1033     Pages = {2303-2307},
1034     Publisher = {TAYLOR \& FRANCIS LTD},
1035     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1036     Times-Cited = {13},
1037     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
1038     Type = {Article},
1039     Unique-Id = {ISI:000184808400018},
1040     Volume = {101},
1041     Year = {2003},
1042     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
1043    
1044     @article{Bedrov:2000-1,
1045     Abstract = {The thermal conductivity of liquid
1046     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
1047     determined from imposed heat flux non-equilibrium molecular dynamics
1048     (NEMD) simulations using a previously published quantum chemistry-based
1049     atomistic potential. The thermal conductivity was determined in the
1050     temperature domain 550 less than or equal to T less than or equal to
1051     800 K, which corresponds approximately to the existence limits of the
1052     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
1053     which comprise the first reported values for thermal conductivity of
1054     HMX liquid, were found to be consistent with measured values for
1055     crystalline HMX. The thermal conductivity of liquid HMX was found to
1056     exhibit a much weaker temperature dependence than the shear viscosity
1057     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
1058     rights reserved.},
1059     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
1060     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
1061     Author = {Bedrov, D and Smith, GD and Sewell, TD},
1062     Date-Added = {2010-04-14 12:26:59 -0400},
1063     Date-Modified = {2010-04-14 12:27:52 -0400},
1064     Doc-Delivery-Number = {330PF},
1065     Issn = {0009-2614},
1066     Journal = {Chem. Phys. Lett.},
1067     Journal-Iso = {Chem. Phys. Lett.},
1068     Keywords-Plus = {FORCE-FIELD},
1069     Language = {English},
1070     Month = {JUN 30},
1071     Number = {1-3},
1072     Number-Of-Cited-References = {17},
1073     Pages = {64-68},
1074     Publisher = {ELSEVIER SCIENCE BV},
1075     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1076     Times-Cited = {19},
1077     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
1078     Type = {Article},
1079     Unique-Id = {ISI:000087969900011},
1080     Volume = {324},
1081     Year = {2000}}
1082    
1083     @article{ISI:000258840700015,
1084     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
1085     (MD) simulations are carried out to calculate the viscosity and
1086     self-diffusion coefficient of liquid copper from the normal to the
1087     undercooled states. The simulated results are in reasonable agreement
1088     with the experimental values available above the melting temperature
1089     that is also predicted from a solid-liquid-solid sandwich structure.
1090     The relationship between the viscosity and the self-diffusion
1091     coefficient is evaluated. It is found that the Stokes-Einstein and
1092     Sutherland-Einstein relations qualitatively describe this relationship
1093     within the simulation temperature range. However, the predicted
1094     constant from MD simulation is close to 1/(3 pi), which is larger than
1095     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
1096     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
1097     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
1098     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
1099     Author-Email = {mchen@tsinghua.edu.cn},
1100     Date-Added = {2010-04-14 12:00:38 -0400},
1101     Date-Modified = {2010-04-14 12:00:38 -0400},
1102     Doc-Delivery-Number = {343GH},
1103     Doi = {10.1007/s10765-008-0489-7},
1104     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
1105     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
1106     Issn = {0195-928X},
1107     Journal = {Int. J. Thermophys.},
1108     Journal-Iso = {Int. J. Thermophys.},
1109     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
1110     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
1111     Language = {English},
1112     Month = {AUG},
1113     Number = {4},
1114     Number-Of-Cited-References = {39},
1115     Pages = {1408-1421},
1116     Publisher = {SPRINGER/PLENUM PUBLISHERS},
1117     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
1118     Times-Cited = {2},
1119     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
1120     Type = {Article},
1121     Unique-Id = {ISI:000258840700015},
1122     Volume = {29},
1123     Year = {2008},
1124     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
1125    
1126     @article{Muller-Plathe:2008,
1127     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
1128     dynamics simulations were carried out to compute the shear viscosity of
1129     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
1130     yielded consistent results which were also compared to experiments. The
1131     results showed that the reverse nonequilibrium molecular dynamics
1132     (RNEMD) methodology can successfully be applied to computation of
1133     highly viscous ionic liquids. Moreover, this study provides a
1134     validation of the atomistic force-field developed by Bhargava and
1135     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
1136     properties.},
1137     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1138     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
1139     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
1140     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
1141     Date-Added = {2010-04-14 11:53:37 -0400},
1142     Date-Modified = {2010-04-14 11:54:20 -0400},
1143     Doc-Delivery-Number = {321VS},
1144     Doi = {10.1021/jp8017869},
1145     Issn = {1520-6106},
1146     Journal = {J. Phys. Chem. B},
1147     Journal-Iso = {J. Phys. Chem. B},
1148     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
1149     Language = {English},
1150     Month = {JUL 10},
1151     Number = {27},
1152     Number-Of-Cited-References = {49},
1153     Pages = {8129-8133},
1154     Publisher = {AMER CHEMICAL SOC},
1155     Subject-Category = {Chemistry, Physical},
1156     Times-Cited = {2},
1157     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
1158     Type = {Article},
1159     Unique-Id = {ISI:000257335200022},
1160     Volume = {112},
1161     Year = {2008},
1162     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
1163    
1164     @article{Muller-Plathe:2002,
1165     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
1166     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
1167     viscosity of Lennard-Jones liquids has been extended to atomistic
1168     models of molecular liquids. The method is improved to overcome the
1169     problems due to the detailed molecular models. The new technique is
1170     besides a test with a Lennard-Jones fluid, applied on different
1171     realistic systems: liquid nitrogen, water, and hexane, in order to
1172     cover a large range of interactions and systems/architectures. We show
1173     that all the advantages of the method itemized previously are still
1174     valid, and that it has a very good efficiency and accuracy making it
1175     very competitive. (C) 2002 American Institute of Physics.},
1176     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1177     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
1178     Author = {Bordat, P and M\"{u}ller-Plathe, F},
1179     Date-Added = {2010-04-14 11:34:42 -0400},
1180     Date-Modified = {2010-04-14 11:35:35 -0400},
1181     Doc-Delivery-Number = {521QV},
1182     Doi = {10.1063/1.1436124},
1183     Issn = {0021-9606},
1184     Journal = {J. Chem. Phys.},
1185     Journal-Iso = {J. Chem. Phys.},
1186     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1187     Language = {English},
1188     Month = {FEB 22},
1189     Number = {8},
1190     Number-Of-Cited-References = {47},
1191     Pages = {3362-3369},
1192     Publisher = {AMER INST PHYSICS},
1193     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1194     Times-Cited = {33},
1195     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1196     Type = {Article},
1197     Unique-Id = {ISI:000173853600023},
1198     Volume = {116},
1199     Year = {2002},
1200     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1201    
1202     @article{ISI:000207079300006,
1203     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1204     methods have been used to study the ability of
1205     Embedded Atom Method models of the metals copper and
1206     gold to reproduce the equilibrium and
1207     non-equilibrium behavior of metals at a stationary
1208     and at a moving solid/liquid interface. The
1209     equilibrium solid/vapor interface was shown to
1210     display a simple termination of the bulk until the
1211     temperature of the solid reaches approximate to 90\%
1212     of the bulk melting point. At and above such
1213     temperatures the systems exhibit a surface
1214     disodering known as surface melting. Non-equilibrium
1215     simulations emulating the action of a picosecond
1216     laser on the metal were performed to determine the
1217     regrowth velocity. For copper, the action of a 20 ps
1218     laser with an absorbed energy of 2-5 mJ/cm(2)
1219     produced a regrowth velocity of 83-100 m/s, in
1220     reasonable agreement with the value obtained by
1221     experiment (>60 m/s). For gold, similar conditions
1222     produced a slower regrowth velocity of 63 m/s at an
1223     absorbed energy of 5 mJ/cm(2). This is almost a
1224     factor of two too low in comparison to experiment
1225     (>100 m/s). The regrowth velocities of the metals
1226     seems unexpectedly close to experiment considering
1227     that the free-electron contribution is ignored in
1228     the Embeeded Atom Method models used.},
1229     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1230     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1231     Author = {Richardson, Clifton F. and Clancy, Paulette},
1232     Date-Added = {2010-04-07 11:24:36 -0400},
1233     Date-Modified = {2010-04-07 11:24:36 -0400},
1234     Doc-Delivery-Number = {V04SY},
1235     Issn = {0892-7022},
1236     Journal = {Mol. Simul.},
1237     Journal-Iso = {Mol. Simul.},
1238     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1239     Language = {English},
1240     Number = {5-6},
1241     Number-Of-Cited-References = {36},
1242     Pages = {335-355},
1243     Publisher = {TAYLOR \& FRANCIS LTD},
1244     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1245     Times-Cited = {7},
1246     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1247     Type = {Article},
1248     Unique-Id = {ISI:000207079300006},
1249     Volume = {7},
1250     Year = {1991}}
1251    
1252     @article{ISI:000167766600035,
1253     Abstract = {Molecular dynamics simulations are used to
1254     investigate the separation of water films adjacent
1255     to a hot metal surface. The simulations clearly show
1256     that the water layers nearest the surface overheat
1257     and undergo explosive boiling. For thick films, the
1258     expansion of the vaporized molecules near the
1259     surface forces the outer water layers to move away
1260     from the surface. These results are of interest for
1261     mass spectrometry of biological molecules, steam
1262     cleaning of surfaces, and medical procedures.},
1263     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1264     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1265     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1266     Date-Added = {2010-03-11 15:32:14 -0500},
1267     Date-Modified = {2010-03-11 15:32:14 -0500},
1268     Doc-Delivery-Number = {416ED},
1269     Issn = {1089-5639},
1270     Journal = {J. Phys. Chem. A},
1271     Journal-Iso = {J. Phys. Chem. A},
1272     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1273     Language = {English},
1274     Month = {MAR 29},
1275     Number = {12},
1276     Number-Of-Cited-References = {65},
1277     Pages = {2748-2755},
1278     Publisher = {AMER CHEMICAL SOC},
1279     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1280     Times-Cited = {66},
1281     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1282     Type = {Article},
1283     Unique-Id = {ISI:000167766600035},
1284     Volume = {105},
1285     Year = {2001}}
1286    
1287     @article{Maginn:2010,
1288     Abstract = {The reverse nonequilibrium molecular dynamics
1289     (RNEMD) method calculates the shear viscosity of a
1290     fluid by imposing a nonphysical exchange of momentum
1291     and measuring the resulting shear velocity
1292     gradient. In this study we investigate the range of
1293     momentum flux values over which RNEMD yields usable
1294     (linear) velocity gradients. We find that nonlinear
1295     velocity profiles result primarily from gradients in
1296     fluid temperature and density. The temperature
1297     gradient results from conversion of heat into bulk
1298     kinetic energy, which is transformed back into heat
1299     elsewhere via viscous heating. An expression is
1300     derived to predict the temperature profile resulting
1301     from a specified momentum flux for a given fluid and
1302     simulation cell. Although primarily bounded above,
1303     we also describe milder low-flux limitations. RNEMD
1304     results for a Lennard-Jones fluid agree with
1305     equilibrium molecular dynamics and conventional
1306     nonequilibrium molecular dynamics calculations at
1307     low shear, but RNEMD underpredicts viscosity
1308     relative to conventional NEMD at high shear.},
1309     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1310     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1311     Article-Number = {014103},
1312     Author = {Tenney, Craig M. and Maginn, Edward J.},
1313     Author-Email = {ed@nd.edu},
1314     Date-Added = {2010-03-09 13:08:41 -0500},
1315     Date-Modified = {2010-07-19 16:21:35 -0400},
1316     Doc-Delivery-Number = {542DQ},
1317     Doi = {10.1063/1.3276454},
1318     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1319     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1320     Issn = {0021-9606},
1321     Journal = {J. Chem. Phys.},
1322     Journal-Iso = {J. Chem. Phys.},
1323     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1324     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1325     Language = {English},
1326     Month = {JAN 7},
1327     Number = {1},
1328     Number-Of-Cited-References = {20},
1329     Pages = {014103},
1330     Publisher = {AMER INST PHYSICS},
1331     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1332     Times-Cited = {0},
1333     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1334     Type = {Article},
1335     Unique-Id = {ISI:000273472300004},
1336     Volume = {132},
1337     Year = {2010},
1338     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1339    
1340     @article{Clancy:1992,
1341     Abstract = {The regrowth velocity of a crystal from a melt
1342     depends on contributions from the thermal
1343     conductivity, heat gradient, and latent heat. The
1344     relative contributions of these terms to the
1345     regrowth velocity of the pure metals copper and gold
1346     during liquid-phase epitaxy are evaluated. These
1347     results are used to explain how results from
1348     previous nonequilibrium molecular-dynamics
1349     simulations using classical potentials are able to
1350     predict regrowth velocities that are close to the
1351     experimental values. Results from equilibrium
1352     molecular dynamics showing the nature of the
1353     solid-vapor interface of an
1354     embedded-atom-method-modeled Cu57Ni43 alloy at a
1355     temperature corresponding to 62\% of the melting
1356     point are presented. The regrowth of this alloy
1357     following a simulation of a laser-processing
1358     experiment is also given, with use of nonequilibrium
1359     molecular-dynamics techniques. The thermal
1360     conductivity and temperature gradient in the
1361     simulation of the alloy are compared to those for
1362     the pure metals.},
1363     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1364     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1365     Author = {Richardson, C.~F. and Clancy, P},
1366     Date-Added = {2010-01-12 16:17:33 -0500},
1367     Date-Modified = {2010-04-08 17:18:25 -0400},
1368     Doc-Delivery-Number = {HX378},
1369     Issn = {0163-1829},
1370     Journal = {Phys. Rev. B},
1371     Journal-Iso = {Phys. Rev. B},
1372     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1373     Language = {English},
1374     Month = {JUN 1},
1375     Number = {21},
1376     Number-Of-Cited-References = {24},
1377     Pages = {12260-12268},
1378     Publisher = {AMERICAN PHYSICAL SOC},
1379     Subject-Category = {Physics, Condensed Matter},
1380     Times-Cited = {11},
1381     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1382     Type = {Article},
1383     Unique-Id = {ISI:A1992HX37800010},
1384     Volume = {45},
1385     Year = {1992}}
1386    
1387     @article{Bedrov:2000,
1388     Abstract = {We have applied a new nonequilibrium molecular
1389     dynamics (NEMD) method {[}F. Muller-Plathe,
1390     J. Chem. Phys. 106, 6082 (1997)] previously applied
1391     to monatomic Lennard-Jones fluids in the
1392     determination of the thermal conductivity of
1393     molecular fluids. The method was modified in order
1394     to be applicable to systems with holonomic
1395     constraints. Because the method involves imposing a
1396     known heat flux it is particularly attractive for
1397     systems involving long-range and many-body
1398     interactions where calculation of the microscopic
1399     heat flux is difficult. The predicted thermal
1400     conductivities of liquid n-butane and water using
1401     the imposed-flux NEMD method were found to be in a
1402     good agreement with previous simulations and
1403     experiment. (C) 2000 American Institute of
1404     Physics. {[}S0021-9606(00)50841-1].},
1405     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1406     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1407     Author = {Bedrov, D and Smith, GD},
1408     Date-Added = {2009-11-05 18:21:18 -0500},
1409     Date-Modified = {2010-04-14 11:50:48 -0400},
1410     Doc-Delivery-Number = {369BF},
1411     Issn = {0021-9606},
1412     Journal = {J. Chem. Phys.},
1413     Journal-Iso = {J. Chem. Phys.},
1414     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1415     Language = {English},
1416     Month = {NOV 8},
1417     Number = {18},
1418     Number-Of-Cited-References = {26},
1419     Pages = {8080-8084},
1420     Publisher = {AMER INST PHYSICS},
1421     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1422     Times-Cited = {23},
1423     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1424     Type = {Article},
1425     Unique-Id = {ISI:000090151400044},
1426     Volume = {113},
1427     Year = {2000}}
1428    
1429     @article{ISI:000231042800044,
1430     Abstract = {The reverse nonequilibrium molecular dynamics
1431     method for thermal conductivities is adapted to the
1432     investigation of molecular fluids. The method
1433     generates a heat flux through the system by suitably
1434     exchanging velocities of particles located in
1435     different regions. From the resulting temperature
1436     gradient, the thermal conductivity is then
1437     calculated. Different variants of the algorithm and
1438     their combinations with other system parameters are
1439     tested: exchange of atomic velocities versus
1440     exchange of molecular center-of-mass velocities,
1441     different exchange frequencies, molecular models
1442     with bond constraints versus models with flexible
1443     bonds, united-atom versus all-atom models, and
1444     presence versus absence of a thermostat. To help
1445     establish the range of applicability, the algorithm
1446     is tested on different models of benzene,
1447     cyclohexane, water, and n-hexane. We find that the
1448     algorithm is robust and that the calculated thermal
1449     conductivities are insensitive to variations in its
1450     control parameters. The force field, in contrast,
1451     has a major influence on the value of the thermal
1452     conductivity. While calculated and experimental
1453     thermal conductivities fall into the same order of
1454     magnitude, in most cases the calculated values are
1455     systematically larger. United-atom force fields seem
1456     to do better than all-atom force fields, possibly
1457     because they remove high-frequency degrees of
1458     freedom from the simulation, which, in nature, are
1459     quantum-mechanical oscillators in their ground state
1460     and do not contribute to heat conduction.},
1461     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1462     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1463     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1464     Date-Added = {2009-11-05 18:17:33 -0500},
1465     Date-Modified = {2009-11-05 18:17:33 -0500},
1466     Doc-Delivery-Number = {952YQ},
1467     Doi = {10.1021/jp0512255},
1468     Issn = {1520-6106},
1469     Journal = {J. Phys. Chem. B},
1470     Journal-Iso = {J. Phys. Chem. B},
1471     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1472     Language = {English},
1473     Month = {AUG 11},
1474     Number = {31},
1475     Number-Of-Cited-References = {42},
1476     Pages = {15060-15067},
1477     Publisher = {AMER CHEMICAL SOC},
1478     Subject-Category = {Chemistry, Physical},
1479     Times-Cited = {17},
1480     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1481     Type = {Article},
1482     Unique-Id = {ISI:000231042800044},
1483     Volume = {109},
1484     Year = {2005},
1485     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1486    
1487     @article{ISI:A1997YC32200056,
1488     Abstract = {Equilibrium molecular dynamics simulations have
1489     been carried out in the microcanonical ensemble at
1490     300 and 255 K on the extended simple point charge
1491     (SPC/E) model of water {[}Berendsen et al.,
1492     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1493     number of static and dynamic properties, thermal
1494     conductivity lambda has been calculated via
1495     Green-Kubo integration of the heat current time
1496     correlation functions (CF's) in the atomic and
1497     molecular formalism, at wave number k=0. The
1498     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1499     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1500     with the experimental data (0.61 W/mK at 300 K and
1501     0.49 W/mK at 255 K). A negative long-time tail of
1502     the heat current CF, more apparent at 255 K, is
1503     responsible for the anomalous decrease of lambda
1504     with temperature. An analysis of the dynamical modes
1505     contributing to lambda has shown that its value is
1506     due to two low-frequency exponential-like modes, a
1507     faster collisional mode, with positive contribution,
1508     and a slower one, which determines the negative
1509     long-time tail. A comparison of the molecular and
1510     atomic spectra of the heat current CF has suggested
1511     that higher-frequency modes should not contribute to
1512     lambda in this temperature range. Generalized
1513     thermal diffusivity D-T(k) decreases as a function
1514     of k, after an initial minor increase at k =
1515     k(min). The k dependence of the generalized
1516     thermodynamic properties has been calculated in the
1517     atomic and molecular formalisms. The observed
1518     differences have been traced back to intramolecular
1519     or intermolecular rotational effects and related to
1520     the partial structure functions. Finally, from the
1521     results we calculated it appears that the SPC/E
1522     model gives results in better agreement with
1523     experimental data than the transferable
1524     intermolecular potential with four points TIP4P
1525     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1526     926 (1983)], with a larger improvement for, e.g.,
1527     diffusion, viscosities, and dielectric properties
1528     and a smaller one for thermal conductivity. The
1529     SPC/E model shares, to a smaller extent, the
1530     insufficient slowing down of dynamics at low
1531     temperature already found for the TIP4P water
1532     model.},
1533     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1534     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1535     Author = {Bertolini, D and Tani, A},
1536     Date-Added = {2009-10-30 15:41:21 -0400},
1537     Date-Modified = {2009-10-30 15:41:21 -0400},
1538     Doc-Delivery-Number = {YC322},
1539     Issn = {1063-651X},
1540     Journal = {Phys. Rev. E},
1541     Journal-Iso = {Phys. Rev. E},
1542     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1543     Language = {English},
1544     Month = {OCT},
1545     Number = {4},
1546     Number-Of-Cited-References = {35},
1547     Pages = {4135-4151},
1548     Publisher = {AMERICAN PHYSICAL SOC},
1549     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1550     Times-Cited = {18},
1551     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1552     Type = {Article},
1553     Unique-Id = {ISI:A1997YC32200056},
1554     Volume = {56},
1555     Year = {1997}}
1556    
1557     @article{Meineke:2005gd,
1558     Abstract = {OOPSE is a new molecular dynamics simulation program
1559     that is capable of efficiently integrating equations
1560     of motion for atom types with orientational degrees
1561     of freedom (e.g. #sticky# atoms and point
1562     dipoles). Transition metals can also be simulated
1563     using the embedded atom method (EAM) potential
1564     included in the code. Parallel simulations are
1565     carried out using the force-based decomposition
1566     method. Simulations are specified using a very
1567     simple C-based meta-data language. A number of
1568     advanced integrators are included, and the basic
1569     integrator for orientational dynamics provides
1570     substantial improvements over older quaternion-based
1571     schemes.},
1572     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1573     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1574     Date-Added = {2009-10-01 18:43:03 -0400},
1575     Date-Modified = {2010-04-13 09:11:16 -0400},
1576     Doi = {DOI 10.1002/jcc.20161},
1577     Isi = {000226558200006},
1578     Isi-Recid = {142688207},
1579     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1580     Journal = {J. Comp. Chem.},
1581     Keywords = {OOPSE; molecular dynamics},
1582     Month = feb,
1583     Number = {3},
1584     Pages = {252-271},
1585     Publisher = {JOHN WILEY \& SONS INC},
1586     Times-Cited = {9},
1587     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1588     Volume = {26},
1589     Year = {2005},
1590     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1591     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1592    
1593     @article{ISI:000080382700030,
1594     Abstract = {A nonequilibrium method for calculating the shear
1595     viscosity is presented. It reverses the
1596     cause-and-effect picture customarily used in
1597     nonequilibrium molecular dynamics: the effect, the
1598     momentum flux or stress, is imposed, whereas the
1599     cause, the velocity gradient or shear rate, is
1600     obtained from the simulation. It differs from other
1601     Norton-ensemble methods by the way in which the
1602     steady-state momentum flux is maintained. This
1603     method involves a simple exchange of particle
1604     momenta, which is easy to implement. Moreover, it
1605     can be made to conserve the total energy as well as
1606     the total linear momentum, so no coupling to an
1607     external temperature bath is needed. The resulting
1608     raw data, the velocity profile, is a robust and
1609     rapidly converging property. The method is tested on
1610     the Lennard-Jones fluid near its triple point. It
1611     yields a viscosity of 3.2-3.3, in Lennard-Jones
1612     reduced units, in agreement with literature
1613     results. {[}S1063-651X(99)03105-0].},
1614     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1615     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1616     Author = {M\"{u}ller-Plathe, F},
1617     Date-Added = {2009-10-01 14:07:30 -0400},
1618     Date-Modified = {2009-10-01 14:07:30 -0400},
1619     Doc-Delivery-Number = {197TX},
1620     Issn = {1063-651X},
1621     Journal = {Phys. Rev. E},
1622     Journal-Iso = {Phys. Rev. E},
1623     Language = {English},
1624     Month = {MAY},
1625     Number = {5, Part A},
1626     Number-Of-Cited-References = {17},
1627     Pages = {4894-4898},
1628     Publisher = {AMERICAN PHYSICAL SOC},
1629     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1630     Times-Cited = {57},
1631     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1632     Type = {Article},
1633     Unique-Id = {ISI:000080382700030},
1634     Volume = {59},
1635     Year = {1999}}
1636    
1637     @article{Maginn:2007,
1638     Abstract = {Atomistic simulations are conducted to examine the
1639     dependence of the viscosity of
1640     1-ethyl-3-methylimidazolium
1641     bis(trifluoromethanesulfonyl)imide on temperature
1642     and water content. A nonequilibrium molecular
1643     dynamics procedure is utilized along with an
1644     established fixed charge force field. It is found
1645     that the simulations quantitatively capture the
1646     temperature dependence of the viscosity as well as
1647     the drop in viscosity that occurs with increasing
1648     water content. Using mixture viscosity models, we
1649     show that the relative drop in viscosity with water
1650     content is actually less than that that would be
1651     predicted for an ideal system. This finding is at
1652     odds with the popular notion that small amounts of
1653     water cause an unusually large drop in the viscosity
1654     of ionic liquids. The simulations suggest that, due
1655     to preferential association of water with anions and
1656     the formation of water clusters, the excess molar
1657     volume is negative. This means that dissolved water
1658     is actually less effective at lowering the viscosity
1659     of these mixtures when compared to a solute obeying
1660     ideal mixing behavior. The use of a nonequilibrium
1661     simulation technique enables diffusive behavior to
1662     be observed on the time scale of the simulations,
1663     and standard equilibrium molecular dynamics resulted
1664     in sub-diffusive behavior even over 2 ns of
1665     simulation time.},
1666     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1667     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1668     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1669     Author-Email = {ed@nd.edu},
1670     Date-Added = {2009-09-29 17:07:17 -0400},
1671     Date-Modified = {2010-04-14 12:51:02 -0400},
1672     Doc-Delivery-Number = {163VA},
1673     Doi = {10.1021/jp0686893},
1674     Issn = {1520-6106},
1675     Journal = {J. Phys. Chem. B},
1676     Journal-Iso = {J. Phys. Chem. B},
1677     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1678     Language = {English},
1679     Month = {MAY 10},
1680     Number = {18},
1681     Number-Of-Cited-References = {57},
1682     Pages = {4867-4876},
1683     Publisher = {AMER CHEMICAL SOC},
1684     Subject-Category = {Chemistry, Physical},
1685     Times-Cited = {35},
1686     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1687     Type = {Article},
1688     Unique-Id = {ISI:000246190100032},
1689     Volume = {111},
1690     Year = {2007},
1691     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1692     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1693    
1694     @article{MullerPlathe:1997xw,
1695     Abstract = {A nonequilibrium molecular dynamics method for
1696     calculating the thermal conductivity is
1697     presented. It reverses the usual cause and effect
1698     picture. The ''effect,'' the heat flux, is imposed
1699     on the system and the ''cause,'' the temperature
1700     gradient is obtained from the simulation. Besides
1701     being very simple to implement, the scheme offers
1702     several advantages such as compatibility with
1703     periodic boundary conditions, conservation of total
1704     energy and total linear momentum, and the sampling
1705     of a rapidly converging quantity (temperature
1706     gradient) rather than a slowly converging one (heat
1707     flux). The scheme is tested on the Lennard-Jones
1708     fluid. (C) 1997 American Institute of Physics.},
1709     Address = {WOODBURY},
1710     Author = {M\"{u}ller-Plathe, F.},
1711     Cited-Reference-Count = {13},
1712     Date = {APR 8},
1713     Date-Added = {2009-09-21 16:51:21 -0400},
1714     Date-Modified = {2009-09-21 16:51:21 -0400},
1715     Document-Type = {Article},
1716     Isi = {ISI:A1997WR62000032},
1717     Isi-Document-Delivery-Number = {WR620},
1718     Iso-Source-Abbreviation = {J. Chem. Phys.},
1719     Issn = {0021-9606},
1720     Journal = {J. Chem. Phys.},
1721     Language = {English},
1722     Month = {Apr},
1723     Number = {14},
1724     Page-Count = {4},
1725     Pages = {6082--6085},
1726     Publication-Type = {J},
1727     Publisher = {AMER INST PHYSICS},
1728     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1729     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1730     Source = {J CHEM PHYS},
1731     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1732     Times-Cited = {106},
1733     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1734     Volume = {106},
1735     Year = {1997}}
1736    
1737     @article{Muller-Plathe:1999ek,
1738     Abstract = {A novel non-equilibrium method for calculating
1739     transport coefficients is presented. It reverses the
1740     experimental cause-and-effect picture, e.g. for the
1741     calculation of viscosities: the effect, the momentum
1742     flux or stress, is imposed, whereas the cause, the
1743     velocity gradient or shear rates, is obtained from
1744     the simulation. It differs from other
1745     Norton-ensemble methods by the way, in which the
1746     steady-state fluxes are maintained. This method
1747     involves a simple exchange of particle momenta,
1748     which is easy to implement and to analyse. Moreover,
1749     it can be made to conserve the total energy as well
1750     as the total linear momentum, so no thermostatting
1751     is needed. The resulting raw data are robust and
1752     rapidly converging. The method is tested on the
1753     calculation of the shear viscosity, the thermal
1754     conductivity and the Soret coefficient (thermal
1755     diffusion) for the Lennard-Jones (LJ) fluid near its
1756     triple point. Possible applications to other
1757     transport coefficients and more complicated systems
1758     are discussed. (C) 1999 Elsevier Science Ltd. All
1759     rights reserved.},
1760     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1761     Author = {M\"{u}ller-Plathe, F and Reith, D},
1762     Date-Added = {2009-09-21 16:47:07 -0400},
1763     Date-Modified = {2009-09-21 16:47:07 -0400},
1764     Isi = {000082266500004},
1765     Isi-Recid = {111564960},
1766     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1767     Journal = {Computational and Theoretical Polymer Science},
1768     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1769     Number = {3-4},
1770     Pages = {203-209},
1771     Publisher = {ELSEVIER SCI LTD},
1772     Times-Cited = {15},
1773     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1774     Volume = {9},
1775     Year = {1999},
1776     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1777    
1778     @article{Viscardy:2007lq,
1779     Abstract = {The thermal conductivity is calculated with the
1780     Helfand-moment method in the Lennard-Jones fluid
1781     near the triple point. The Helfand moment of thermal
1782     conductivity is here derived for molecular dynamics
1783     with periodic boundary conditions. Thermal
1784     conductivity is given by a generalized Einstein
1785     relation with this Helfand moment. The authors
1786     compute thermal conductivity by this new method and
1787     compare it with their own values obtained by the
1788     standard Green-Kubo method. The agreement is
1789     excellent. (C) 2007 American Institute of Physics.},
1790     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1791     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1792     Date-Added = {2009-09-21 16:37:20 -0400},
1793     Date-Modified = {2010-07-19 16:18:44 -0400},
1794     Doi = {DOI 10.1063/1.2724821},
1795     Isi = {000246453900035},
1796     Isi-Recid = {156192451},
1797     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1798     Journal = {J. Chem. Phys.},
1799     Month = may,
1800     Number = {18},
1801     Pages = {184513},
1802     Publisher = {AMER INST PHYSICS},
1803     Times-Cited = {3},
1804     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1805     Volume = {126},
1806     Year = {2007},
1807     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1808     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1809    
1810     @article{Viscardy:2007bh,
1811     Abstract = {The authors propose a new method, the Helfand-moment
1812     method, to compute the shear viscosity by
1813     equilibrium molecular dynamics in periodic
1814     systems. In this method, the shear viscosity is
1815     written as an Einstein-type relation in terms of the
1816     variance of the so-called Helfand moment. This
1817     quantity is modified in order to satisfy systems
1818     with periodic boundary conditions usually considered
1819     in molecular dynamics. They calculate the shear
1820     viscosity in the Lennard-Jones fluid near the triple
1821     point thanks to this new technique. They show that
1822     the results of the Helfand-moment method are in
1823     excellent agreement with the results of the standard
1824     Green-Kubo method. (C) 2007 American Institute of
1825     Physics.},
1826     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1827     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1828     Date-Added = {2009-09-21 16:37:19 -0400},
1829     Date-Modified = {2010-07-19 16:19:03 -0400},
1830     Doi = {DOI 10.1063/1.2724820},
1831     Isi = {000246453900034},
1832     Isi-Recid = {156192449},
1833     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1834     Journal = {J. Chem. Phys.},
1835     Month = may,
1836     Number = {18},
1837     Pages = {184512},
1838     Publisher = {AMER INST PHYSICS},
1839     Times-Cited = {1},
1840     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1841     Volume = {126},
1842     Year = {2007},
1843     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1844     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1845    
1846     @inproceedings{384119,
1847     Address = {New York, NY, USA},
1848     Author = {Fortune, Steven},
1849     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1850     Doi = {http://doi.acm.org/10.1145/384101.384119},
1851     Isbn = {1-58113-417-7},
1852     Location = {London, Ontario, Canada},
1853     Pages = {121--128},
1854     Publisher = {ACM},
1855     Title = {Polynomial root finding using iterated Eigenvalue computation},
1856     Year = {2001},
1857     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1858    
1859     @article{Fennell06,
1860 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1861     Date-Added = {2006-08-24 09:49:57 -0400},
1862     Date-Modified = {2006-08-24 09:49:57 -0400},
1863     Doi = {10.1063/1.2206581},
1864     Journal = {J. Chem. Phys.},
1865     Number = {23},
1866     Pages = {234104(12)},
1867     Rating = {5},
1868     Read = {Yes},
1869     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1870     Volume = {124},
1871     Year = {2006},
1872     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1873 skuang 3719
1874 skuang 3721 @book{Sommese2005,
1875     Address = {Singapore},
1876     Author = {Andrew J. Sommese and Charles W. Wampler},
1877     Publisher = {World Scientific Press},
1878     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1879     Year = 2005}