ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3729
Committed: Wed Jun 29 18:14:23 2011 UTC (14 years, 2 months ago) by skuang
File size: 96305 byte(s)
Log Message:
add more data, citations, some work on computational details.

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3729 %% Created for Shenyu Kuang at 2011-06-29 14:04:39 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3729 @article{doi:10.1021/ja00051a040,
13     Author = {Rappe, A. K. and Casewit, C. J. and Colwell, K. S. and Goddard, W. A. and Skiff, W. M.},
14     Date-Added = {2011-06-29 14:04:33 -0400},
15     Date-Modified = {2011-06-29 14:04:33 -0400},
16     Doi = {10.1021/ja00051a040},
17     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/ja00051a040},
18     Journal = {Journal of the American Chemical Society},
19     Number = {25},
20     Pages = {10024-10035},
21     Title = {UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations},
22     Url = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
23     Volume = {114},
24     Year = {1992},
25     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/ja00051a040},
26     Bdsk-Url-2 = {http://dx.doi.org/10.1021/ja00051a040}}
27    
28 skuang 3724 @article{doi:10.1021/jp034405s,
29     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
30     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
31     Date-Added = {2011-04-28 11:23:28 -0400},
32     Date-Modified = {2011-04-28 11:23:28 -0400},
33     Doi = {10.1021/jp034405s},
34     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
35     Journal = {The Journal of Physical Chemistry B},
36     Number = {43},
37     Pages = {11940-11950},
38     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
39     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
40     Volume = {107},
41     Year = {2003},
42     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
43     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
44    
45 skuang 3721 @article{OPLSAA,
46     Abstract = {null},
47     Annote = {doi: 10.1021/ja9621760},
48     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
49     Date = {1996/01/01},
50     Date-Added = {2011-02-04 18:54:58 -0500},
51     Date-Modified = {2011-02-04 18:54:58 -0500},
52     Do = {10.1021/ja9621760},
53     Isbn = {0002-7863},
54     Journal = {Journal of the American Chemical Society},
55     M3 = {doi: 10.1021/ja9621760},
56     Month = {01},
57     Number = {45},
58     Pages = {11225--11236},
59     Publisher = {American Chemical Society},
60     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
61     Ty = {JOUR},
62     Url = {http://dx.doi.org/10.1021/ja9621760},
63     Volume = {118},
64     Year = {1996},
65     Year1 = {1996/01/01},
66     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
67    
68     @article{TraPPE-UA.alkylbenzenes,
69     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
70     Date-Added = {2011-02-04 18:31:46 -0500},
71     Date-Modified = {2011-02-04 18:32:22 -0500},
72     Doi = {10.1021/jp001044x},
73     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
74     Journal = {The Journal of Physical Chemistry B},
75     Number = {33},
76     Pages = {8008-8016},
77     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
78     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
79     Volume = {104},
80     Year = {2000},
81     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
82     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
83    
84     @article{TraPPE-UA.alkanes,
85     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
86     Date-Added = {2011-02-04 18:01:31 -0500},
87     Date-Modified = {2011-02-04 18:02:19 -0500},
88     Doi = {10.1021/jp972543+},
89     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
90     Journal = {The Journal of Physical Chemistry B},
91     Number = {14},
92     Pages = {2569-2577},
93     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
94     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
95     Volume = {102},
96     Year = {1998},
97     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
98     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
99    
100     @article{TraPPE-UA.thiols,
101     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
102     Date-Added = {2011-02-04 17:51:03 -0500},
103     Date-Modified = {2011-02-04 17:54:20 -0500},
104     Doi = {10.1021/jp0549125},
105     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
106     Journal = {The Journal of Physical Chemistry B},
107     Number = {50},
108     Pages = {24100-24107},
109     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
110     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
111     Volume = {109},
112     Year = {2005},
113     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
114     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
115    
116     @article{vlugt:cpc2007154,
117     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
118     Date-Added = {2011-02-01 16:00:11 -0500},
119     Date-Modified = {2011-02-04 18:21:59 -0500},
120     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
121     Issn = {0010-4655},
122     Journal = {Computer Physics Communications},
123     Keywords = {Gold nanocrystals},
124     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
125     Number = {1-2},
126     Pages = {154 - 157},
127     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
128     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
129     Volume = {177},
130     Year = {2007},
131     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
132     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
133    
134     @article{packmol,
135     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
136     Bibsource = {DBLP, http://dblp.uni-trier.de},
137     Date-Added = {2011-02-01 15:13:02 -0500},
138     Date-Modified = {2011-02-01 15:14:25 -0500},
139     Ee = {http://dx.doi.org/10.1002/jcc.21224},
140     Journal = {Journal of Computational Chemistry},
141     Number = {13},
142     Pages = {2157-2164},
143     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
144     Volume = {30},
145     Year = {2009}}
146    
147     @article{kuang:164101,
148     Author = {Shenyu Kuang and J. Daniel Gezelter},
149     Date-Added = {2011-01-31 17:12:35 -0500},
150     Date-Modified = {2011-01-31 17:12:35 -0500},
151     Doi = {10.1063/1.3499947},
152     Eid = {164101},
153     Journal = {The Journal of Chemical Physics},
154     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
155     Number = {16},
156     Numpages = {9},
157     Pages = {164101},
158     Publisher = {AIP},
159     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
160     Url = {http://link.aip.org/link/?JCP/133/164101/1},
161     Volume = {133},
162     Year = {2010},
163     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
164     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
165    
166 skuang 3719 @article{muller:014102,
167     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
168     Date-Added = {2010-09-16 19:19:25 -0400},
169     Date-Modified = {2010-09-16 19:19:25 -0400},
170     Doi = {10.1063/1.2943312},
171     Eid = {014102},
172     Journal = {The Journal of Chemical Physics},
173     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
174     Number = {1},
175     Numpages = {8},
176     Pages = {014102},
177     Publisher = {AIP},
178     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
179     Url = {http://link.aip.org/link/?JCP/129/014102/1},
180     Volume = {129},
181     Year = {2008},
182     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
183     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
184    
185     @article{wolf:8254,
186     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
187     Date-Added = {2010-09-16 19:01:51 -0400},
188     Date-Modified = {2010-09-16 19:01:51 -0400},
189     Doi = {10.1063/1.478738},
190     Journal = {J. Chem. Phys.},
191     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
192     Number = {17},
193     Pages = {8254-8282},
194     Publisher = {AIP},
195     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
196     Url = {http://link.aip.org/link/?JCP/110/8254/1},
197     Volume = {110},
198     Year = {1999},
199     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
200     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
201    
202     @article{HeX:1993,
203     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
204     heat conduction is used to compute the thermal conductivity, thermal
205     diffusion factor, and heat of transfer in binary Lennard-Jones
206     mixtures. An internal energy flux is established with local source and
207     sink terms for kinetic energy.
208     Simulations of isotope mixtures covering a range of densities and mass
209     ratios show that the lighter component prefers the hot side of the
210     system at stationary state. This implies a positive thermal diffusion
211     factor in the definition we have adopted here. The molecular basis for
212     the Soret effect is studied by analysing the energy flux through the
213     system. In all cases we found that there is a difference in the
214     relative contributions when we compare the hot and cold sides of the
215     system. The contribution from the lighter component is predominantly
216     flux of kinetic energy, and this contribution increases from the cold
217     to the hot side. The contribution from the heavier component is
218     predominantly energy transfer through molecular interactions, and it
219     increases from the hot to the cold side. This explains why the thermal
220     diffusion factor is positive; heal is conducted more effectively
221     through the system if the lighter component is enriched at the hot
222     side. Even for very large heat fluxes, we find a linear or almost
223     linear temperature profile through the system, and a constant thermal
224     conductivity. The entropy production per unit volume and unit time
225     increases from the hot to the cold side.},
226     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
227     Date-Added = {2010-09-15 16:52:45 -0400},
228     Date-Modified = {2010-09-15 16:54:23 -0400},
229     Issn = {{0026-8976}},
230     Journal = {Mol. Phys.},
231     Month = {DEC},
232     Number = {6},
233     Pages = {1389-1412},
234     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
235     Unique-Id = {ISI:A1993MQ34500009},
236     Volume = {80},
237 skuang 3721 Year = {1993}}
238 skuang 3719
239     @article{HeX:1994,
240     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
241     dynamics, where a temperature gradient is established in a system with
242     periodic boundary conditions. At each time step in the simulation, a
243     fixed amount of energy is supplied to a hot region by scaling the
244     velocity of each particle in it, subject to conservation of total
245     momentum. An equal amount of energy is likewise withdrawn from a cold
246     region at each time step. Between the hot and cold regions is a region
247     through which an energy flux is established. Two configurations of hot
248     and cold regions are proposed. Using a stacked layer structure, the
249     instantaneous local energy flux for a 128-particle Lennard-Jones system
250     in liquid was found to be in good agreement with the macroscopic theory
251     of heat conduction at stationary state, except in and near the hot and
252     cold regions. Thermal conductivity calculated for the 128-particle
253     system was about 10\% smaller than the literature value obtained by
254     molecular dynamics calculations. One run with a 1024-particle system
255     showed an agreement with the literature value within statistical error
256     (1-2\%). Using a unit cell with a cold spherical region at the centre
257     and a hot region in the perimeter of the cube, an initial gaseous state
258     of argon was separated into gas and liquid phases. Energy fluxes due to
259     intermolecular energy transfer and transport of kinetic energy dominate
260     in the liquid and gas phases, respectively.},
261     Author = {Ikeshoji, T and Hafskjold, B},
262     Date-Added = {2010-09-15 16:52:45 -0400},
263     Date-Modified = {2010-09-15 16:54:37 -0400},
264     Issn = {0026-8976},
265     Journal = {Mol. Phys.},
266     Month = {FEB},
267     Number = {2},
268     Pages = {251-261},
269     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
270     Unique-Id = {ISI:A1994MY17400001},
271     Volume = {81},
272 skuang 3721 Year = {1994}}
273 skuang 3719
274     @article{plech:195423,
275     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
276     Date-Added = {2010-08-12 11:34:55 -0400},
277     Date-Modified = {2010-08-12 11:34:55 -0400},
278     Eid = {195423},
279     Journal = {Phys. Rev. B},
280     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
281     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
282     Number = {19},
283     Numpages = {7},
284     Pages = {195423},
285     Publisher = {APS},
286     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
287     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
288     Volume = {70},
289     Year = {2004},
290     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
291    
292     @article{Wilson:2002uq,
293     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
294     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
295     Date-Added = {2010-08-12 11:31:02 -0400},
296     Date-Modified = {2010-08-12 11:31:02 -0400},
297     Doi = {ARTN 224301},
298     Journal = {Phys. Rev. B},
299     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
300     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
301     Volume = {66},
302     Year = {2002},
303     Bdsk-Url-1 = {http://dx.doi.org/224301}}
304    
305     @article{RevModPhys.61.605,
306     Author = {Swartz, E. T. and Pohl, R. O.},
307     Date-Added = {2010-08-06 17:03:01 -0400},
308     Date-Modified = {2010-08-06 17:03:01 -0400},
309     Doi = {10.1103/RevModPhys.61.605},
310     Journal = {Rev. Mod. Phys.},
311     Month = {Jul},
312     Number = {3},
313     Numpages = {63},
314     Pages = {605--668},
315     Publisher = {American Physical Society},
316     Title = {Thermal boundary resistance},
317     Volume = {61},
318     Year = {1989},
319     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
320    
321     @article{cahill:793,
322     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
323     Date-Added = {2010-08-06 17:02:22 -0400},
324     Date-Modified = {2010-08-06 17:02:22 -0400},
325     Doi = {10.1063/1.1524305},
326     Journal = {J. Applied Phys.},
327     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
328     Number = {2},
329     Pages = {793-818},
330     Publisher = {AIP},
331     Title = {Nanoscale thermal transport},
332     Url = {http://link.aip.org/link/?JAP/93/793/1},
333     Volume = {93},
334     Year = {2003},
335     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
336     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
337    
338     @inbook{Hoffman:2001sf,
339     Address = {New York},
340     Annote = {LDR 01107cam 2200253 a 4500
341     001 12358442
342     005 20070910074423.0
343     008 010326s2001 nyua b 001 0 eng
344     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
345     925 0 $aacquire$b2 shelf copies$xpolicy default
346     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
347     010 $a 2001028633
348     020 $a0824704436 (acid-free paper)
349     040 $aDLC$cDLC$dDLC
350     050 00 $aQA297$b.H588 2001
351     082 00 $a519.4$221
352     100 1 $aHoffman, Joe D.,$d1934-
353     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
354     250 $a2nd ed., rev. and expanded.
355     260 $aNew York :$bMarcel Dekker,$cc2001.
356     300 $axi, 823 p. :$bill. ;$c26 cm.
357     504 $aIncludes bibliographical references (p. 775-777) and index.
358     650 0 $aNumerical analysis.
359     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
360     },
361     Author = {Hoffman, Joe D.},
362     Call-Number = {QA297},
363     Date-Added = {2010-07-15 16:32:02 -0400},
364     Date-Modified = {2010-07-19 16:49:37 -0400},
365     Dewey-Call-Number = {519.4},
366     Edition = {2nd ed., rev. and expanded},
367     Genre = {Numerical analysis},
368     Isbn = {0824704436 (acid-free paper)},
369     Library-Id = {2001028633},
370     Pages = {157},
371     Publisher = {Marcel Dekker},
372     Title = {Numerical methods for engineers and scientists},
373     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
374     Year = {2001},
375     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
376    
377     @article{Vardeman:2008fk,
378     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
379     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
380     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
381     Date-Added = {2010-07-13 11:48:22 -0400},
382     Date-Modified = {2010-07-19 16:20:01 -0400},
383     Doi = {DOI 10.1021/jp710063g},
384     Isi = {000253512400021},
385     Isi-Recid = {160903603},
386     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
387     Journal = {J. Phys. Chem. C},
388     Month = mar,
389     Number = {9},
390     Pages = {3283-3293},
391     Publisher = {AMER CHEMICAL SOC},
392     Times-Cited = {0},
393     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
394     Volume = {112},
395     Year = {2008},
396     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
397    
398     @article{PhysRevB.59.3527,
399     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
400     Date-Added = {2010-07-13 11:44:08 -0400},
401     Date-Modified = {2010-07-13 11:44:08 -0400},
402     Doi = {10.1103/PhysRevB.59.3527},
403     Journal = {Phys. Rev. B},
404     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
405     Month = {Feb},
406     Number = {5},
407     Numpages = {6},
408     Pages = {3527-3533},
409     Publisher = {American Physical Society},
410     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
411     Volume = {59},
412     Year = {1999},
413     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
414    
415     @article{Medasani:2007uq,
416     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
417     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
418     Date-Added = {2010-07-13 11:43:15 -0400},
419     Date-Modified = {2010-07-13 11:43:15 -0400},
420     Doi = {ARTN 235436},
421     Journal = {Phys. Rev. B},
422     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
423     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
424     Volume = {75},
425     Year = {2007},
426     Bdsk-Url-1 = {http://dx.doi.org/235436}}
427    
428     @article{Wang:2005qy,
429     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
430     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
431     Date-Added = {2010-07-13 11:42:50 -0400},
432     Date-Modified = {2010-07-13 11:42:50 -0400},
433     Doi = {DOI 10.1021/jp050116n},
434     Journal = {J. Phys. Chem. B},
435     Pages = {11683-11692},
436     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
437     Volume = {109},
438     Year = {2005},
439     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
440    
441     @article{Chui:2003fk,
442     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
443     Author = {Chui, YH and Chan, KY},
444     Date-Added = {2010-07-13 11:42:32 -0400},
445     Date-Modified = {2010-07-13 11:42:32 -0400},
446     Doi = {DOI 10.1039/b302122j},
447     Journal = {Phys. Chem. Chem. Phys.},
448     Pages = {2869-2874},
449     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
450     Volume = {5},
451     Year = {2003},
452     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
453    
454     @article{Sankaranarayanan:2005lr,
455     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
456     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
457     Date-Added = {2010-07-13 11:42:13 -0400},
458     Date-Modified = {2010-07-13 11:42:13 -0400},
459     Doi = {ARTN 195415},
460     Journal = {Phys. Rev. B},
461     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
462     Volume = {71},
463     Year = {2005},
464     Bdsk-Url-1 = {http://dx.doi.org/195415}}
465    
466     @article{Vardeman-II:2001jn,
467     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
468     Date-Added = {2010-07-13 11:41:50 -0400},
469     Date-Modified = {2010-07-13 11:41:50 -0400},
470     Journal = {J. Phys. Chem. A},
471     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
472     Number = {12},
473     Pages = {2568},
474     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
475     Volume = {105},
476     Year = {2001}}
477    
478     @article{ShibataT._ja026764r,
479     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
480     Date-Added = {2010-07-13 11:41:36 -0400},
481     Date-Modified = {2010-07-13 11:41:36 -0400},
482     Journal = {J. Amer. Chem. Soc.},
483     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
484     Number = {40},
485     Pages = {11989-11996},
486     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
487     Url = {http://dx.doi.org/10.1021/ja026764r},
488     Volume = {124},
489     Year = {2002},
490     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
491    
492     @article{Chen90,
493     Author = {A.~P. Sutton and J. Chen},
494     Date-Added = {2010-07-13 11:40:48 -0400},
495     Date-Modified = {2010-07-13 11:40:48 -0400},
496     Journal = {Phil. Mag. Lett.},
497     Pages = {139-146},
498     Title = {Long-Range Finnis Sinclair Potentials},
499     Volume = 61,
500     Year = {1990}}
501    
502     @article{PhysRevB.33.7983,
503     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
504     Date-Added = {2010-07-13 11:40:28 -0400},
505     Date-Modified = {2010-07-13 11:40:28 -0400},
506     Doi = {10.1103/PhysRevB.33.7983},
507     Journal = {Phys. Rev. B},
508     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
509     Month = {Jun},
510     Number = {12},
511     Numpages = {8},
512     Pages = {7983-7991},
513     Publisher = {American Physical Society},
514     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
515     Volume = {33},
516     Year = {1986},
517     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
518    
519     @article{hoover85,
520     Author = {W.~G. Hoover},
521     Date-Added = {2010-07-13 11:24:30 -0400},
522     Date-Modified = {2010-07-13 11:24:30 -0400},
523     Journal = pra,
524     Pages = 1695,
525     Title = {Canonical dynamics: Equilibrium phase-space distributions},
526     Volume = 31,
527     Year = 1985}
528    
529     @article{melchionna93,
530     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
531     Date-Added = {2010-07-13 11:22:17 -0400},
532     Date-Modified = {2010-07-13 11:22:17 -0400},
533     Journal = {Mol. Phys.},
534     Pages = {533-544},
535     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
536     Volume = 78,
537     Year = 1993}
538    
539     @misc{openmd,
540     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
541     Date-Added = {2010-07-13 11:16:00 -0400},
542     Date-Modified = {2010-07-19 16:27:45 -0400},
543     Howpublished = {Available at {\tt http://openmd.net}},
544     Title = {{OpenMD, an open source engine for molecular dynamics}}}
545    
546     @inbook{AshcroftMermin,
547 skuang 3721 Address = {Belmont, CA},
548 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
549     Date-Added = {2010-07-12 14:26:49 -0400},
550     Date-Modified = {2010-07-22 13:37:20 -0400},
551     Pages = {21},
552     Publisher = {Brooks Cole},
553     Title = {Solid State Physics},
554 skuang 3721 Year = {1976}}
555 skuang 3719
556     @book{WagnerKruse,
557     Address = {Berlin},
558     Author = {W. Wagner and A. Kruse},
559     Date-Added = {2010-07-12 14:10:29 -0400},
560     Date-Modified = {2010-07-12 14:13:44 -0400},
561     Publisher = {Springer-Verlag},
562     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
563 skuang 3721 Year = {1998}}
564 skuang 3719
565     @article{ISI:000266247600008,
566     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
567     hexafluorophosphate is investigated by non-equilibrium molecular
568     dynamics simulations with cosine-modulated force in the temperature
569     range from 360 to 480K. It is shown that this method is able to
570     correctly predict the shear viscosity. The simulation setting and
571     choice of the force field are discussed in detail. The all-atom force
572     field exhibits a bad convergence and the shear viscosity is
573     overestimated, while the simple united atom model predicts the kinetics
574     very well. The results are compared with the equilibrium molecular
575     dynamics simulations. The relationship between the diffusion
576     coefficient and viscosity is examined by means of the hydrodynamic
577     radii calculated from the Stokes-Einstein equation and the solvation
578     properties are discussed.},
579     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
580     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
581     Author = {Picalek, Jan and Kolafa, Jiri},
582     Author-Email = {jiri.kolafa@vscht.cz},
583     Date-Added = {2010-04-16 13:19:12 -0400},
584     Date-Modified = {2010-04-16 13:19:12 -0400},
585     Doc-Delivery-Number = {448FD},
586     Doi = {10.1080/08927020802680703},
587     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
588     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
589     Issn = {0892-7022},
590     Journal = {Mol. Simul.},
591     Journal-Iso = {Mol. Simul.},
592     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
593     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
594     Language = {English},
595     Number = {8},
596     Number-Of-Cited-References = {50},
597     Pages = {685-690},
598     Publisher = {TAYLOR \& FRANCIS LTD},
599     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
600     Times-Cited = {2},
601     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
602     Type = {Article},
603     Unique-Id = {ISI:000266247600008},
604     Volume = {35},
605     Year = {2009},
606     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
607    
608     @article{Vasquez:2004fk,
609     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
610     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
611     Date = {2004/11/02/},
612     Date-Added = {2010-04-16 13:18:48 -0400},
613     Date-Modified = {2010-04-16 13:18:48 -0400},
614     Day = {02},
615     Journal = {Int. J. Thermophys.},
616     M3 = {10.1007/s10765-004-7736-3},
617     Month = {11},
618     Number = {6},
619     Pages = {1799--1818},
620     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
621     Ty = {JOUR},
622     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
623     Volume = {25},
624     Year = {2004},
625     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
626    
627     @article{hess:209,
628     Author = {Berk Hess},
629     Date-Added = {2010-04-16 12:37:37 -0400},
630     Date-Modified = {2010-04-16 12:37:37 -0400},
631     Doi = {10.1063/1.1421362},
632     Journal = {J. Chem. Phys.},
633     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
634     Number = {1},
635     Pages = {209-217},
636     Publisher = {AIP},
637     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
638     Url = {http://link.aip.org/link/?JCP/116/209/1},
639     Volume = {116},
640     Year = {2002},
641     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
642     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
643    
644     @article{backer:154503,
645     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
646     Date-Added = {2010-04-16 12:37:37 -0400},
647     Date-Modified = {2010-04-16 12:37:37 -0400},
648     Doi = {10.1063/1.1883163},
649     Eid = {154503},
650     Journal = {J. Chem. Phys.},
651     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
652     Number = {15},
653     Numpages = {6},
654     Pages = {154503},
655     Publisher = {AIP},
656     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
657     Url = {http://link.aip.org/link/?JCP/122/154503/1},
658     Volume = {122},
659     Year = {2005},
660     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
661     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
662    
663     @article{daivis:541,
664     Author = {Peter J. Daivis and Denis J. Evans},
665     Date-Added = {2010-04-16 12:05:36 -0400},
666     Date-Modified = {2010-04-16 12:05:36 -0400},
667     Doi = {10.1063/1.466970},
668     Journal = {J. Chem. Phys.},
669     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
670     Number = {1},
671     Pages = {541-547},
672     Publisher = {AIP},
673     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
674     Url = {http://link.aip.org/link/?JCP/100/541/1},
675     Volume = {100},
676     Year = {1994},
677     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
678     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
679    
680     @article{mondello:9327,
681     Author = {Maurizio Mondello and Gary S. Grest},
682     Date-Added = {2010-04-16 12:05:36 -0400},
683     Date-Modified = {2010-04-16 12:05:36 -0400},
684     Doi = {10.1063/1.474002},
685     Journal = {J. Chem. Phys.},
686     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
687     Number = {22},
688     Pages = {9327-9336},
689     Publisher = {AIP},
690     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
691     Url = {http://link.aip.org/link/?JCP/106/9327/1},
692     Volume = {106},
693     Year = {1997},
694     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
695     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
696    
697     @article{ISI:A1988Q205300014,
698     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
699     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
700     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
701     Date-Added = {2010-04-14 16:20:24 -0400},
702     Date-Modified = {2010-04-14 16:20:24 -0400},
703     Doc-Delivery-Number = {Q2053},
704     Issn = {0026-8976},
705     Journal = {Mol. Phys.},
706     Journal-Iso = {Mol. Phys.},
707     Language = {English},
708     Month = {AUG 20},
709     Number = {6},
710     Number-Of-Cited-References = {14},
711     Pages = {1203-1213},
712     Publisher = {TAYLOR \& FRANCIS LTD},
713     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
714     Times-Cited = {12},
715     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
716     Type = {Article},
717     Unique-Id = {ISI:A1988Q205300014},
718     Volume = {64},
719     Year = {1988}}
720    
721     @article{ISI:000261835100054,
722     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
723     molecular dynamics simulation. The molecular models for the alcohols
724     are rigid, nonpolarizable, and of united-atom type. They were developed
725     in preceding work using experimental vapor-liquid equilibrium data
726     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
727     shear viscosity of methanol, ethanol, and their binary mixture are
728     determined using equilibrium molecular dynamics and the Green-Kubo
729     formalism. Nonequilibrium molecular dynamics is used for predicting the
730     thermal conductivity of the two pure substances. The transport
731     properties of the fluids are calculated over a wide temperature range
732     at ambient pressure and compared with experimental and simulation data
733     from the literature. Overall, a very good agreement with the experiment
734     is found. For instance, the self-diffusion coefficient and the shear
735     viscosity are predicted with average deviations of less than 8\% for
736     the pure alcohols and 12\% for the mixture. The predicted thermal
737     conductivity agrees on average within 5\% with the experimental data.
738     Additionally, some velocity and shear viscosity autocorrelation
739     functions are presented and discussed. Radial distribution functions
740     for ethanol are also presented. The predicted excess volume, excess
741     enthalpy, and the vapor-liquid equilibrium of the binary mixture
742     methanol + ethanol are assessed and agree well with experimental data.},
743     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
744     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
745     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
746     Author-Email = {vrabec@itt.uni-stuttgart.de},
747     Date-Added = {2010-04-14 15:43:29 -0400},
748     Date-Modified = {2010-04-14 15:43:29 -0400},
749     Doc-Delivery-Number = {385SY},
750     Doi = {10.1021/jp805584d},
751     Issn = {1520-6106},
752     Journal = {J. Phys. Chem. B},
753     Journal-Iso = {J. Phys. Chem. B},
754     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
755     Language = {English},
756     Month = {DEC 25},
757     Number = {51},
758     Number-Of-Cited-References = {86},
759     Pages = {16664-16674},
760     Publisher = {AMER CHEMICAL SOC},
761     Subject-Category = {Chemistry, Physical},
762     Times-Cited = {5},
763     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
764     Type = {Article},
765     Unique-Id = {ISI:000261835100054},
766     Volume = {112},
767     Year = {2008},
768     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
769    
770     @article{ISI:000258460400020,
771     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
772     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
773     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
774     9549) force fields have been employed to calculate the thermal
775     conductivity and other associated properties of methane hydrate over a
776     temperature range from 30 to 260 K. The calculated results are compared
777     to experimental data over this same range. The values of the thermal
778     conductivity calculated with the COS/G2 model are closer to the
779     experimental values than are those calculated with the nonpolarizable
780     SPC/E model. The calculations match the temperature trend in the
781     experimental data at temperatures below 50 K; however, they exhibit a
782     slight decrease in thermal conductivity at higher temperatures in
783     comparison to an opposite trend in the experimental data. The
784     calculated thermal conductivity values are found to be relatively
785     insensitive to the occupancy of the cages except at low (T <= 50 K)
786     temperatures, which indicates that the differences between the two
787     lattice structures may have a more dominant role than generally thought
788     in explaining the low thermal conductivity of methane hydrate compared
789     to ice Ih. The introduction of defects into the water lattice is found
790     to cause a reduction in the thermal conductivity but to have a
791     negligible impact on its temperature dependence.},
792     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
793     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
794     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
795     Date-Added = {2010-04-14 15:38:14 -0400},
796     Date-Modified = {2010-04-14 15:38:14 -0400},
797     Doc-Delivery-Number = {337UG},
798     Doi = {10.1021/jp802942v},
799     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
800     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
801     Issn = {1520-6106},
802     Journal = {J. Phys. Chem. B},
803     Journal-Iso = {J. Phys. Chem. B},
804     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
805     Language = {English},
806     Month = {AUG 21},
807     Number = {33},
808     Number-Of-Cited-References = {51},
809     Pages = {10207-10216},
810     Publisher = {AMER CHEMICAL SOC},
811     Subject-Category = {Chemistry, Physical},
812     Times-Cited = {8},
813     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
814     Type = {Article},
815     Unique-Id = {ISI:000258460400020},
816     Volume = {112},
817     Year = {2008},
818     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
819    
820     @article{ISI:000184808400018,
821     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
822     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
823     6082), for the non-equilibrium simulation of heat transport maintaining
824     fixed the total momentum as well as the total energy of the system. The
825     presented scheme preserves these properties but, unlike the original
826     algorithm, is able to deal with multicomponent systems, that is with
827     particles of different mass independently of their relative
828     concentration. The main idea behind the new procedure is to consider an
829     exchange of momentum and energy between the particles in the hot and
830     cold regions, to maintain the non-equilibrium conditions, as if they
831     undergo a hypothetical elastic collision. The new algorithm can also be
832     employed in multicomponent systems for molecular fluids and in a wide
833     range of thermodynamic conditions.},
834     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
835     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
836     Author = {Nieto-Draghi, C and Avalos, JB},
837     Date-Added = {2010-04-14 12:48:08 -0400},
838     Date-Modified = {2010-04-14 12:48:08 -0400},
839     Doc-Delivery-Number = {712QM},
840     Doi = {10.1080/0026897031000154338},
841     Issn = {0026-8976},
842     Journal = {Mol. Phys.},
843     Journal-Iso = {Mol. Phys.},
844     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
845     Language = {English},
846     Month = {JUL 20},
847     Number = {14},
848     Number-Of-Cited-References = {20},
849     Pages = {2303-2307},
850     Publisher = {TAYLOR \& FRANCIS LTD},
851     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
852     Times-Cited = {13},
853     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
854     Type = {Article},
855     Unique-Id = {ISI:000184808400018},
856     Volume = {101},
857     Year = {2003},
858     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
859    
860     @article{Bedrov:2000-1,
861     Abstract = {The thermal conductivity of liquid
862     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
863     determined from imposed heat flux non-equilibrium molecular dynamics
864     (NEMD) simulations using a previously published quantum chemistry-based
865     atomistic potential. The thermal conductivity was determined in the
866     temperature domain 550 less than or equal to T less than or equal to
867     800 K, which corresponds approximately to the existence limits of the
868     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
869     which comprise the first reported values for thermal conductivity of
870     HMX liquid, were found to be consistent with measured values for
871     crystalline HMX. The thermal conductivity of liquid HMX was found to
872     exhibit a much weaker temperature dependence than the shear viscosity
873     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
874     rights reserved.},
875     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
876     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
877     Author = {Bedrov, D and Smith, GD and Sewell, TD},
878     Date-Added = {2010-04-14 12:26:59 -0400},
879     Date-Modified = {2010-04-14 12:27:52 -0400},
880     Doc-Delivery-Number = {330PF},
881     Issn = {0009-2614},
882     Journal = {Chem. Phys. Lett.},
883     Journal-Iso = {Chem. Phys. Lett.},
884     Keywords-Plus = {FORCE-FIELD},
885     Language = {English},
886     Month = {JUN 30},
887     Number = {1-3},
888     Number-Of-Cited-References = {17},
889     Pages = {64-68},
890     Publisher = {ELSEVIER SCIENCE BV},
891     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
892     Times-Cited = {19},
893     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
894     Type = {Article},
895     Unique-Id = {ISI:000087969900011},
896     Volume = {324},
897     Year = {2000}}
898    
899     @article{ISI:000258840700015,
900     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
901     (MD) simulations are carried out to calculate the viscosity and
902     self-diffusion coefficient of liquid copper from the normal to the
903     undercooled states. The simulated results are in reasonable agreement
904     with the experimental values available above the melting temperature
905     that is also predicted from a solid-liquid-solid sandwich structure.
906     The relationship between the viscosity and the self-diffusion
907     coefficient is evaluated. It is found that the Stokes-Einstein and
908     Sutherland-Einstein relations qualitatively describe this relationship
909     within the simulation temperature range. However, the predicted
910     constant from MD simulation is close to 1/(3 pi), which is larger than
911     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
912     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
913     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
914     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
915     Author-Email = {mchen@tsinghua.edu.cn},
916     Date-Added = {2010-04-14 12:00:38 -0400},
917     Date-Modified = {2010-04-14 12:00:38 -0400},
918     Doc-Delivery-Number = {343GH},
919     Doi = {10.1007/s10765-008-0489-7},
920     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
921     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
922     Issn = {0195-928X},
923     Journal = {Int. J. Thermophys.},
924     Journal-Iso = {Int. J. Thermophys.},
925     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
926     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
927     Language = {English},
928     Month = {AUG},
929     Number = {4},
930     Number-Of-Cited-References = {39},
931     Pages = {1408-1421},
932     Publisher = {SPRINGER/PLENUM PUBLISHERS},
933     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
934     Times-Cited = {2},
935     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
936     Type = {Article},
937     Unique-Id = {ISI:000258840700015},
938     Volume = {29},
939     Year = {2008},
940     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
941    
942     @article{Muller-Plathe:2008,
943     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
944     dynamics simulations were carried out to compute the shear viscosity of
945     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
946     yielded consistent results which were also compared to experiments. The
947     results showed that the reverse nonequilibrium molecular dynamics
948     (RNEMD) methodology can successfully be applied to computation of
949     highly viscous ionic liquids. Moreover, this study provides a
950     validation of the atomistic force-field developed by Bhargava and
951     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
952     properties.},
953     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
954     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
955     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
956     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
957     Date-Added = {2010-04-14 11:53:37 -0400},
958     Date-Modified = {2010-04-14 11:54:20 -0400},
959     Doc-Delivery-Number = {321VS},
960     Doi = {10.1021/jp8017869},
961     Issn = {1520-6106},
962     Journal = {J. Phys. Chem. B},
963     Journal-Iso = {J. Phys. Chem. B},
964     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
965     Language = {English},
966     Month = {JUL 10},
967     Number = {27},
968     Number-Of-Cited-References = {49},
969     Pages = {8129-8133},
970     Publisher = {AMER CHEMICAL SOC},
971     Subject-Category = {Chemistry, Physical},
972     Times-Cited = {2},
973     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
974     Type = {Article},
975     Unique-Id = {ISI:000257335200022},
976     Volume = {112},
977     Year = {2008},
978     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
979    
980     @article{Muller-Plathe:2002,
981     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
982     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
983     viscosity of Lennard-Jones liquids has been extended to atomistic
984     models of molecular liquids. The method is improved to overcome the
985     problems due to the detailed molecular models. The new technique is
986     besides a test with a Lennard-Jones fluid, applied on different
987     realistic systems: liquid nitrogen, water, and hexane, in order to
988     cover a large range of interactions and systems/architectures. We show
989     that all the advantages of the method itemized previously are still
990     valid, and that it has a very good efficiency and accuracy making it
991     very competitive. (C) 2002 American Institute of Physics.},
992     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
993     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
994     Author = {Bordat, P and M\"{u}ller-Plathe, F},
995     Date-Added = {2010-04-14 11:34:42 -0400},
996     Date-Modified = {2010-04-14 11:35:35 -0400},
997     Doc-Delivery-Number = {521QV},
998     Doi = {10.1063/1.1436124},
999     Issn = {0021-9606},
1000     Journal = {J. Chem. Phys.},
1001     Journal-Iso = {J. Chem. Phys.},
1002     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
1003     Language = {English},
1004     Month = {FEB 22},
1005     Number = {8},
1006     Number-Of-Cited-References = {47},
1007     Pages = {3362-3369},
1008     Publisher = {AMER INST PHYSICS},
1009     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1010     Times-Cited = {33},
1011     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
1012     Type = {Article},
1013     Unique-Id = {ISI:000173853600023},
1014     Volume = {116},
1015     Year = {2002},
1016     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1017    
1018     @article{ISI:000207079300006,
1019     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1020     methods have been used to study the ability of
1021     Embedded Atom Method models of the metals copper and
1022     gold to reproduce the equilibrium and
1023     non-equilibrium behavior of metals at a stationary
1024     and at a moving solid/liquid interface. The
1025     equilibrium solid/vapor interface was shown to
1026     display a simple termination of the bulk until the
1027     temperature of the solid reaches approximate to 90\%
1028     of the bulk melting point. At and above such
1029     temperatures the systems exhibit a surface
1030     disodering known as surface melting. Non-equilibrium
1031     simulations emulating the action of a picosecond
1032     laser on the metal were performed to determine the
1033     regrowth velocity. For copper, the action of a 20 ps
1034     laser with an absorbed energy of 2-5 mJ/cm(2)
1035     produced a regrowth velocity of 83-100 m/s, in
1036     reasonable agreement with the value obtained by
1037     experiment (>60 m/s). For gold, similar conditions
1038     produced a slower regrowth velocity of 63 m/s at an
1039     absorbed energy of 5 mJ/cm(2). This is almost a
1040     factor of two too low in comparison to experiment
1041     (>100 m/s). The regrowth velocities of the metals
1042     seems unexpectedly close to experiment considering
1043     that the free-electron contribution is ignored in
1044     the Embeeded Atom Method models used.},
1045     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1046     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1047     Author = {Richardson, Clifton F. and Clancy, Paulette},
1048     Date-Added = {2010-04-07 11:24:36 -0400},
1049     Date-Modified = {2010-04-07 11:24:36 -0400},
1050     Doc-Delivery-Number = {V04SY},
1051     Issn = {0892-7022},
1052     Journal = {Mol. Simul.},
1053     Journal-Iso = {Mol. Simul.},
1054     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1055     Language = {English},
1056     Number = {5-6},
1057     Number-Of-Cited-References = {36},
1058     Pages = {335-355},
1059     Publisher = {TAYLOR \& FRANCIS LTD},
1060     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1061     Times-Cited = {7},
1062     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1063     Type = {Article},
1064     Unique-Id = {ISI:000207079300006},
1065     Volume = {7},
1066     Year = {1991}}
1067    
1068     @article{ISI:000167766600035,
1069     Abstract = {Molecular dynamics simulations are used to
1070     investigate the separation of water films adjacent
1071     to a hot metal surface. The simulations clearly show
1072     that the water layers nearest the surface overheat
1073     and undergo explosive boiling. For thick films, the
1074     expansion of the vaporized molecules near the
1075     surface forces the outer water layers to move away
1076     from the surface. These results are of interest for
1077     mass spectrometry of biological molecules, steam
1078     cleaning of surfaces, and medical procedures.},
1079     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1080     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1081     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1082     Date-Added = {2010-03-11 15:32:14 -0500},
1083     Date-Modified = {2010-03-11 15:32:14 -0500},
1084     Doc-Delivery-Number = {416ED},
1085     Issn = {1089-5639},
1086     Journal = {J. Phys. Chem. A},
1087     Journal-Iso = {J. Phys. Chem. A},
1088     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1089     Language = {English},
1090     Month = {MAR 29},
1091     Number = {12},
1092     Number-Of-Cited-References = {65},
1093     Pages = {2748-2755},
1094     Publisher = {AMER CHEMICAL SOC},
1095     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1096     Times-Cited = {66},
1097     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1098     Type = {Article},
1099     Unique-Id = {ISI:000167766600035},
1100     Volume = {105},
1101     Year = {2001}}
1102    
1103     @article{Maginn:2010,
1104     Abstract = {The reverse nonequilibrium molecular dynamics
1105     (RNEMD) method calculates the shear viscosity of a
1106     fluid by imposing a nonphysical exchange of momentum
1107     and measuring the resulting shear velocity
1108     gradient. In this study we investigate the range of
1109     momentum flux values over which RNEMD yields usable
1110     (linear) velocity gradients. We find that nonlinear
1111     velocity profiles result primarily from gradients in
1112     fluid temperature and density. The temperature
1113     gradient results from conversion of heat into bulk
1114     kinetic energy, which is transformed back into heat
1115     elsewhere via viscous heating. An expression is
1116     derived to predict the temperature profile resulting
1117     from a specified momentum flux for a given fluid and
1118     simulation cell. Although primarily bounded above,
1119     we also describe milder low-flux limitations. RNEMD
1120     results for a Lennard-Jones fluid agree with
1121     equilibrium molecular dynamics and conventional
1122     nonequilibrium molecular dynamics calculations at
1123     low shear, but RNEMD underpredicts viscosity
1124     relative to conventional NEMD at high shear.},
1125     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1126     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1127     Article-Number = {014103},
1128     Author = {Tenney, Craig M. and Maginn, Edward J.},
1129     Author-Email = {ed@nd.edu},
1130     Date-Added = {2010-03-09 13:08:41 -0500},
1131     Date-Modified = {2010-07-19 16:21:35 -0400},
1132     Doc-Delivery-Number = {542DQ},
1133     Doi = {10.1063/1.3276454},
1134     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1135     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1136     Issn = {0021-9606},
1137     Journal = {J. Chem. Phys.},
1138     Journal-Iso = {J. Chem. Phys.},
1139     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1140     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1141     Language = {English},
1142     Month = {JAN 7},
1143     Number = {1},
1144     Number-Of-Cited-References = {20},
1145     Pages = {014103},
1146     Publisher = {AMER INST PHYSICS},
1147     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1148     Times-Cited = {0},
1149     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1150     Type = {Article},
1151     Unique-Id = {ISI:000273472300004},
1152     Volume = {132},
1153     Year = {2010},
1154     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1155    
1156     @article{Clancy:1992,
1157     Abstract = {The regrowth velocity of a crystal from a melt
1158     depends on contributions from the thermal
1159     conductivity, heat gradient, and latent heat. The
1160     relative contributions of these terms to the
1161     regrowth velocity of the pure metals copper and gold
1162     during liquid-phase epitaxy are evaluated. These
1163     results are used to explain how results from
1164     previous nonequilibrium molecular-dynamics
1165     simulations using classical potentials are able to
1166     predict regrowth velocities that are close to the
1167     experimental values. Results from equilibrium
1168     molecular dynamics showing the nature of the
1169     solid-vapor interface of an
1170     embedded-atom-method-modeled Cu57Ni43 alloy at a
1171     temperature corresponding to 62\% of the melting
1172     point are presented. The regrowth of this alloy
1173     following a simulation of a laser-processing
1174     experiment is also given, with use of nonequilibrium
1175     molecular-dynamics techniques. The thermal
1176     conductivity and temperature gradient in the
1177     simulation of the alloy are compared to those for
1178     the pure metals.},
1179     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1180     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1181     Author = {Richardson, C.~F. and Clancy, P},
1182     Date-Added = {2010-01-12 16:17:33 -0500},
1183     Date-Modified = {2010-04-08 17:18:25 -0400},
1184     Doc-Delivery-Number = {HX378},
1185     Issn = {0163-1829},
1186     Journal = {Phys. Rev. B},
1187     Journal-Iso = {Phys. Rev. B},
1188     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1189     Language = {English},
1190     Month = {JUN 1},
1191     Number = {21},
1192     Number-Of-Cited-References = {24},
1193     Pages = {12260-12268},
1194     Publisher = {AMERICAN PHYSICAL SOC},
1195     Subject-Category = {Physics, Condensed Matter},
1196     Times-Cited = {11},
1197     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1198     Type = {Article},
1199     Unique-Id = {ISI:A1992HX37800010},
1200     Volume = {45},
1201     Year = {1992}}
1202    
1203     @article{Bedrov:2000,
1204     Abstract = {We have applied a new nonequilibrium molecular
1205     dynamics (NEMD) method {[}F. Muller-Plathe,
1206     J. Chem. Phys. 106, 6082 (1997)] previously applied
1207     to monatomic Lennard-Jones fluids in the
1208     determination of the thermal conductivity of
1209     molecular fluids. The method was modified in order
1210     to be applicable to systems with holonomic
1211     constraints. Because the method involves imposing a
1212     known heat flux it is particularly attractive for
1213     systems involving long-range and many-body
1214     interactions where calculation of the microscopic
1215     heat flux is difficult. The predicted thermal
1216     conductivities of liquid n-butane and water using
1217     the imposed-flux NEMD method were found to be in a
1218     good agreement with previous simulations and
1219     experiment. (C) 2000 American Institute of
1220     Physics. {[}S0021-9606(00)50841-1].},
1221     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1222     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1223     Author = {Bedrov, D and Smith, GD},
1224     Date-Added = {2009-11-05 18:21:18 -0500},
1225     Date-Modified = {2010-04-14 11:50:48 -0400},
1226     Doc-Delivery-Number = {369BF},
1227     Issn = {0021-9606},
1228     Journal = {J. Chem. Phys.},
1229     Journal-Iso = {J. Chem. Phys.},
1230     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1231     Language = {English},
1232     Month = {NOV 8},
1233     Number = {18},
1234     Number-Of-Cited-References = {26},
1235     Pages = {8080-8084},
1236     Publisher = {AMER INST PHYSICS},
1237     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1238     Times-Cited = {23},
1239     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1240     Type = {Article},
1241     Unique-Id = {ISI:000090151400044},
1242     Volume = {113},
1243     Year = {2000}}
1244    
1245     @article{ISI:000231042800044,
1246     Abstract = {The reverse nonequilibrium molecular dynamics
1247     method for thermal conductivities is adapted to the
1248     investigation of molecular fluids. The method
1249     generates a heat flux through the system by suitably
1250     exchanging velocities of particles located in
1251     different regions. From the resulting temperature
1252     gradient, the thermal conductivity is then
1253     calculated. Different variants of the algorithm and
1254     their combinations with other system parameters are
1255     tested: exchange of atomic velocities versus
1256     exchange of molecular center-of-mass velocities,
1257     different exchange frequencies, molecular models
1258     with bond constraints versus models with flexible
1259     bonds, united-atom versus all-atom models, and
1260     presence versus absence of a thermostat. To help
1261     establish the range of applicability, the algorithm
1262     is tested on different models of benzene,
1263     cyclohexane, water, and n-hexane. We find that the
1264     algorithm is robust and that the calculated thermal
1265     conductivities are insensitive to variations in its
1266     control parameters. The force field, in contrast,
1267     has a major influence on the value of the thermal
1268     conductivity. While calculated and experimental
1269     thermal conductivities fall into the same order of
1270     magnitude, in most cases the calculated values are
1271     systematically larger. United-atom force fields seem
1272     to do better than all-atom force fields, possibly
1273     because they remove high-frequency degrees of
1274     freedom from the simulation, which, in nature, are
1275     quantum-mechanical oscillators in their ground state
1276     and do not contribute to heat conduction.},
1277     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1278     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1279     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1280     Date-Added = {2009-11-05 18:17:33 -0500},
1281     Date-Modified = {2009-11-05 18:17:33 -0500},
1282     Doc-Delivery-Number = {952YQ},
1283     Doi = {10.1021/jp0512255},
1284     Issn = {1520-6106},
1285     Journal = {J. Phys. Chem. B},
1286     Journal-Iso = {J. Phys. Chem. B},
1287     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1288     Language = {English},
1289     Month = {AUG 11},
1290     Number = {31},
1291     Number-Of-Cited-References = {42},
1292     Pages = {15060-15067},
1293     Publisher = {AMER CHEMICAL SOC},
1294     Subject-Category = {Chemistry, Physical},
1295     Times-Cited = {17},
1296     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1297     Type = {Article},
1298     Unique-Id = {ISI:000231042800044},
1299     Volume = {109},
1300     Year = {2005},
1301     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1302    
1303     @article{ISI:A1997YC32200056,
1304     Abstract = {Equilibrium molecular dynamics simulations have
1305     been carried out in the microcanonical ensemble at
1306     300 and 255 K on the extended simple point charge
1307     (SPC/E) model of water {[}Berendsen et al.,
1308     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1309     number of static and dynamic properties, thermal
1310     conductivity lambda has been calculated via
1311     Green-Kubo integration of the heat current time
1312     correlation functions (CF's) in the atomic and
1313     molecular formalism, at wave number k=0. The
1314     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1315     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1316     with the experimental data (0.61 W/mK at 300 K and
1317     0.49 W/mK at 255 K). A negative long-time tail of
1318     the heat current CF, more apparent at 255 K, is
1319     responsible for the anomalous decrease of lambda
1320     with temperature. An analysis of the dynamical modes
1321     contributing to lambda has shown that its value is
1322     due to two low-frequency exponential-like modes, a
1323     faster collisional mode, with positive contribution,
1324     and a slower one, which determines the negative
1325     long-time tail. A comparison of the molecular and
1326     atomic spectra of the heat current CF has suggested
1327     that higher-frequency modes should not contribute to
1328     lambda in this temperature range. Generalized
1329     thermal diffusivity D-T(k) decreases as a function
1330     of k, after an initial minor increase at k =
1331     k(min). The k dependence of the generalized
1332     thermodynamic properties has been calculated in the
1333     atomic and molecular formalisms. The observed
1334     differences have been traced back to intramolecular
1335     or intermolecular rotational effects and related to
1336     the partial structure functions. Finally, from the
1337     results we calculated it appears that the SPC/E
1338     model gives results in better agreement with
1339     experimental data than the transferable
1340     intermolecular potential with four points TIP4P
1341     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1342     926 (1983)], with a larger improvement for, e.g.,
1343     diffusion, viscosities, and dielectric properties
1344     and a smaller one for thermal conductivity. The
1345     SPC/E model shares, to a smaller extent, the
1346     insufficient slowing down of dynamics at low
1347     temperature already found for the TIP4P water
1348     model.},
1349     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1350     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1351     Author = {Bertolini, D and Tani, A},
1352     Date-Added = {2009-10-30 15:41:21 -0400},
1353     Date-Modified = {2009-10-30 15:41:21 -0400},
1354     Doc-Delivery-Number = {YC322},
1355     Issn = {1063-651X},
1356     Journal = {Phys. Rev. E},
1357     Journal-Iso = {Phys. Rev. E},
1358     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1359     Language = {English},
1360     Month = {OCT},
1361     Number = {4},
1362     Number-Of-Cited-References = {35},
1363     Pages = {4135-4151},
1364     Publisher = {AMERICAN PHYSICAL SOC},
1365     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1366     Times-Cited = {18},
1367     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1368     Type = {Article},
1369     Unique-Id = {ISI:A1997YC32200056},
1370     Volume = {56},
1371     Year = {1997}}
1372    
1373     @article{Meineke:2005gd,
1374     Abstract = {OOPSE is a new molecular dynamics simulation program
1375     that is capable of efficiently integrating equations
1376     of motion for atom types with orientational degrees
1377     of freedom (e.g. #sticky# atoms and point
1378     dipoles). Transition metals can also be simulated
1379     using the embedded atom method (EAM) potential
1380     included in the code. Parallel simulations are
1381     carried out using the force-based decomposition
1382     method. Simulations are specified using a very
1383     simple C-based meta-data language. A number of
1384     advanced integrators are included, and the basic
1385     integrator for orientational dynamics provides
1386     substantial improvements over older quaternion-based
1387     schemes.},
1388     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1389     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1390     Date-Added = {2009-10-01 18:43:03 -0400},
1391     Date-Modified = {2010-04-13 09:11:16 -0400},
1392     Doi = {DOI 10.1002/jcc.20161},
1393     Isi = {000226558200006},
1394     Isi-Recid = {142688207},
1395     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1396     Journal = {J. Comp. Chem.},
1397     Keywords = {OOPSE; molecular dynamics},
1398     Month = feb,
1399     Number = {3},
1400     Pages = {252-271},
1401     Publisher = {JOHN WILEY \& SONS INC},
1402     Times-Cited = {9},
1403     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1404     Volume = {26},
1405     Year = {2005},
1406     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1407     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1408    
1409     @article{ISI:000080382700030,
1410     Abstract = {A nonequilibrium method for calculating the shear
1411     viscosity is presented. It reverses the
1412     cause-and-effect picture customarily used in
1413     nonequilibrium molecular dynamics: the effect, the
1414     momentum flux or stress, is imposed, whereas the
1415     cause, the velocity gradient or shear rate, is
1416     obtained from the simulation. It differs from other
1417     Norton-ensemble methods by the way in which the
1418     steady-state momentum flux is maintained. This
1419     method involves a simple exchange of particle
1420     momenta, which is easy to implement. Moreover, it
1421     can be made to conserve the total energy as well as
1422     the total linear momentum, so no coupling to an
1423     external temperature bath is needed. The resulting
1424     raw data, the velocity profile, is a robust and
1425     rapidly converging property. The method is tested on
1426     the Lennard-Jones fluid near its triple point. It
1427     yields a viscosity of 3.2-3.3, in Lennard-Jones
1428     reduced units, in agreement with literature
1429     results. {[}S1063-651X(99)03105-0].},
1430     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1431     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1432     Author = {M\"{u}ller-Plathe, F},
1433     Date-Added = {2009-10-01 14:07:30 -0400},
1434     Date-Modified = {2009-10-01 14:07:30 -0400},
1435     Doc-Delivery-Number = {197TX},
1436     Issn = {1063-651X},
1437     Journal = {Phys. Rev. E},
1438     Journal-Iso = {Phys. Rev. E},
1439     Language = {English},
1440     Month = {MAY},
1441     Number = {5, Part A},
1442     Number-Of-Cited-References = {17},
1443     Pages = {4894-4898},
1444     Publisher = {AMERICAN PHYSICAL SOC},
1445     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1446     Times-Cited = {57},
1447     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1448     Type = {Article},
1449     Unique-Id = {ISI:000080382700030},
1450     Volume = {59},
1451     Year = {1999}}
1452    
1453     @article{Maginn:2007,
1454     Abstract = {Atomistic simulations are conducted to examine the
1455     dependence of the viscosity of
1456     1-ethyl-3-methylimidazolium
1457     bis(trifluoromethanesulfonyl)imide on temperature
1458     and water content. A nonequilibrium molecular
1459     dynamics procedure is utilized along with an
1460     established fixed charge force field. It is found
1461     that the simulations quantitatively capture the
1462     temperature dependence of the viscosity as well as
1463     the drop in viscosity that occurs with increasing
1464     water content. Using mixture viscosity models, we
1465     show that the relative drop in viscosity with water
1466     content is actually less than that that would be
1467     predicted for an ideal system. This finding is at
1468     odds with the popular notion that small amounts of
1469     water cause an unusually large drop in the viscosity
1470     of ionic liquids. The simulations suggest that, due
1471     to preferential association of water with anions and
1472     the formation of water clusters, the excess molar
1473     volume is negative. This means that dissolved water
1474     is actually less effective at lowering the viscosity
1475     of these mixtures when compared to a solute obeying
1476     ideal mixing behavior. The use of a nonequilibrium
1477     simulation technique enables diffusive behavior to
1478     be observed on the time scale of the simulations,
1479     and standard equilibrium molecular dynamics resulted
1480     in sub-diffusive behavior even over 2 ns of
1481     simulation time.},
1482     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1483     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1484     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1485     Author-Email = {ed@nd.edu},
1486     Date-Added = {2009-09-29 17:07:17 -0400},
1487     Date-Modified = {2010-04-14 12:51:02 -0400},
1488     Doc-Delivery-Number = {163VA},
1489     Doi = {10.1021/jp0686893},
1490     Issn = {1520-6106},
1491     Journal = {J. Phys. Chem. B},
1492     Journal-Iso = {J. Phys. Chem. B},
1493     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1494     Language = {English},
1495     Month = {MAY 10},
1496     Number = {18},
1497     Number-Of-Cited-References = {57},
1498     Pages = {4867-4876},
1499     Publisher = {AMER CHEMICAL SOC},
1500     Subject-Category = {Chemistry, Physical},
1501     Times-Cited = {35},
1502     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1503     Type = {Article},
1504     Unique-Id = {ISI:000246190100032},
1505     Volume = {111},
1506     Year = {2007},
1507     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1508     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1509    
1510     @article{MullerPlathe:1997xw,
1511     Abstract = {A nonequilibrium molecular dynamics method for
1512     calculating the thermal conductivity is
1513     presented. It reverses the usual cause and effect
1514     picture. The ''effect,'' the heat flux, is imposed
1515     on the system and the ''cause,'' the temperature
1516     gradient is obtained from the simulation. Besides
1517     being very simple to implement, the scheme offers
1518     several advantages such as compatibility with
1519     periodic boundary conditions, conservation of total
1520     energy and total linear momentum, and the sampling
1521     of a rapidly converging quantity (temperature
1522     gradient) rather than a slowly converging one (heat
1523     flux). The scheme is tested on the Lennard-Jones
1524     fluid. (C) 1997 American Institute of Physics.},
1525     Address = {WOODBURY},
1526     Author = {M\"{u}ller-Plathe, F.},
1527     Cited-Reference-Count = {13},
1528     Date = {APR 8},
1529     Date-Added = {2009-09-21 16:51:21 -0400},
1530     Date-Modified = {2009-09-21 16:51:21 -0400},
1531     Document-Type = {Article},
1532     Isi = {ISI:A1997WR62000032},
1533     Isi-Document-Delivery-Number = {WR620},
1534     Iso-Source-Abbreviation = {J. Chem. Phys.},
1535     Issn = {0021-9606},
1536     Journal = {J. Chem. Phys.},
1537     Language = {English},
1538     Month = {Apr},
1539     Number = {14},
1540     Page-Count = {4},
1541     Pages = {6082--6085},
1542     Publication-Type = {J},
1543     Publisher = {AMER INST PHYSICS},
1544     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1545     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1546     Source = {J CHEM PHYS},
1547     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1548     Times-Cited = {106},
1549     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1550     Volume = {106},
1551     Year = {1997}}
1552    
1553     @article{Muller-Plathe:1999ek,
1554     Abstract = {A novel non-equilibrium method for calculating
1555     transport coefficients is presented. It reverses the
1556     experimental cause-and-effect picture, e.g. for the
1557     calculation of viscosities: the effect, the momentum
1558     flux or stress, is imposed, whereas the cause, the
1559     velocity gradient or shear rates, is obtained from
1560     the simulation. It differs from other
1561     Norton-ensemble methods by the way, in which the
1562     steady-state fluxes are maintained. This method
1563     involves a simple exchange of particle momenta,
1564     which is easy to implement and to analyse. Moreover,
1565     it can be made to conserve the total energy as well
1566     as the total linear momentum, so no thermostatting
1567     is needed. The resulting raw data are robust and
1568     rapidly converging. The method is tested on the
1569     calculation of the shear viscosity, the thermal
1570     conductivity and the Soret coefficient (thermal
1571     diffusion) for the Lennard-Jones (LJ) fluid near its
1572     triple point. Possible applications to other
1573     transport coefficients and more complicated systems
1574     are discussed. (C) 1999 Elsevier Science Ltd. All
1575     rights reserved.},
1576     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1577     Author = {M\"{u}ller-Plathe, F and Reith, D},
1578     Date-Added = {2009-09-21 16:47:07 -0400},
1579     Date-Modified = {2009-09-21 16:47:07 -0400},
1580     Isi = {000082266500004},
1581     Isi-Recid = {111564960},
1582     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1583     Journal = {Computational and Theoretical Polymer Science},
1584     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1585     Number = {3-4},
1586     Pages = {203-209},
1587     Publisher = {ELSEVIER SCI LTD},
1588     Times-Cited = {15},
1589     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1590     Volume = {9},
1591     Year = {1999},
1592     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1593    
1594     @article{Viscardy:2007lq,
1595     Abstract = {The thermal conductivity is calculated with the
1596     Helfand-moment method in the Lennard-Jones fluid
1597     near the triple point. The Helfand moment of thermal
1598     conductivity is here derived for molecular dynamics
1599     with periodic boundary conditions. Thermal
1600     conductivity is given by a generalized Einstein
1601     relation with this Helfand moment. The authors
1602     compute thermal conductivity by this new method and
1603     compare it with their own values obtained by the
1604     standard Green-Kubo method. The agreement is
1605     excellent. (C) 2007 American Institute of Physics.},
1606     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1607     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1608     Date-Added = {2009-09-21 16:37:20 -0400},
1609     Date-Modified = {2010-07-19 16:18:44 -0400},
1610     Doi = {DOI 10.1063/1.2724821},
1611     Isi = {000246453900035},
1612     Isi-Recid = {156192451},
1613     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1614     Journal = {J. Chem. Phys.},
1615     Month = may,
1616     Number = {18},
1617     Pages = {184513},
1618     Publisher = {AMER INST PHYSICS},
1619     Times-Cited = {3},
1620     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1621     Volume = {126},
1622     Year = {2007},
1623     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1624     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1625    
1626     @article{Viscardy:2007bh,
1627     Abstract = {The authors propose a new method, the Helfand-moment
1628     method, to compute the shear viscosity by
1629     equilibrium molecular dynamics in periodic
1630     systems. In this method, the shear viscosity is
1631     written as an Einstein-type relation in terms of the
1632     variance of the so-called Helfand moment. This
1633     quantity is modified in order to satisfy systems
1634     with periodic boundary conditions usually considered
1635     in molecular dynamics. They calculate the shear
1636     viscosity in the Lennard-Jones fluid near the triple
1637     point thanks to this new technique. They show that
1638     the results of the Helfand-moment method are in
1639     excellent agreement with the results of the standard
1640     Green-Kubo method. (C) 2007 American Institute of
1641     Physics.},
1642     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1643     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1644     Date-Added = {2009-09-21 16:37:19 -0400},
1645     Date-Modified = {2010-07-19 16:19:03 -0400},
1646     Doi = {DOI 10.1063/1.2724820},
1647     Isi = {000246453900034},
1648     Isi-Recid = {156192449},
1649     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1650     Journal = {J. Chem. Phys.},
1651     Month = may,
1652     Number = {18},
1653     Pages = {184512},
1654     Publisher = {AMER INST PHYSICS},
1655     Times-Cited = {1},
1656     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1657     Volume = {126},
1658     Year = {2007},
1659     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1660     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1661    
1662     @inproceedings{384119,
1663     Address = {New York, NY, USA},
1664     Author = {Fortune, Steven},
1665     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1666     Doi = {http://doi.acm.org/10.1145/384101.384119},
1667     Isbn = {1-58113-417-7},
1668     Location = {London, Ontario, Canada},
1669     Pages = {121--128},
1670     Publisher = {ACM},
1671     Title = {Polynomial root finding using iterated Eigenvalue computation},
1672     Year = {2001},
1673     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1674    
1675     @article{Fennell06,
1676 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1677     Date-Added = {2006-08-24 09:49:57 -0400},
1678     Date-Modified = {2006-08-24 09:49:57 -0400},
1679     Doi = {10.1063/1.2206581},
1680     Journal = {J. Chem. Phys.},
1681     Number = {23},
1682     Pages = {234104(12)},
1683     Rating = {5},
1684     Read = {Yes},
1685     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1686     Volume = {124},
1687     Year = {2006},
1688     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1689 skuang 3719
1690 skuang 3721 @book{Sommese2005,
1691     Address = {Singapore},
1692     Author = {Andrew J. Sommese and Charles W. Wampler},
1693     Publisher = {World Scientific Press},
1694     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1695     Year = 2005}