ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/interfacial/interfacial.bib
Revision: 3724
Committed: Thu Apr 28 15:24:22 2011 UTC (14 years, 4 months ago) by skuang
File size: 95574 byte(s)
Log Message:
add more citations

File Contents

# User Rev Content
1 skuang 3719 %% This BibTeX bibliography file was created using BibDesk.
2     %% http://bibdesk.sourceforge.net/
3    
4    
5 skuang 3724 %% Created for Shenyu Kuang at 2011-04-28 11:23:43 -0400
6 skuang 3719
7    
8     %% Saved with string encoding Unicode (UTF-8)
9    
10    
11    
12 skuang 3724 @article{doi:10.1021/jp034405s,
13     Abstract = { We use the universal force field (UFF) developed by Rapp{\'e} et al. (Rapp{\'e}, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024) and the specific classical potentials developed from ab initio calculations for Au−benzenedithiol (BDT) molecule interaction to perform molecular dynamics (MD) simulations of a BDT monolayer on an extended Au(111) surface. The simulation system consists of 100 BDT molecules and three rigid Au layers in a simulation box that is rhombic in the plane of the Au surface. A multiple time scale algorithm, the double-reversible reference system propagator algorithm (double RESPA) based on the Nos{\'e}−Hoover dynamics scheme, and the Ewald summation with a boundary correction term for the treatment of long-range electrostatic interactions in a 2-D slab have been incorporated into the simulation technique. We investigate the local bonding properties of Au−BDT contacts and molecular orientation distributions of BDT molecules. These results show that whereas different basis sets from ab initio calculations may generate different local bonding geometric parameters (the bond length, etc.) the packing structures of BDT molecules maintain approximately the same well-ordered herringbone structure with small peak differences in the probability distributions of global geometric parameters. The methodology developed here opens an avenue for classical simulations of a metal−molecule−metal complex in molecular electronics devices. },
14     Author = {Leng and Keffer, David J. and Cummings, Peter T.},
15     Date-Added = {2011-04-28 11:23:28 -0400},
16     Date-Modified = {2011-04-28 11:23:28 -0400},
17     Doi = {10.1021/jp034405s},
18     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp034405s},
19     Journal = {The Journal of Physical Chemistry B},
20     Number = {43},
21     Pages = {11940-11950},
22     Title = {Structure and Dynamics of a Benzenedithiol Monolayer on a Au(111) Surface},
23     Url = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
24     Volume = {107},
25     Year = {2003},
26     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp034405s},
27     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp034405s}}
28    
29 skuang 3721 @article{OPLSAA,
30     Abstract = {null},
31     Annote = {doi: 10.1021/ja9621760},
32     Author = {Jorgensen, William L. and Maxwell, David S. and Tirado-Rives, Julian},
33     Date = {1996/01/01},
34     Date-Added = {2011-02-04 18:54:58 -0500},
35     Date-Modified = {2011-02-04 18:54:58 -0500},
36     Do = {10.1021/ja9621760},
37     Isbn = {0002-7863},
38     Journal = {Journal of the American Chemical Society},
39     M3 = {doi: 10.1021/ja9621760},
40     Month = {01},
41     Number = {45},
42     Pages = {11225--11236},
43     Publisher = {American Chemical Society},
44     Title = {Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids},
45     Ty = {JOUR},
46     Url = {http://dx.doi.org/10.1021/ja9621760},
47     Volume = {118},
48     Year = {1996},
49     Year1 = {1996/01/01},
50     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja9621760}}
51    
52     @article{TraPPE-UA.alkylbenzenes,
53     Author = {Wick, Collin D. and Martin, Marcus G. and Siepmann, J. Ilja},
54     Date-Added = {2011-02-04 18:31:46 -0500},
55     Date-Modified = {2011-02-04 18:32:22 -0500},
56     Doi = {10.1021/jp001044x},
57     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp001044x},
58     Journal = {The Journal of Physical Chemistry B},
59     Number = {33},
60     Pages = {8008-8016},
61     Title = {Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes},
62     Url = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
63     Volume = {104},
64     Year = {2000},
65     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp001044x},
66     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp001044x}}
67    
68     @article{TraPPE-UA.alkanes,
69     Author = {Martin, Marcus G. and Siepmann, J. Ilja},
70     Date-Added = {2011-02-04 18:01:31 -0500},
71     Date-Modified = {2011-02-04 18:02:19 -0500},
72     Doi = {10.1021/jp972543+},
73     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp972543%2B},
74     Journal = {The Journal of Physical Chemistry B},
75     Number = {14},
76     Pages = {2569-2577},
77     Title = {Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes},
78     Url = {http://pubs.acs.org/doi/abs/10.1021/jp972543%2B},
79     Volume = {102},
80     Year = {1998},
81     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp972543+},
82     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp972543+}}
83    
84     @article{TraPPE-UA.thiols,
85     Author = {Lubna, Nusrat and Kamath, Ganesh and Potoff, Jeffrey J. and Rai, Neeraj and Siepmann, J. Ilja},
86     Date-Added = {2011-02-04 17:51:03 -0500},
87     Date-Modified = {2011-02-04 17:54:20 -0500},
88     Doi = {10.1021/jp0549125},
89     Eprint = {http://pubs.acs.org/doi/pdf/10.1021/jp0549125},
90     Journal = {The Journal of Physical Chemistry B},
91     Number = {50},
92     Pages = {24100-24107},
93     Title = {Transferable Potentials for Phase Equilibria. 8. United-Atom Description for Thiols, Sulfides, Disulfides, and Thiophene},
94     Url = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
95     Volume = {109},
96     Year = {2005},
97     Bdsk-Url-1 = {http://pubs.acs.org/doi/abs/10.1021/jp0549125},
98     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0549125}}
99    
100     @article{vlugt:cpc2007154,
101     Author = {Philipp Schapotschnikow and Ren{\'e} Pool and Thijs J.H. Vlugt},
102     Date-Added = {2011-02-01 16:00:11 -0500},
103     Date-Modified = {2011-02-04 18:21:59 -0500},
104     Doi = {DOI: 10.1016/j.cpc.2007.02.028},
105     Issn = {0010-4655},
106     Journal = {Computer Physics Communications},
107     Keywords = {Gold nanocrystals},
108     Note = {Proceedings of the Conference on Computational Physics 2006 - CCP 2006, Conference on Computational Physics 2006},
109     Number = {1-2},
110     Pages = {154 - 157},
111     Title = {Selective adsorption of alkyl thiols on gold in different geometries},
112     Url = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
113     Volume = {177},
114     Year = {2007},
115     Bdsk-Url-1 = {http://www.sciencedirect.com/science/article/B6TJ5-4N3WYP0-1/2/66dbe8892f456c230b9b8fcd9c23f456},
116     Bdsk-Url-2 = {http://dx.doi.org/10.1016/j.cpc.2007.02.028}}
117    
118     @article{packmol,
119     Author = {L. Mart\'{\i}nez and R. Andrade and Ernesto G. Birgin and Jos{\'e} Mario Mart\'{\i}nez},
120     Bibsource = {DBLP, http://dblp.uni-trier.de},
121     Date-Added = {2011-02-01 15:13:02 -0500},
122     Date-Modified = {2011-02-01 15:14:25 -0500},
123     Ee = {http://dx.doi.org/10.1002/jcc.21224},
124     Journal = {Journal of Computational Chemistry},
125     Number = {13},
126     Pages = {2157-2164},
127     Title = {PACKMOL: A package for building initial configurations for molecular dynamics simulations},
128     Volume = {30},
129     Year = {2009}}
130    
131     @article{kuang:164101,
132     Author = {Shenyu Kuang and J. Daniel Gezelter},
133     Date-Added = {2011-01-31 17:12:35 -0500},
134     Date-Modified = {2011-01-31 17:12:35 -0500},
135     Doi = {10.1063/1.3499947},
136     Eid = {164101},
137     Journal = {The Journal of Chemical Physics},
138     Keywords = {linear momentum; molecular dynamics method; thermal conductivity; total energy; viscosity},
139     Number = {16},
140     Numpages = {9},
141     Pages = {164101},
142     Publisher = {AIP},
143     Title = {A gentler approach to RNEMD: Nonisotropic velocity scaling for computing thermal conductivity and shear viscosity},
144     Url = {http://link.aip.org/link/?JCP/133/164101/1},
145     Volume = {133},
146     Year = {2010},
147     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/133/164101/1},
148     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.3499947}}
149    
150 skuang 3719 @article{muller:014102,
151     Author = {Thomas J. Muller and Michael Al-Samman and Florian Muller-Plathe},
152     Date-Added = {2010-09-16 19:19:25 -0400},
153     Date-Modified = {2010-09-16 19:19:25 -0400},
154     Doi = {10.1063/1.2943312},
155     Eid = {014102},
156     Journal = {The Journal of Chemical Physics},
157     Keywords = {intramolecular mechanics; Lennard-Jones potential; molecular dynamics method; thermostats; viscosity},
158     Number = {1},
159     Numpages = {8},
160     Pages = {014102},
161     Publisher = {AIP},
162     Title = {The influence of thermostats and manostats on reverse nonequilibrium molecular dynamics calculations of fluid viscosities},
163     Url = {http://link.aip.org/link/?JCP/129/014102/1},
164     Volume = {129},
165     Year = {2008},
166     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/129/014102/1},
167     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2943312}}
168    
169     @article{wolf:8254,
170     Author = {D. Wolf and P. Keblinski and S. R. Phillpot and J. Eggebrecht},
171     Date-Added = {2010-09-16 19:01:51 -0400},
172     Date-Modified = {2010-09-16 19:01:51 -0400},
173     Doi = {10.1063/1.478738},
174     Journal = {J. Chem. Phys.},
175     Keywords = {POTENTIAL ENERGY; COULOMB FIELD; COULOMB ENERGY; LATTICE PARAMETERS; potential energy functions; lattice dynamics; lattice energy},
176     Number = {17},
177     Pages = {8254-8282},
178     Publisher = {AIP},
179     Title = {Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup -1] summation},
180     Url = {http://link.aip.org/link/?JCP/110/8254/1},
181     Volume = {110},
182     Year = {1999},
183     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/110/8254/1},
184     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.478738}}
185    
186     @article{HeX:1993,
187     Abstract = {A recently developed non-equilibrium molecular dynamics algorithm for
188     heat conduction is used to compute the thermal conductivity, thermal
189     diffusion factor, and heat of transfer in binary Lennard-Jones
190     mixtures. An internal energy flux is established with local source and
191     sink terms for kinetic energy.
192     Simulations of isotope mixtures covering a range of densities and mass
193     ratios show that the lighter component prefers the hot side of the
194     system at stationary state. This implies a positive thermal diffusion
195     factor in the definition we have adopted here. The molecular basis for
196     the Soret effect is studied by analysing the energy flux through the
197     system. In all cases we found that there is a difference in the
198     relative contributions when we compare the hot and cold sides of the
199     system. The contribution from the lighter component is predominantly
200     flux of kinetic energy, and this contribution increases from the cold
201     to the hot side. The contribution from the heavier component is
202     predominantly energy transfer through molecular interactions, and it
203     increases from the hot to the cold side. This explains why the thermal
204     diffusion factor is positive; heal is conducted more effectively
205     through the system if the lighter component is enriched at the hot
206     side. Even for very large heat fluxes, we find a linear or almost
207     linear temperature profile through the system, and a constant thermal
208     conductivity. The entropy production per unit volume and unit time
209     increases from the hot to the cold side.},
210     Author = {Hafskjold, B and Ikeshoji, T and Ratkje, SK},
211     Date-Added = {2010-09-15 16:52:45 -0400},
212     Date-Modified = {2010-09-15 16:54:23 -0400},
213     Issn = {{0026-8976}},
214     Journal = {Mol. Phys.},
215     Month = {DEC},
216     Number = {6},
217     Pages = {1389-1412},
218     Title = {ON THE MOLECULAR MECHANISM OF THERMAL-DIFFUSION IN LIQUIDS},
219     Unique-Id = {ISI:A1993MQ34500009},
220     Volume = {80},
221 skuang 3721 Year = {1993}}
222 skuang 3719
223     @article{HeX:1994,
224     Abstract = {This paper presents a new algorithm for non-equilibrium molecular
225     dynamics, where a temperature gradient is established in a system with
226     periodic boundary conditions. At each time step in the simulation, a
227     fixed amount of energy is supplied to a hot region by scaling the
228     velocity of each particle in it, subject to conservation of total
229     momentum. An equal amount of energy is likewise withdrawn from a cold
230     region at each time step. Between the hot and cold regions is a region
231     through which an energy flux is established. Two configurations of hot
232     and cold regions are proposed. Using a stacked layer structure, the
233     instantaneous local energy flux for a 128-particle Lennard-Jones system
234     in liquid was found to be in good agreement with the macroscopic theory
235     of heat conduction at stationary state, except in and near the hot and
236     cold regions. Thermal conductivity calculated for the 128-particle
237     system was about 10\% smaller than the literature value obtained by
238     molecular dynamics calculations. One run with a 1024-particle system
239     showed an agreement with the literature value within statistical error
240     (1-2\%). Using a unit cell with a cold spherical region at the centre
241     and a hot region in the perimeter of the cube, an initial gaseous state
242     of argon was separated into gas and liquid phases. Energy fluxes due to
243     intermolecular energy transfer and transport of kinetic energy dominate
244     in the liquid and gas phases, respectively.},
245     Author = {Ikeshoji, T and Hafskjold, B},
246     Date-Added = {2010-09-15 16:52:45 -0400},
247     Date-Modified = {2010-09-15 16:54:37 -0400},
248     Issn = {0026-8976},
249     Journal = {Mol. Phys.},
250     Month = {FEB},
251     Number = {2},
252     Pages = {251-261},
253     Title = {NONEQUILIBRIUM MOLECULAR-DYNAMICS CALCULATION OF HEAT-CONDUCTION IN LIQUID AND THROUGH LIQUID-GAS INTERFACE},
254     Unique-Id = {ISI:A1994MY17400001},
255     Volume = {81},
256 skuang 3721 Year = {1994}}
257 skuang 3719
258     @article{plech:195423,
259     Author = {A. Plech and V. Kotaidis and S. Gresillon and C. Dahmen and G. von Plessen},
260     Date-Added = {2010-08-12 11:34:55 -0400},
261     Date-Modified = {2010-08-12 11:34:55 -0400},
262     Eid = {195423},
263     Journal = {Phys. Rev. B},
264     Keywords = {gold; laser materials processing; melting; nanoparticles; time resolved spectra; X-ray scattering; lattice dynamics; high-speed optical techniques; cooling; thermal resistance; thermal conductivity; long-range order},
265     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_70_195423.pdf},
266     Number = {19},
267     Numpages = {7},
268     Pages = {195423},
269     Publisher = {APS},
270     Title = {Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering},
271     Url = {http://link.aps.org/abstract/PRB/v70/e195423},
272     Volume = {70},
273     Year = {2004},
274     Bdsk-Url-1 = {http://link.aps.org/abstract/PRB/v70/e195423}}
275    
276     @article{Wilson:2002uq,
277     Abstract = {We investigate suspensions of 3-10 nm diameter Au, Pt, and AuPd nanoparticles as probes of thermal transport in fluids and determine approximate values for the thermal conductance G of the particle/fluid interfaces. Subpicosecond lambda=770 nm optical pulses from a Ti:sapphire mode-locked laser are used to heat the particles and interrogate the decay of their temperature through time-resolved changes in optical absorption. The thermal decay of alkanethiol-terminated Au nanoparticles in toluene is partially obscured by other effects; we set a lower limit G>20 MW m(-2)K(-1). The thermal decay of citrate-stabilized Pt nanoparticles in water gives Gapproximate to130 MW m(-2) K-1. AuPd alloy nanoparticles in toluene and stabilized by alkanethiol termination give Gapproximate to5 MW m(-2) K-1. The measured G are within a factor of 2 of theoretical estimates based on the diffuse-mismatch model.},
278     Author = {Wilson, OM and Hu, XY and Cahill, DG and Braun, PV},
279     Date-Added = {2010-08-12 11:31:02 -0400},
280     Date-Modified = {2010-08-12 11:31:02 -0400},
281     Doi = {ARTN 224301},
282     Journal = {Phys. Rev. B},
283     Local-Url = {file://localhost/Users/charles/Documents/Papers/e2243010.pdf},
284     Title = {Colloidal metal particles as probes of nanoscale thermal transport in fluids},
285     Volume = {66},
286     Year = {2002},
287     Bdsk-Url-1 = {http://dx.doi.org/224301}}
288    
289     @article{RevModPhys.61.605,
290     Author = {Swartz, E. T. and Pohl, R. O.},
291     Date-Added = {2010-08-06 17:03:01 -0400},
292     Date-Modified = {2010-08-06 17:03:01 -0400},
293     Doi = {10.1103/RevModPhys.61.605},
294     Journal = {Rev. Mod. Phys.},
295     Month = {Jul},
296     Number = {3},
297     Numpages = {63},
298     Pages = {605--668},
299     Publisher = {American Physical Society},
300     Title = {Thermal boundary resistance},
301     Volume = {61},
302     Year = {1989},
303     Bdsk-Url-1 = {http://dx.doi.org/10.1103/RevModPhys.61.605}}
304    
305     @article{cahill:793,
306     Author = {David G. Cahill and Wayne K. Ford and Kenneth E. Goodson and Gerald D. Mahan and Arun Majumdar and Humphrey J. Maris and Roberto Merlin and Simon R. Phillpot},
307     Date-Added = {2010-08-06 17:02:22 -0400},
308     Date-Modified = {2010-08-06 17:02:22 -0400},
309     Doi = {10.1063/1.1524305},
310     Journal = {J. Applied Phys.},
311     Keywords = {nanostructured materials; reviews; thermal conductivity; interface phenomena; molecular dynamics method; thermal management (packaging); Boltzmann equation; carbon nanotubes; porosity; semiconductor superlattices; thermoreflectance; interface phonons; thermoelectricity; phonon-phonon interactions},
312     Number = {2},
313     Pages = {793-818},
314     Publisher = {AIP},
315     Title = {Nanoscale thermal transport},
316     Url = {http://link.aip.org/link/?JAP/93/793/1},
317     Volume = {93},
318     Year = {2003},
319     Bdsk-Url-1 = {http://link.aip.org/link/?JAP/93/793/1},
320     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1524305}}
321    
322     @inbook{Hoffman:2001sf,
323     Address = {New York},
324     Annote = {LDR 01107cam 2200253 a 4500
325     001 12358442
326     005 20070910074423.0
327     008 010326s2001 nyua b 001 0 eng
328     906 $a7$bcbc$corignew$d1$eocip$f20$gy-gencatlg
329     925 0 $aacquire$b2 shelf copies$xpolicy default
330     955 $ato ASCD pc23 03-26-01; jp20 03-27-01 to subj; jp99 to SL 03-27-01; jp85 to Dewey 03-27-01; aa01 03-28-01$aps02 2001-10-04 bk rec'd, to CIP ver.;$fpv04 2001-10-31 CIP ver to BCCD$ajp01 2001-12-06 c. 2 to BCCD
331     010 $a 2001028633
332     020 $a0824704436 (acid-free paper)
333     040 $aDLC$cDLC$dDLC
334     050 00 $aQA297$b.H588 2001
335     082 00 $a519.4$221
336     100 1 $aHoffman, Joe D.,$d1934-
337     245 10 $aNumerical methods for engineers and scientists /$cJoe D. Hoffman.
338     250 $a2nd ed., rev. and expanded.
339     260 $aNew York :$bMarcel Dekker,$cc2001.
340     300 $axi, 823 p. :$bill. ;$c26 cm.
341     504 $aIncludes bibliographical references (p. 775-777) and index.
342     650 0 $aNumerical analysis.
343     856 42 $3Publisher description$uhttp://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html
344     },
345     Author = {Hoffman, Joe D.},
346     Call-Number = {QA297},
347     Date-Added = {2010-07-15 16:32:02 -0400},
348     Date-Modified = {2010-07-19 16:49:37 -0400},
349     Dewey-Call-Number = {519.4},
350     Edition = {2nd ed., rev. and expanded},
351     Genre = {Numerical analysis},
352     Isbn = {0824704436 (acid-free paper)},
353     Library-Id = {2001028633},
354     Pages = {157},
355     Publisher = {Marcel Dekker},
356     Title = {Numerical methods for engineers and scientists},
357     Url = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html},
358     Year = {2001},
359     Bdsk-Url-1 = {http://www.loc.gov/catdir/enhancements/fy0743/2001028633-d.html}}
360    
361     @article{Vardeman:2008fk,
362     Abstract = {Using molecular dynamics simulations, we have simulated the rapid cooling experienced by bimetallic nanoparticles following laser excitation at the plasmon resonance and find evidence that glassy beads, specifically Ag-Cu bimetallic particles at the eutectic composition (60\% Ag, 40\% Cu), can be formed during these experiments. The bimetallic nanoparticles are embedded in an implicit solvent with a viscosity tuned to yield cooling curves that match the experimental cooling behavior as closely as possible. Because the nanoparticles have a large surface-to-volume ratio, experimentally realistic cooling rates are accessible via relatively short simulations. The presence of glassy structural features was verified using bond orientational order parameters that are sensitive to the formation of local icosahedral ordering in condensed phases. As the particles cool from the liquid droplet state into glassy beads, a silver-rich monolayer develops on the outer surface and local icosahedra can develop around the silver atoms in this monolayer. However, we observe a strong preference for the local icosahedral ordering around the copper atoms in the particles. As the particles cool, these local icosahedral structures grow to include a larger fraction of the atoms in the nanoparticle, eventually leading to a glassy nanosphere.},
363     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
364     Author = {{Vardeman II}, Charles F. and Gezelter, J. Daniel},
365     Date-Added = {2010-07-13 11:48:22 -0400},
366     Date-Modified = {2010-07-19 16:20:01 -0400},
367     Doi = {DOI 10.1021/jp710063g},
368     Isi = {000253512400021},
369     Isi-Recid = {160903603},
370     Isi-Ref-Recids = {144152922 81445483 98913099 146167982 55512304 50985260 52031423 29272311 151055545 134895634 130292830 101988637 100757730 98524559 123952006 6025131 59492217 2078548 135495737 136941603 90709964 160903604 130558416 113800688 30137926 117888234 63632785 38926953 158293976 135246439 125693419 125789026 155583142 156430464 65888620 130160487 97576420 109490154 150229560 116057234 134425927 142869781 121706070 89390336 119150946 143383743 64066027 171282998 142688207 51429664 84591083 127696312 58160909 155366996 155654757 137551818 128633299 109033408 120457571 171282999 124947095 126857514 49630702 64115284 84689627 71842426 96309965 79034659 92658330 146168029 119238036 144824430 132319357 160903607 171283000 100274448},
371     Journal = {J. Phys. Chem. C},
372     Month = mar,
373     Number = {9},
374     Pages = {3283-3293},
375     Publisher = {AMER CHEMICAL SOC},
376     Times-Cited = {0},
377     Title = {Simulations of laser-induced glass formation in Ag-Cu nanoparticles},
378     Volume = {112},
379     Year = {2008},
380     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000253512400021}}
381    
382     @article{PhysRevB.59.3527,
383     Author = {Qi, Yue and \c{C}a\v{g}in, Tahir and Kimura, Yoshitaka and {Goddard III}, William A.},
384     Date-Added = {2010-07-13 11:44:08 -0400},
385     Date-Modified = {2010-07-13 11:44:08 -0400},
386     Doi = {10.1103/PhysRevB.59.3527},
387     Journal = {Phys. Rev. B},
388     Local-Url = {file://localhost/Users/charles/Documents/Papers/Qi/1999.pdf},
389     Month = {Feb},
390     Number = {5},
391     Numpages = {6},
392     Pages = {3527-3533},
393     Publisher = {American Physical Society},
394     Title = {Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals:\quad{}{C}u-{A}g and {C}u-{N}i},
395     Volume = {59},
396     Year = {1999},
397     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.59.3527}}
398    
399     @article{Medasani:2007uq,
400     Abstract = {We employ first-principles and empirical computational methods to study the surface energy and surface stress of silver nanoparticles. The structures, cohesive energies, and lattice contractions of spherical Ag nanoclusters in the size range 0.5-5.5 nm are analyzed using two different theoretical approaches: an ab initio density functional pseudopotential technique combined with the generalized gradient approximation and the embedded atom method. The surface energies and stresses obtained via the embedded atom method are found to be in good agreement with those predicted by the gradient-corrected ab initio density functional formalism. We estimate the surface energy of Ag nanoclusters to be in the range of 1.0-2.2 J/m(2). Our values are close to the bulk surface energy of silver, but are significantly lower than the recently reported value of 7.2 J/m(2) for free Ag nanoparticles derived from the Kelvin equation.},
401     Author = {Medasani, Bharat and Park, Young Ho and Vasiliev, Igor},
402     Date-Added = {2010-07-13 11:43:15 -0400},
403     Date-Modified = {2010-07-13 11:43:15 -0400},
404     Doi = {ARTN 235436},
405     Journal = {Phys. Rev. B},
406     Local-Url = {file://localhost/Users/charles/Documents/Papers/PhysRevB_75_235436.pdf},
407     Title = {Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles},
408     Volume = {75},
409     Year = {2007},
410     Bdsk-Url-1 = {http://dx.doi.org/235436}}
411    
412     @article{Wang:2005qy,
413     Abstract = {The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 atom \%. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5-14 atom \% higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertexes of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.},
414     Author = {Wang, GF and Van Hove, MA and Ross, PN and Baskes, MI},
415     Date-Added = {2010-07-13 11:42:50 -0400},
416     Date-Modified = {2010-07-13 11:42:50 -0400},
417     Doi = {DOI 10.1021/jp050116n},
418     Journal = {J. Phys. Chem. B},
419     Pages = {11683-11692},
420     Title = {Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations},
421     Volume = {109},
422     Year = {2005},
423     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp050116n}}
424    
425     @article{Chui:2003fk,
426     Abstract = {Molecular dynamics simulations of a platinum nanocluster consisting 250 atoms were performed at different temperatures between 70 K and 298 K. The semi-empirical, many-body Sutton-Chen (SC) potential was used to model the interatomic interaction in the metallic system. Regions of core or bulk-like atoms and surface atoms can be defined from analyses of structures, atomic coordination, and the local density function of atoms as defined in the SC potential. The core atoms in the nanoparticle behave as bulk-like metal atoms with a predominant face centered cubic (fcc) packing. The interface between surface atoms and core atoms is marked by a peak in the local density function and corresponds to near surface atoms. The near surface atoms and surface atoms prefer a hexagonal closed packing (hcp). The temperature and size effects on structures of the nanoparticle and the dynamics of the surface region and the core region are discussed.},
427     Author = {Chui, YH and Chan, KY},
428     Date-Added = {2010-07-13 11:42:32 -0400},
429     Date-Modified = {2010-07-13 11:42:32 -0400},
430     Doi = {DOI 10.1039/b302122j},
431     Journal = {Phys. Chem. Chem. Phys.},
432     Pages = {2869-2874},
433     Title = {Analyses of surface and core atoms in a platinum nanoparticle},
434     Volume = {5},
435     Year = {2003},
436     Bdsk-Url-1 = {http://dx.doi.org/10.1039/b302122j}}
437    
438     @article{Sankaranarayanan:2005lr,
439     Abstract = {Bimetallic nanoclusters are of interest because of their utility in catalysis and sensors, The thermal characteristics of bimetallic Pt-Pd nanoclusters of different sizes and compositions were investigated through molecular dynamics simulations using quantum Sutton-Chen (QSC) many-body potentials, Monte Carlo simulations employing the bond order simulation model were used to generate minimum energy configurations, which were utilized as the starting point for molecular dynamics simulations. The calculated initial configurations of the Pt-Pd system consisted of surface segregated Pd atoms and a Pt-rich core, Melting characteristics were studied by following the changes in potential energy and heat capacity as functions of temperature, Structural changes accompanying the thermal evolution were studied by the bond order parameter method. The Pt-Pd clusters exhibited a two-stage melting: surface melting of the external Pd atoms followed by homogeneous melting of the Pt core. These transitions were found to depend on the composition and size of the nanocluster. Melting temperatures of the nanoclusters were found to be much lower than those of bulk Pt and Pd. Bulk melting temperatures of Pd and Pt simulated using periodic boundary conditions compare well with experimental values, thus providing justification for the use of QSC potentials in these simulations. Deformation parameters were calculated to characterize the structural evolution resulting from diffusion of Pd and Pt atoms, The results indicate that in Pd-Pt clusters, Pd atoms prefer to remain at the surface even after melting. In addition, Pt also tends to diffuse to the surface after melting due to reduction of its surface energy with temperature. This mixing pattern is different from those reported in some of the earlier Studies on melting of bimetallics.},
440     Author = {Sankaranarayanan, SKRS and Bhethanabotla, VR and Joseph, B},
441     Date-Added = {2010-07-13 11:42:13 -0400},
442     Date-Modified = {2010-07-13 11:42:13 -0400},
443     Doi = {ARTN 195415},
444     Journal = {Phys. Rev. B},
445     Title = {Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters},
446     Volume = {71},
447     Year = {2005},
448     Bdsk-Url-1 = {http://dx.doi.org/195415}}
449    
450     @article{Vardeman-II:2001jn,
451     Author = {C.~F. {Vardeman II} and J.~D. Gezelter},
452     Date-Added = {2010-07-13 11:41:50 -0400},
453     Date-Modified = {2010-07-13 11:41:50 -0400},
454     Journal = {J. Phys. Chem. A},
455     Local-Url = {file://localhost/Users/charles/Documents/Papers/Vardeman%20II/2001.pdf},
456     Number = {12},
457     Pages = {2568},
458     Title = {Comparing models for diffusion in supercooled liquids: The eutectic composition of the {A}g-{C}u alloy},
459     Volume = {105},
460     Year = {2001}}
461    
462     @article{ShibataT._ja026764r,
463     Author = {Shibata, T. and Bunker, B.A. and Zhang, Z. and Meisel, D. and Vardeman, C.F. and Gezelter, J.D.},
464     Date-Added = {2010-07-13 11:41:36 -0400},
465     Date-Modified = {2010-07-13 11:41:36 -0400},
466     Journal = {J. Amer. Chem. Soc.},
467     Local-Url = {file://localhost/Users/charles/Documents/Papers/ja026764r.pdf},
468     Number = {40},
469     Pages = {11989-11996},
470     Title = {Size-Dependent Spontaneous Alloying of {A}u-{A}g Nanoparticles},
471     Url = {http://dx.doi.org/10.1021/ja026764r},
472     Volume = {124},
473     Year = {2002},
474     Bdsk-Url-1 = {http://dx.doi.org/10.1021/ja026764r}}
475    
476     @article{Chen90,
477     Author = {A.~P. Sutton and J. Chen},
478     Date-Added = {2010-07-13 11:40:48 -0400},
479     Date-Modified = {2010-07-13 11:40:48 -0400},
480     Journal = {Phil. Mag. Lett.},
481     Pages = {139-146},
482     Title = {Long-Range Finnis Sinclair Potentials},
483     Volume = 61,
484     Year = {1990}}
485    
486     @article{PhysRevB.33.7983,
487     Author = {Foiles, S. M. and Baskes, M. I. and Daw, M. S.},
488     Date-Added = {2010-07-13 11:40:28 -0400},
489     Date-Modified = {2010-07-13 11:40:28 -0400},
490     Doi = {10.1103/PhysRevB.33.7983},
491     Journal = {Phys. Rev. B},
492     Local-Url = {file://localhost/Users/charles/Documents/Papers/p7983_1.pdf},
493     Month = {Jun},
494     Number = {12},
495     Numpages = {8},
496     Pages = {7983-7991},
497     Publisher = {American Physical Society},
498     Title = {Embedded-atom-method functions for the fcc metals {C}u, {A}g, {A}u, {N}i, {P}d, {P}t, and their alloys},
499     Volume = {33},
500     Year = {1986},
501     Bdsk-Url-1 = {http://dx.doi.org/10.1103/PhysRevB.33.7983}}
502    
503     @article{hoover85,
504     Author = {W.~G. Hoover},
505     Date-Added = {2010-07-13 11:24:30 -0400},
506     Date-Modified = {2010-07-13 11:24:30 -0400},
507     Journal = pra,
508     Pages = 1695,
509     Title = {Canonical dynamics: Equilibrium phase-space distributions},
510     Volume = 31,
511     Year = 1985}
512    
513     @article{melchionna93,
514     Author = {S. Melchionna and G. Ciccotti and B.~L. Holian},
515     Date-Added = {2010-07-13 11:22:17 -0400},
516     Date-Modified = {2010-07-13 11:22:17 -0400},
517     Journal = {Mol. Phys.},
518     Pages = {533-544},
519     Title = {Hoover {\sc npt} dynamics for systems varying in shape and size},
520     Volume = 78,
521     Year = 1993}
522    
523     @misc{openmd,
524     Author = {J. Daniel Gezelter and Shenyu Kuang and James Marr and Kelsey Stocker and Chunlei Li and Charles F. Vardeman and Teng Lin and Christopher J. Fennell and Xiuquan Sun and Kyle Daily and Yang Zheng and Matthew A. Meineke},
525     Date-Added = {2010-07-13 11:16:00 -0400},
526     Date-Modified = {2010-07-19 16:27:45 -0400},
527     Howpublished = {Available at {\tt http://openmd.net}},
528     Title = {{OpenMD, an open source engine for molecular dynamics}}}
529    
530     @inbook{AshcroftMermin,
531 skuang 3721 Address = {Belmont, CA},
532 skuang 3719 Author = {Neil W. Ashcroft and N.~David Mermin},
533     Date-Added = {2010-07-12 14:26:49 -0400},
534     Date-Modified = {2010-07-22 13:37:20 -0400},
535     Pages = {21},
536     Publisher = {Brooks Cole},
537     Title = {Solid State Physics},
538 skuang 3721 Year = {1976}}
539 skuang 3719
540     @book{WagnerKruse,
541     Address = {Berlin},
542     Author = {W. Wagner and A. Kruse},
543     Date-Added = {2010-07-12 14:10:29 -0400},
544     Date-Modified = {2010-07-12 14:13:44 -0400},
545     Publisher = {Springer-Verlag},
546     Title = {Properties of Water and Steam, the Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties},
547 skuang 3721 Year = {1998}}
548 skuang 3719
549     @article{ISI:000266247600008,
550     Abstract = {Temperature dependence of viscosity of butyl-3-methylimidazolium
551     hexafluorophosphate is investigated by non-equilibrium molecular
552     dynamics simulations with cosine-modulated force in the temperature
553     range from 360 to 480K. It is shown that this method is able to
554     correctly predict the shear viscosity. The simulation setting and
555     choice of the force field are discussed in detail. The all-atom force
556     field exhibits a bad convergence and the shear viscosity is
557     overestimated, while the simple united atom model predicts the kinetics
558     very well. The results are compared with the equilibrium molecular
559     dynamics simulations. The relationship between the diffusion
560     coefficient and viscosity is examined by means of the hydrodynamic
561     radii calculated from the Stokes-Einstein equation and the solvation
562     properties are discussed.},
563     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
564     Affiliation = {Kolafa, J (Reprint Author), Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic. {[}Picalek, Jan; Kolafa, Jiri] Prague Inst Chem Technol, Dept Phys Chem, CR-16628 Prague, Czech Republic.},
565     Author = {Picalek, Jan and Kolafa, Jiri},
566     Author-Email = {jiri.kolafa@vscht.cz},
567     Date-Added = {2010-04-16 13:19:12 -0400},
568     Date-Modified = {2010-04-16 13:19:12 -0400},
569     Doc-Delivery-Number = {448FD},
570     Doi = {10.1080/08927020802680703},
571     Funding-Acknowledgement = {Czech Science Foundation {[}203/07/1006]; Czech Ministry of Education {[}LC512]},
572     Funding-Text = {We gratefully acknowledge a support from the Czech Science Foundation (project 203/07/1006) and the computing facilities from the Czech Ministry of Education (Center for Biomolecules and Complex Molecular Systems, project LC512).},
573     Issn = {0892-7022},
574     Journal = {Mol. Simul.},
575     Journal-Iso = {Mol. Simul.},
576     Keywords = {room temperature ionic liquids; viscosity; non-equilibrium molecular dynamics; solvation; imidazolium},
577     Keywords-Plus = {1-N-BUTYL-3-METHYLIMIDAZOLIUM HEXAFLUOROPHOSPHATE; PHYSICOCHEMICAL PROPERTIES; COMPUTER-SIMULATION; PHYSICAL-PROPERTIES; IMIDAZOLIUM CATION; FORCE-FIELD; AB-INITIO; TEMPERATURE; CHLORIDE; CONDUCTIVITY},
578     Language = {English},
579     Number = {8},
580     Number-Of-Cited-References = {50},
581     Pages = {685-690},
582     Publisher = {TAYLOR \& FRANCIS LTD},
583     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
584     Times-Cited = {2},
585     Title = {Shear viscosity of ionic liquids from non-equilibrium molecular dynamics simulation},
586     Type = {Article},
587     Unique-Id = {ISI:000266247600008},
588     Volume = {35},
589     Year = {2009},
590     Bdsk-Url-1 = {http://dx.doi.org/10.1080/08927020802680703%7D}}
591    
592     @article{Vasquez:2004fk,
593     Abstract = {A method for fast calculation of viscosity from molecular dynamics simulation is revisited. The method consists of using a steady-state periodic perturbation. A methodology to choose the amplitude of the external perturbation, which is one of the major practical issues in the original technique of Gosling et al. {$[$}Mol. Phys. 26: 1475 (1973){$]$} is proposed. The amplitude of the perturbation required for fast caculations and the viscosity values for wide ranges of temperature and density of the Lennard-Jones (LJ) model fluid are reported. The viscosity results are in agreement with recent LJ viscosity calculations. Additionally, the simulations demonstrate that the proposed approach is suitable to efficiently generate viscosity data of good quality.},
594     Author = {Vasquez, V. R. and Macedo, E. A. and Zabaloy, M. S.},
595     Date = {2004/11/02/},
596     Date-Added = {2010-04-16 13:18:48 -0400},
597     Date-Modified = {2010-04-16 13:18:48 -0400},
598     Day = {02},
599     Journal = {Int. J. Thermophys.},
600     M3 = {10.1007/s10765-004-7736-3},
601     Month = {11},
602     Number = {6},
603     Pages = {1799--1818},
604     Title = {Lennard-Jones Viscosities in Wide Ranges of Temperature and Density: Fast Calculations Using a Steady--State Periodic Perturbation Method},
605     Ty = {JOUR},
606     Url = {http://dx.doi.org/10.1007/s10765-004-7736-3},
607     Volume = {25},
608     Year = {2004},
609     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-004-7736-3}}
610    
611     @article{hess:209,
612     Author = {Berk Hess},
613     Date-Added = {2010-04-16 12:37:37 -0400},
614     Date-Modified = {2010-04-16 12:37:37 -0400},
615     Doi = {10.1063/1.1421362},
616     Journal = {J. Chem. Phys.},
617     Keywords = {viscosity; molecular dynamics method; liquid theory; shear flow},
618     Number = {1},
619     Pages = {209-217},
620     Publisher = {AIP},
621     Title = {Determining the shear viscosity of model liquids from molecular dynamics simulations},
622     Url = {http://link.aip.org/link/?JCP/116/209/1},
623     Volume = {116},
624     Year = {2002},
625     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/116/209/1},
626     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1421362}}
627    
628     @article{backer:154503,
629     Author = {J. A. Backer and C. P. Lowe and H. C. J. Hoefsloot and P. D. Iedema},
630     Date-Added = {2010-04-16 12:37:37 -0400},
631     Date-Modified = {2010-04-16 12:37:37 -0400},
632     Doi = {10.1063/1.1883163},
633     Eid = {154503},
634     Journal = {J. Chem. Phys.},
635     Keywords = {Poiseuille flow; flow simulation; Lennard-Jones potential; viscosity; boundary layers; computational fluid dynamics},
636     Number = {15},
637     Numpages = {6},
638     Pages = {154503},
639     Publisher = {AIP},
640     Title = {Poiseuille flow to measure the viscosity of particle model fluids},
641     Url = {http://link.aip.org/link/?JCP/122/154503/1},
642     Volume = {122},
643     Year = {2005},
644     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/122/154503/1},
645     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.1883163}}
646    
647     @article{daivis:541,
648     Author = {Peter J. Daivis and Denis J. Evans},
649     Date-Added = {2010-04-16 12:05:36 -0400},
650     Date-Modified = {2010-04-16 12:05:36 -0400},
651     Doi = {10.1063/1.466970},
652     Journal = {J. Chem. Phys.},
653     Keywords = {SHEAR; DECANE; FLOW MODELS; VOLUME; PRESSURE; NONEQUILIBRIUM; MOLECULAR DYNAMICS CALCULATIONS; COMPARATIVE EVALUATIONS; SIMULATION; STRAIN RATE; VISCOSITY; KUBO FORMULA},
654     Number = {1},
655     Pages = {541-547},
656     Publisher = {AIP},
657     Title = {Comparison of constant pressure and constant volume nonequilibrium simulations of sheared model decane},
658     Url = {http://link.aip.org/link/?JCP/100/541/1},
659     Volume = {100},
660     Year = {1994},
661     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/100/541/1},
662     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.466970}}
663    
664     @article{mondello:9327,
665     Author = {Maurizio Mondello and Gary S. Grest},
666     Date-Added = {2010-04-16 12:05:36 -0400},
667     Date-Modified = {2010-04-16 12:05:36 -0400},
668     Doi = {10.1063/1.474002},
669     Journal = {J. Chem. Phys.},
670     Keywords = {organic compounds; viscosity; digital simulation; molecular dynamics method},
671     Number = {22},
672     Pages = {9327-9336},
673     Publisher = {AIP},
674     Title = {Viscosity calculations of [bold n]-alkanes by equilibrium molecular dynamics},
675     Url = {http://link.aip.org/link/?JCP/106/9327/1},
676     Volume = {106},
677     Year = {1997},
678     Bdsk-Url-1 = {http://link.aip.org/link/?JCP/106/9327/1},
679     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.474002}}
680    
681     @article{ISI:A1988Q205300014,
682     Address = {ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE},
683     Affiliation = {VOGELSANG, R (Reprint Author), RUHR UNIV BOCHUM,UNIV STR 150,D-4630 BOCHUM,FED REP GER. UNIV DUISBURG,THERMODYNAM,D-4100 DUISBURG,FED REP GER.},
684     Author = {Vogelsang, R and Hoheisel, G and Luckas, M},
685     Date-Added = {2010-04-14 16:20:24 -0400},
686     Date-Modified = {2010-04-14 16:20:24 -0400},
687     Doc-Delivery-Number = {Q2053},
688     Issn = {0026-8976},
689     Journal = {Mol. Phys.},
690     Journal-Iso = {Mol. Phys.},
691     Language = {English},
692     Month = {AUG 20},
693     Number = {6},
694     Number-Of-Cited-References = {14},
695     Pages = {1203-1213},
696     Publisher = {TAYLOR \& FRANCIS LTD},
697     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
698     Times-Cited = {12},
699     Title = {SHEAR VISCOSITY AND THERMAL-CONDUCTIVITY OF THE LENNARD-JONES LIQUID COMPUTED USING MOLECULAR-DYNAMICS AND PREDICTED BY A MEMORY FUNCTION MODEL FOR A LARGE NUMBER OF STATES},
700     Type = {Article},
701     Unique-Id = {ISI:A1988Q205300014},
702     Volume = {64},
703     Year = {1988}}
704    
705     @article{ISI:000261835100054,
706     Abstract = {Transport properties of liquid methanol and ethanol are predicted by
707     molecular dynamics simulation. The molecular models for the alcohols
708     are rigid, nonpolarizable, and of united-atom type. They were developed
709     in preceding work using experimental vapor-liquid equilibrium data
710     only. Self- and Maxwell-Stefan diffusion coefficients as well as the
711     shear viscosity of methanol, ethanol, and their binary mixture are
712     determined using equilibrium molecular dynamics and the Green-Kubo
713     formalism. Nonequilibrium molecular dynamics is used for predicting the
714     thermal conductivity of the two pure substances. The transport
715     properties of the fluids are calculated over a wide temperature range
716     at ambient pressure and compared with experimental and simulation data
717     from the literature. Overall, a very good agreement with the experiment
718     is found. For instance, the self-diffusion coefficient and the shear
719     viscosity are predicted with average deviations of less than 8\% for
720     the pure alcohols and 12\% for the mixture. The predicted thermal
721     conductivity agrees on average within 5\% with the experimental data.
722     Additionally, some velocity and shear viscosity autocorrelation
723     functions are presented and discussed. Radial distribution functions
724     for ethanol are also presented. The predicted excess volume, excess
725     enthalpy, and the vapor-liquid equilibrium of the binary mixture
726     methanol + ethanol are assessed and agree well with experimental data.},
727     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
728     Affiliation = {Vrabec, J (Reprint Author), Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Vrabec, Jadran] Univ Stuttgart, Inst Thermodynam \& Thermal Proc Engn, D-70550 Stuttgart, Germany. {[}Guevara-Carrion, Gabriela; Hasse, Hans] Univ Kaiserslautern, Lab Engn Thermodynam, D-67663 Kaiserslautern, Germany. {[}Nieto-Draghi, Carlos] Inst Francais Petr, F-92852 Rueil Malmaison, France.},
729     Author = {Guevara-Carrion, Gabriela and Nieto-Draghi, Carlos and Vrabec, Jadran and Hasse, Hans},
730     Author-Email = {vrabec@itt.uni-stuttgart.de},
731     Date-Added = {2010-04-14 15:43:29 -0400},
732     Date-Modified = {2010-04-14 15:43:29 -0400},
733     Doc-Delivery-Number = {385SY},
734     Doi = {10.1021/jp805584d},
735     Issn = {1520-6106},
736     Journal = {J. Phys. Chem. B},
737     Journal-Iso = {J. Phys. Chem. B},
738     Keywords-Plus = {STEFAN DIFFUSION-COEFFICIENTS; MONTE-CARLO CALCULATIONS; ATOM FORCE-FIELD; SELF-DIFFUSION; DYNAMICS SIMULATION; PHASE-EQUILIBRIA; LIQUID METHANOL; TEMPERATURE-DEPENDENCE; COMPUTER-SIMULATION; MONOHYDRIC ALCOHOLS},
739     Language = {English},
740     Month = {DEC 25},
741     Number = {51},
742     Number-Of-Cited-References = {86},
743     Pages = {16664-16674},
744     Publisher = {AMER CHEMICAL SOC},
745     Subject-Category = {Chemistry, Physical},
746     Times-Cited = {5},
747     Title = {Prediction of Transport Properties by Molecular Simulation: Methanol and Ethanol and Their Mixture},
748     Type = {Article},
749     Unique-Id = {ISI:000261835100054},
750     Volume = {112},
751     Year = {2008},
752     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp805584d%7D}}
753    
754     @article{ISI:000258460400020,
755     Abstract = {Nonequilibrium molecular dynamics simulations with the nonpolarizable
756     SPC/E (Berendsen et al., J. Phys. Chem. 1987, 91, 6269) and the
757     polarizable COS/G2 (Yu and van Gunsteren, J. Chem. Phys. 2004, 121,
758     9549) force fields have been employed to calculate the thermal
759     conductivity and other associated properties of methane hydrate over a
760     temperature range from 30 to 260 K. The calculated results are compared
761     to experimental data over this same range. The values of the thermal
762     conductivity calculated with the COS/G2 model are closer to the
763     experimental values than are those calculated with the nonpolarizable
764     SPC/E model. The calculations match the temperature trend in the
765     experimental data at temperatures below 50 K; however, they exhibit a
766     slight decrease in thermal conductivity at higher temperatures in
767     comparison to an opposite trend in the experimental data. The
768     calculated thermal conductivity values are found to be relatively
769     insensitive to the occupancy of the cages except at low (T <= 50 K)
770     temperatures, which indicates that the differences between the two
771     lattice structures may have a more dominant role than generally thought
772     in explaining the low thermal conductivity of methane hydrate compared
773     to ice Ih. The introduction of defects into the water lattice is found
774     to cause a reduction in the thermal conductivity but to have a
775     negligible impact on its temperature dependence.},
776     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
777     Affiliation = {Jordan, KD (Reprint Author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Myshakin, Evgeniy M.; Jordan, Kenneth D.; Warzinski, Robert P.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. {[}Jiang, Hao; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol \& Mat Simulat, Pittsburgh, PA 15260 USA. {[}Myshakin, Evgeniy M.] Parsons Project Serv Inc, South Pk, PA 15129 USA.},
778     Author = {Jiang, Hao and Myshakin, Evgeniy M. and Jordan, Kenneth D. and Warzinski, Robert P.},
779     Date-Added = {2010-04-14 15:38:14 -0400},
780     Date-Modified = {2010-04-14 15:38:14 -0400},
781     Doc-Delivery-Number = {337UG},
782     Doi = {10.1021/jp802942v},
783     Funding-Acknowledgement = {E.M.M. ; National Energy Technology Laboratory's Office of Research and Development {[}41817.660.01.03]; ORISE Part-Time Faculty Program ; {[}DE-AM26-04NT41817]; {[}41817.606.06.03]},
784     Funding-Text = {We thank Drs. John Tse, Niall English, and Alan McGaughey for their comments. H.J. and K.D.J. performed this work under Contract DE-AM26-04NT41817, Subtask 41817.606.06.03, and E.M.M. performed this work under the same contract, Subtask 41817.660.01.03, in support of the National Energy Technology Laboratory's Office of Research and Development. K.D.J. was also supported at NETL by the ORISE Part-Time Faculty Program during the early stages of this work.},
785     Issn = {1520-6106},
786     Journal = {J. Phys. Chem. B},
787     Journal-Iso = {J. Phys. Chem. B},
788     Keywords-Plus = {LIQUID WATER; CLATHRATE HYDRATE; HEAT-CAPACITY; FORCE-FIELDS; ICE; ANHARMONICITY; SUMMATION; MODELS; SILICA},
789     Language = {English},
790     Month = {AUG 21},
791     Number = {33},
792     Number-Of-Cited-References = {51},
793     Pages = {10207-10216},
794     Publisher = {AMER CHEMICAL SOC},
795     Subject-Category = {Chemistry, Physical},
796     Times-Cited = {8},
797     Title = {Molecular dynamics Simulations of the thermal conductivity of methane hydrate},
798     Type = {Article},
799     Unique-Id = {ISI:000258460400020},
800     Volume = {112},
801     Year = {2008},
802     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp802942v%7D}}
803    
804     @article{ISI:000184808400018,
805     Abstract = {A new non-equilibrium molecular dynamics algorithm is presented based
806     on the original work of Willer-Plathe, (1997, J. chem. Phys., 106,
807     6082), for the non-equilibrium simulation of heat transport maintaining
808     fixed the total momentum as well as the total energy of the system. The
809     presented scheme preserves these properties but, unlike the original
810     algorithm, is able to deal with multicomponent systems, that is with
811     particles of different mass independently of their relative
812     concentration. The main idea behind the new procedure is to consider an
813     exchange of momentum and energy between the particles in the hot and
814     cold regions, to maintain the non-equilibrium conditions, as if they
815     undergo a hypothetical elastic collision. The new algorithm can also be
816     employed in multicomponent systems for molecular fluids and in a wide
817     range of thermodynamic conditions.},
818     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
819     Affiliation = {Nieto-Draghi, C (Reprint Author), Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Avda Paisos Catalans 26, Tarragona 43007, Spain. Univ Rovira \& Virgili, ETSEQ, Dept Engn Quim, Tarragona 43007, Spain.},
820     Author = {Nieto-Draghi, C and Avalos, JB},
821     Date-Added = {2010-04-14 12:48:08 -0400},
822     Date-Modified = {2010-04-14 12:48:08 -0400},
823     Doc-Delivery-Number = {712QM},
824     Doi = {10.1080/0026897031000154338},
825     Issn = {0026-8976},
826     Journal = {Mol. Phys.},
827     Journal-Iso = {Mol. Phys.},
828     Keywords-Plus = {BINARY-LIQUID MIXTURES; THERMAL-CONDUCTIVITY; MATTER TRANSPORT; WATER},
829     Language = {English},
830     Month = {JUL 20},
831     Number = {14},
832     Number-Of-Cited-References = {20},
833     Pages = {2303-2307},
834     Publisher = {TAYLOR \& FRANCIS LTD},
835     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
836     Times-Cited = {13},
837     Title = {Non-equilibrium momentum exchange algorithm for molecular dynamics simulation of heat flow in multicomponent systems},
838     Type = {Article},
839     Unique-Id = {ISI:000184808400018},
840     Volume = {101},
841     Year = {2003},
842     Bdsk-Url-1 = {http://dx.doi.org/10.1080/0026897031000154338%7D}}
843    
844     @article{Bedrov:2000-1,
845     Abstract = {The thermal conductivity of liquid
846     octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) has been
847     determined from imposed heat flux non-equilibrium molecular dynamics
848     (NEMD) simulations using a previously published quantum chemistry-based
849     atomistic potential. The thermal conductivity was determined in the
850     temperature domain 550 less than or equal to T less than or equal to
851     800 K, which corresponds approximately to the existence limits of the
852     liquid phase of HMX at atmospheric pressure. The NEMD predictions,
853     which comprise the first reported values for thermal conductivity of
854     HMX liquid, were found to be consistent with measured values for
855     crystalline HMX. The thermal conductivity of liquid HMX was found to
856     exhibit a much weaker temperature dependence than the shear viscosity
857     and self-diffusion coefficients. (C) 2000 Elsevier Science B.V. All
858     rights reserved.},
859     Address = {PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS},
860     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Mat Sci \& Engn, 122 S Cent Campus Dr,Room 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA.},
861     Author = {Bedrov, D and Smith, GD and Sewell, TD},
862     Date-Added = {2010-04-14 12:26:59 -0400},
863     Date-Modified = {2010-04-14 12:27:52 -0400},
864     Doc-Delivery-Number = {330PF},
865     Issn = {0009-2614},
866     Journal = {Chem. Phys. Lett.},
867     Journal-Iso = {Chem. Phys. Lett.},
868     Keywords-Plus = {FORCE-FIELD},
869     Language = {English},
870     Month = {JUN 30},
871     Number = {1-3},
872     Number-Of-Cited-References = {17},
873     Pages = {64-68},
874     Publisher = {ELSEVIER SCIENCE BV},
875     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
876     Times-Cited = {19},
877     Title = {Thermal conductivity of liquid octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from molecular dynamics simulations},
878     Type = {Article},
879     Unique-Id = {ISI:000087969900011},
880     Volume = {324},
881     Year = {2000}}
882    
883     @article{ISI:000258840700015,
884     Abstract = {By using the embedded-atom method (EAM), a series of molecular dynamics
885     (MD) simulations are carried out to calculate the viscosity and
886     self-diffusion coefficient of liquid copper from the normal to the
887     undercooled states. The simulated results are in reasonable agreement
888     with the experimental values available above the melting temperature
889     that is also predicted from a solid-liquid-solid sandwich structure.
890     The relationship between the viscosity and the self-diffusion
891     coefficient is evaluated. It is found that the Stokes-Einstein and
892     Sutherland-Einstein relations qualitatively describe this relationship
893     within the simulation temperature range. However, the predicted
894     constant from MD simulation is close to 1/(3 pi), which is larger than
895     the constants of the Stokes-Einstein and Sutherland-Einstein relations.},
896     Address = {233 SPRING ST, NEW YORK, NY 10013 USA},
897     Affiliation = {Chen, M (Reprint Author), Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China. {[}Han, X. J.; Chen, M.; Lue, Y. J.] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China.},
898     Author = {Han, X. J. and Chen, M. and Lue, Y. J.},
899     Author-Email = {mchen@tsinghua.edu.cn},
900     Date-Added = {2010-04-14 12:00:38 -0400},
901     Date-Modified = {2010-04-14 12:00:38 -0400},
902     Doc-Delivery-Number = {343GH},
903     Doi = {10.1007/s10765-008-0489-7},
904     Funding-Acknowledgement = {China Postdoctoral Science Foundation ; National Natural Science Foundation of China {[}50395101, 50371043]},
905     Funding-Text = {This work was financially supported by China Postdoctoral Science Foundation and the National Natural Science Foundation of China under grant Nos. of 50395101 and 50371043. The computations are carried out at the Tsinghua National Laboratory for Information Science and Technology, China. The authors are grateful to Mr. D. Q. Yu for valuable discussions.},
906     Issn = {0195-928X},
907     Journal = {Int. J. Thermophys.},
908     Journal-Iso = {Int. J. Thermophys.},
909     Keywords = {copper; molecular simulation; self-diffusion coefficient; viscosity; undercooled},
910     Keywords-Plus = {EMBEDDED-ATOM MODEL; THERMOPHYSICAL PROPERTIES; COMPUTER-SIMULATION; TRANSITION-METALS; SHEAR VISCOSITY; ALLOYS; TEMPERATURE; DIFFUSION; BINDING; SURFACE},
911     Language = {English},
912     Month = {AUG},
913     Number = {4},
914     Number-Of-Cited-References = {39},
915     Pages = {1408-1421},
916     Publisher = {SPRINGER/PLENUM PUBLISHERS},
917     Subject-Category = {Thermodynamics; Chemistry, Physical; Mechanics; Physics, Applied},
918     Times-Cited = {2},
919     Title = {Transport properties of undercooled liquid copper: A molecular dynamics study},
920     Type = {Article},
921     Unique-Id = {ISI:000258840700015},
922     Volume = {29},
923     Year = {2008},
924     Bdsk-Url-1 = {http://dx.doi.org/10.1007/s10765-008-0489-7%7D}}
925    
926     @article{Muller-Plathe:2008,
927     Abstract = {Reverse nonequilibrium molecular dynamics and equilibrium molecular
928     dynamics simulations were carried out to compute the shear viscosity of
929     the pure ionic liquid system {[}bmim]{[}PF6] at 300 K. The two methods
930     yielded consistent results which were also compared to experiments. The
931     results showed that the reverse nonequilibrium molecular dynamics
932     (RNEMD) methodology can successfully be applied to computation of
933     highly viscous ionic liquids. Moreover, this study provides a
934     validation of the atomistic force-field developed by Bhargava and
935     Balasubramanian (J. Chem. Phys. 2007, 127, 114510) for dynamic
936     properties.},
937     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
938     Affiliation = {Wei, Z (Reprint Author), Tech Univ Darmstadt, Petersenstr 30, D-64287 Darmstadt, Germany. {[}Wei Zhao; Leroy, Frederic; Mueller-Plathe, Florian] Tech Univ Darmstadt, D-64287 Darmstadt, Germany. {[}Balasubramanian, Sundaram] Indian Inst Sci, Jawaharlal Nehru Ctr Adv Sci Res, Chem \& Phys Mat Unit, Bangalore 560064, Karnataka, India.},
939     Author = {Wei Zhao and Leroy, Frederic and Balasubramanian, Sundaram and M\"{u}ller-Plathe, Florian},
940     Author-Email = {w.zhao@theo.chemie.tu-darmstadt.de},
941     Date-Added = {2010-04-14 11:53:37 -0400},
942     Date-Modified = {2010-04-14 11:54:20 -0400},
943     Doc-Delivery-Number = {321VS},
944     Doi = {10.1021/jp8017869},
945     Issn = {1520-6106},
946     Journal = {J. Phys. Chem. B},
947     Journal-Iso = {J. Phys. Chem. B},
948     Keywords-Plus = {TRANSPORT-PROPERTIES; FORCE-FIELD; TEMPERATURE; SIMULATION; IMIDAZOLIUM; FLUIDS; MODEL; BIS(TRIFLUOROMETHANESULFONYL)IMIDE; PYRIDINIUM; CHLORIDE},
949     Language = {English},
950     Month = {JUL 10},
951     Number = {27},
952     Number-Of-Cited-References = {49},
953     Pages = {8129-8133},
954     Publisher = {AMER CHEMICAL SOC},
955     Subject-Category = {Chemistry, Physical},
956     Times-Cited = {2},
957     Title = {Shear viscosity of the ionic liquid 1-n-butyl 3-methylimidazolium hexafluorophosphate {[}bmim]{[}PF6] computed by reverse nonequilibrium molecular dynamics},
958     Type = {Article},
959     Unique-Id = {ISI:000257335200022},
960     Volume = {112},
961     Year = {2008},
962     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp8017869%7D}}
963    
964     @article{Muller-Plathe:2002,
965     Abstract = {The reverse nonequilibrium molecular dynamics {[}F. Muller-Plathe,
966     Phys. Rev. E 49, 359 (1999)] presented for the calculation of the shear
967     viscosity of Lennard-Jones liquids has been extended to atomistic
968     models of molecular liquids. The method is improved to overcome the
969     problems due to the detailed molecular models. The new technique is
970     besides a test with a Lennard-Jones fluid, applied on different
971     realistic systems: liquid nitrogen, water, and hexane, in order to
972     cover a large range of interactions and systems/architectures. We show
973     that all the advantages of the method itemized previously are still
974     valid, and that it has a very good efficiency and accuracy making it
975     very competitive. (C) 2002 American Institute of Physics.},
976     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
977     Affiliation = {Bordat, P (Reprint Author), Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymer Res, D-55128 Mainz, Germany.},
978     Author = {Bordat, P and M\"{u}ller-Plathe, F},
979     Date-Added = {2010-04-14 11:34:42 -0400},
980     Date-Modified = {2010-04-14 11:35:35 -0400},
981     Doc-Delivery-Number = {521QV},
982     Doi = {10.1063/1.1436124},
983     Issn = {0021-9606},
984     Journal = {J. Chem. Phys.},
985     Journal-Iso = {J. Chem. Phys.},
986     Keywords-Plus = {TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; LIQUID ALKANES; N-HEPTADECANE; SIMULATION; WATER; FLOW; MIXTURES; BUTANE; NITROGEN},
987     Language = {English},
988     Month = {FEB 22},
989     Number = {8},
990     Number-Of-Cited-References = {47},
991     Pages = {3362-3369},
992     Publisher = {AMER INST PHYSICS},
993     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
994     Times-Cited = {33},
995     Title = {The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics},
996     Type = {Article},
997     Unique-Id = {ISI:000173853600023},
998     Volume = {116},
999     Year = {2002},
1000     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.1436124%7D}}
1001    
1002     @article{ISI:000207079300006,
1003     Abstract = {Non-equilibrium Molecular Dynamics Simulation
1004     methods have been used to study the ability of
1005     Embedded Atom Method models of the metals copper and
1006     gold to reproduce the equilibrium and
1007     non-equilibrium behavior of metals at a stationary
1008     and at a moving solid/liquid interface. The
1009     equilibrium solid/vapor interface was shown to
1010     display a simple termination of the bulk until the
1011     temperature of the solid reaches approximate to 90\%
1012     of the bulk melting point. At and above such
1013     temperatures the systems exhibit a surface
1014     disodering known as surface melting. Non-equilibrium
1015     simulations emulating the action of a picosecond
1016     laser on the metal were performed to determine the
1017     regrowth velocity. For copper, the action of a 20 ps
1018     laser with an absorbed energy of 2-5 mJ/cm(2)
1019     produced a regrowth velocity of 83-100 m/s, in
1020     reasonable agreement with the value obtained by
1021     experiment (>60 m/s). For gold, similar conditions
1022     produced a slower regrowth velocity of 63 m/s at an
1023     absorbed energy of 5 mJ/cm(2). This is almost a
1024     factor of two too low in comparison to experiment
1025     (>100 m/s). The regrowth velocities of the metals
1026     seems unexpectedly close to experiment considering
1027     that the free-electron contribution is ignored in
1028     the Embeeded Atom Method models used.},
1029     Address = {4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND},
1030     Affiliation = {Clancy, P (Reprint Author), Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA. {[}Richardson, Clifton F.; Clancy, Paulette] Cornell Univ, Sch Chem Engn, Ithaca, NY 14853 USA.},
1031     Author = {Richardson, Clifton F. and Clancy, Paulette},
1032     Date-Added = {2010-04-07 11:24:36 -0400},
1033     Date-Modified = {2010-04-07 11:24:36 -0400},
1034     Doc-Delivery-Number = {V04SY},
1035     Issn = {0892-7022},
1036     Journal = {Mol. Simul.},
1037     Journal-Iso = {Mol. Simul.},
1038     Keywords = {Non-equilibrium computer simulation; molecular dynamics; crystal growth; Embedded Atom Method models of metals},
1039     Language = {English},
1040     Number = {5-6},
1041     Number-Of-Cited-References = {36},
1042     Pages = {335-355},
1043     Publisher = {TAYLOR \& FRANCIS LTD},
1044     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1045     Times-Cited = {7},
1046     Title = {PICOSECOND LASER PROCESSING OF COPPER AND GOLD: A COMPUTER SIMULATION STUDY},
1047     Type = {Article},
1048     Unique-Id = {ISI:000207079300006},
1049     Volume = {7},
1050     Year = {1991}}
1051    
1052     @article{ISI:000167766600035,
1053     Abstract = {Molecular dynamics simulations are used to
1054     investigate the separation of water films adjacent
1055     to a hot metal surface. The simulations clearly show
1056     that the water layers nearest the surface overheat
1057     and undergo explosive boiling. For thick films, the
1058     expansion of the vaporized molecules near the
1059     surface forces the outer water layers to move away
1060     from the surface. These results are of interest for
1061     mass spectrometry of biological molecules, steam
1062     cleaning of surfaces, and medical procedures.},
1063     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1064     Affiliation = {Garrison, BJ (Reprint Author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Dept Chem, University Pk, PA 16802 USA. Penn State Univ, Inst Mat Res, University Pk, PA 16802 USA. Univ Virginia, Dept Mat Sci \& Engn, Charlottesville, VA 22903 USA.},
1065     Author = {Dou, YS and Zhigilei, LV and Winograd, N and Garrison, BJ},
1066     Date-Added = {2010-03-11 15:32:14 -0500},
1067     Date-Modified = {2010-03-11 15:32:14 -0500},
1068     Doc-Delivery-Number = {416ED},
1069     Issn = {1089-5639},
1070     Journal = {J. Phys. Chem. A},
1071     Journal-Iso = {J. Phys. Chem. A},
1072     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATIONS; ASSISTED LASER-DESORPTION; FROZEN AQUEOUS-SOLUTIONS; COMPUTER-SIMULATION; ORGANIC-SOLIDS; VELOCITY DISTRIBUTIONS; PARTICLE BOMBARDMENT; MASS-SPECTROMETRY; PHASE EXPLOSION; LIQUID WATER},
1073     Language = {English},
1074     Month = {MAR 29},
1075     Number = {12},
1076     Number-Of-Cited-References = {65},
1077     Pages = {2748-2755},
1078     Publisher = {AMER CHEMICAL SOC},
1079     Subject-Category = {Chemistry, Physical; Physics, Atomic, Molecular \& Chemical},
1080     Times-Cited = {66},
1081     Title = {Explosive boiling of water films adjacent to heated surfaces: A microscopic description},
1082     Type = {Article},
1083     Unique-Id = {ISI:000167766600035},
1084     Volume = {105},
1085     Year = {2001}}
1086    
1087     @article{Maginn:2010,
1088     Abstract = {The reverse nonequilibrium molecular dynamics
1089     (RNEMD) method calculates the shear viscosity of a
1090     fluid by imposing a nonphysical exchange of momentum
1091     and measuring the resulting shear velocity
1092     gradient. In this study we investigate the range of
1093     momentum flux values over which RNEMD yields usable
1094     (linear) velocity gradients. We find that nonlinear
1095     velocity profiles result primarily from gradients in
1096     fluid temperature and density. The temperature
1097     gradient results from conversion of heat into bulk
1098     kinetic energy, which is transformed back into heat
1099     elsewhere via viscous heating. An expression is
1100     derived to predict the temperature profile resulting
1101     from a specified momentum flux for a given fluid and
1102     simulation cell. Although primarily bounded above,
1103     we also describe milder low-flux limitations. RNEMD
1104     results for a Lennard-Jones fluid agree with
1105     equilibrium molecular dynamics and conventional
1106     nonequilibrium molecular dynamics calculations at
1107     low shear, but RNEMD underpredicts viscosity
1108     relative to conventional NEMD at high shear.},
1109     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1110     Affiliation = {Tenney, CM (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. {[}Tenney, Craig M.; Maginn, Edward J.] Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1111     Article-Number = {014103},
1112     Author = {Tenney, Craig M. and Maginn, Edward J.},
1113     Author-Email = {ed@nd.edu},
1114     Date-Added = {2010-03-09 13:08:41 -0500},
1115     Date-Modified = {2010-07-19 16:21:35 -0400},
1116     Doc-Delivery-Number = {542DQ},
1117     Doi = {10.1063/1.3276454},
1118     Funding-Acknowledgement = {U.S. Department of Energy {[}DE-FG36-08G088020]},
1119     Funding-Text = {Support for this work was provided by the U.S. Department of Energy (Grant No. DE-FG36-08G088020)},
1120     Issn = {0021-9606},
1121     Journal = {J. Chem. Phys.},
1122     Journal-Iso = {J. Chem. Phys.},
1123     Keywords = {Lennard-Jones potential; molecular dynamics method; Navier-Stokes equations; viscosity},
1124     Keywords-Plus = {CURRENT AUTOCORRELATION-FUNCTION; IONIC LIQUID; SIMULATIONS; TEMPERATURE},
1125     Language = {English},
1126     Month = {JAN 7},
1127     Number = {1},
1128     Number-Of-Cited-References = {20},
1129     Pages = {014103},
1130     Publisher = {AMER INST PHYSICS},
1131     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1132     Times-Cited = {0},
1133     Title = {Limitations and recommendations for the calculation of shear viscosity using reverse nonequilibrium molecular dynamics},
1134     Type = {Article},
1135     Unique-Id = {ISI:000273472300004},
1136     Volume = {132},
1137     Year = {2010},
1138     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.3276454}}
1139    
1140     @article{Clancy:1992,
1141     Abstract = {The regrowth velocity of a crystal from a melt
1142     depends on contributions from the thermal
1143     conductivity, heat gradient, and latent heat. The
1144     relative contributions of these terms to the
1145     regrowth velocity of the pure metals copper and gold
1146     during liquid-phase epitaxy are evaluated. These
1147     results are used to explain how results from
1148     previous nonequilibrium molecular-dynamics
1149     simulations using classical potentials are able to
1150     predict regrowth velocities that are close to the
1151     experimental values. Results from equilibrium
1152     molecular dynamics showing the nature of the
1153     solid-vapor interface of an
1154     embedded-atom-method-modeled Cu57Ni43 alloy at a
1155     temperature corresponding to 62\% of the melting
1156     point are presented. The regrowth of this alloy
1157     following a simulation of a laser-processing
1158     experiment is also given, with use of nonequilibrium
1159     molecular-dynamics techniques. The thermal
1160     conductivity and temperature gradient in the
1161     simulation of the alloy are compared to those for
1162     the pure metals.},
1163     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1164     Affiliation = {CORNELL UNIV,SCH CHEM ENGN,ITHACA,NY 14853.},
1165     Author = {Richardson, C.~F. and Clancy, P},
1166     Date-Added = {2010-01-12 16:17:33 -0500},
1167     Date-Modified = {2010-04-08 17:18:25 -0400},
1168     Doc-Delivery-Number = {HX378},
1169     Issn = {0163-1829},
1170     Journal = {Phys. Rev. B},
1171     Journal-Iso = {Phys. Rev. B},
1172     Keywords-Plus = {SURFACE SEGREGATION; MOLECULAR-DYNAMICS; TRANSITION-METALS; SOLIDIFICATION; GROWTH; CU; NI},
1173     Language = {English},
1174     Month = {JUN 1},
1175     Number = {21},
1176     Number-Of-Cited-References = {24},
1177     Pages = {12260-12268},
1178     Publisher = {AMERICAN PHYSICAL SOC},
1179     Subject-Category = {Physics, Condensed Matter},
1180     Times-Cited = {11},
1181     Title = {CONTRIBUTION OF THERMAL-CONDUCTIVITY TO THE CRYSTAL-REGROWTH VELOCITY OF EMBEDDED-ATOM-METHOD-MODELED METALS AND METAL-ALLOYS},
1182     Type = {Article},
1183     Unique-Id = {ISI:A1992HX37800010},
1184     Volume = {45},
1185     Year = {1992}}
1186    
1187     @article{Bedrov:2000,
1188     Abstract = {We have applied a new nonequilibrium molecular
1189     dynamics (NEMD) method {[}F. Muller-Plathe,
1190     J. Chem. Phys. 106, 6082 (1997)] previously applied
1191     to monatomic Lennard-Jones fluids in the
1192     determination of the thermal conductivity of
1193     molecular fluids. The method was modified in order
1194     to be applicable to systems with holonomic
1195     constraints. Because the method involves imposing a
1196     known heat flux it is particularly attractive for
1197     systems involving long-range and many-body
1198     interactions where calculation of the microscopic
1199     heat flux is difficult. The predicted thermal
1200     conductivities of liquid n-butane and water using
1201     the imposed-flux NEMD method were found to be in a
1202     good agreement with previous simulations and
1203     experiment. (C) 2000 American Institute of
1204     Physics. {[}S0021-9606(00)50841-1].},
1205     Address = {2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA},
1206     Affiliation = {Bedrov, D (Reprint Author), Univ Utah, Dept Chem \& Fuels Engn, 122 S Cent Campus Dr,Rm 304, Salt Lake City, UT 84112 USA. Univ Utah, Dept Chem \& Fuels Engn, Salt Lake City, UT 84112 USA. Univ Utah, Dept Mat Sci \& Engn, Salt Lake City, UT 84112 USA.},
1207     Author = {Bedrov, D and Smith, GD},
1208     Date-Added = {2009-11-05 18:21:18 -0500},
1209     Date-Modified = {2010-04-14 11:50:48 -0400},
1210     Doc-Delivery-Number = {369BF},
1211     Issn = {0021-9606},
1212     Journal = {J. Chem. Phys.},
1213     Journal-Iso = {J. Chem. Phys.},
1214     Keywords-Plus = {EFFECTIVE PAIR POTENTIALS; TRANSPORT-PROPERTIES; CANONICAL ENSEMBLE; NORMAL-BUTANE; ALGORITHMS; SHAKE; WATER},
1215     Language = {English},
1216     Month = {NOV 8},
1217     Number = {18},
1218     Number-Of-Cited-References = {26},
1219     Pages = {8080-8084},
1220     Publisher = {AMER INST PHYSICS},
1221     Subject-Category = {Physics, Atomic, Molecular \& Chemical},
1222     Times-Cited = {23},
1223     Title = {Thermal conductivity of molecular fluids from molecular dynamics simulations: Application of a new imposed-flux method},
1224     Type = {Article},
1225     Unique-Id = {ISI:000090151400044},
1226     Volume = {113},
1227     Year = {2000}}
1228    
1229     @article{ISI:000231042800044,
1230     Abstract = {The reverse nonequilibrium molecular dynamics
1231     method for thermal conductivities is adapted to the
1232     investigation of molecular fluids. The method
1233     generates a heat flux through the system by suitably
1234     exchanging velocities of particles located in
1235     different regions. From the resulting temperature
1236     gradient, the thermal conductivity is then
1237     calculated. Different variants of the algorithm and
1238     their combinations with other system parameters are
1239     tested: exchange of atomic velocities versus
1240     exchange of molecular center-of-mass velocities,
1241     different exchange frequencies, molecular models
1242     with bond constraints versus models with flexible
1243     bonds, united-atom versus all-atom models, and
1244     presence versus absence of a thermostat. To help
1245     establish the range of applicability, the algorithm
1246     is tested on different models of benzene,
1247     cyclohexane, water, and n-hexane. We find that the
1248     algorithm is robust and that the calculated thermal
1249     conductivities are insensitive to variations in its
1250     control parameters. The force field, in contrast,
1251     has a major influence on the value of the thermal
1252     conductivity. While calculated and experimental
1253     thermal conductivities fall into the same order of
1254     magnitude, in most cases the calculated values are
1255     systematically larger. United-atom force fields seem
1256     to do better than all-atom force fields, possibly
1257     because they remove high-frequency degrees of
1258     freedom from the simulation, which, in nature, are
1259     quantum-mechanical oscillators in their ground state
1260     and do not contribute to heat conduction.},
1261     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1262     Affiliation = {Zhang, MM (Reprint Author), Int Univ Bremen, POB 750 561, D-28725 Bremen, Germany. Int Univ Bremen, D-28725 Bremen, Germany. Banco Cent Brasil, Desup, Diesp, BR-01310922 Sao Paulo, Brazil.},
1263     Author = {Zhang, MM and Lussetti, E and de Souza, LES and M\"{u}ller-Plathe, F},
1264     Date-Added = {2009-11-05 18:17:33 -0500},
1265     Date-Modified = {2009-11-05 18:17:33 -0500},
1266     Doc-Delivery-Number = {952YQ},
1267     Doi = {10.1021/jp0512255},
1268     Issn = {1520-6106},
1269     Journal = {J. Phys. Chem. B},
1270     Journal-Iso = {J. Phys. Chem. B},
1271     Keywords-Plus = {LENNARD-JONES LIQUIDS; TRANSPORT-COEFFICIENTS; SWOLLEN POLYMERS; SHEAR VISCOSITY; MODEL SYSTEMS; SIMULATION; BENZENE; FLUIDS; POTENTIALS; DIFFUSION},
1272     Language = {English},
1273     Month = {AUG 11},
1274     Number = {31},
1275     Number-Of-Cited-References = {42},
1276     Pages = {15060-15067},
1277     Publisher = {AMER CHEMICAL SOC},
1278     Subject-Category = {Chemistry, Physical},
1279     Times-Cited = {17},
1280     Title = {Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics},
1281     Type = {Article},
1282     Unique-Id = {ISI:000231042800044},
1283     Volume = {109},
1284     Year = {2005},
1285     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0512255%7D}}
1286    
1287     @article{ISI:A1997YC32200056,
1288     Abstract = {Equilibrium molecular dynamics simulations have
1289     been carried out in the microcanonical ensemble at
1290     300 and 255 K on the extended simple point charge
1291     (SPC/E) model of water {[}Berendsen et al.,
1292     J. Phys. Chem. 91, 6269 (1987)]. In addition to a
1293     number of static and dynamic properties, thermal
1294     conductivity lambda has been calculated via
1295     Green-Kubo integration of the heat current time
1296     correlation functions (CF's) in the atomic and
1297     molecular formalism, at wave number k=0. The
1298     calculated values (0.67 +/- 0.04 W/mK at 300 K and
1299     0.52 +/- 0.03 W/mK at 255 K) are in good agreement
1300     with the experimental data (0.61 W/mK at 300 K and
1301     0.49 W/mK at 255 K). A negative long-time tail of
1302     the heat current CF, more apparent at 255 K, is
1303     responsible for the anomalous decrease of lambda
1304     with temperature. An analysis of the dynamical modes
1305     contributing to lambda has shown that its value is
1306     due to two low-frequency exponential-like modes, a
1307     faster collisional mode, with positive contribution,
1308     and a slower one, which determines the negative
1309     long-time tail. A comparison of the molecular and
1310     atomic spectra of the heat current CF has suggested
1311     that higher-frequency modes should not contribute to
1312     lambda in this temperature range. Generalized
1313     thermal diffusivity D-T(k) decreases as a function
1314     of k, after an initial minor increase at k =
1315     k(min). The k dependence of the generalized
1316     thermodynamic properties has been calculated in the
1317     atomic and molecular formalisms. The observed
1318     differences have been traced back to intramolecular
1319     or intermolecular rotational effects and related to
1320     the partial structure functions. Finally, from the
1321     results we calculated it appears that the SPC/E
1322     model gives results in better agreement with
1323     experimental data than the transferable
1324     intermolecular potential with four points TIP4P
1325     water model {[}Jorgensen et al., J. Chem. Phys. 79,
1326     926 (1983)], with a larger improvement for, e.g.,
1327     diffusion, viscosities, and dielectric properties
1328     and a smaller one for thermal conductivity. The
1329     SPC/E model shares, to a smaller extent, the
1330     insufficient slowing down of dynamics at low
1331     temperature already found for the TIP4P water
1332     model.},
1333     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1334     Affiliation = {UNIV PISA,DIPARTIMENTO CHIM \& CHIM IND,I-56126 PISA,ITALY. CNR,IST FIS ATOM \& MOL,I-56127 PISA,ITALY.},
1335     Author = {Bertolini, D and Tani, A},
1336     Date-Added = {2009-10-30 15:41:21 -0400},
1337     Date-Modified = {2009-10-30 15:41:21 -0400},
1338     Doc-Delivery-Number = {YC322},
1339     Issn = {1063-651X},
1340     Journal = {Phys. Rev. E},
1341     Journal-Iso = {Phys. Rev. E},
1342     Keywords-Plus = {TIME-CORRELATION-FUNCTIONS; LENNARD-JONES LIQUID; TRANSPORT-PROPERTIES; SUPERCOOLED WATER; DENSITY; SIMULATIONS; RELAXATION; VELOCITY; ELECTRON; FLUIDS},
1343     Language = {English},
1344     Month = {OCT},
1345     Number = {4},
1346     Number-Of-Cited-References = {35},
1347     Pages = {4135-4151},
1348     Publisher = {AMERICAN PHYSICAL SOC},
1349     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1350     Times-Cited = {18},
1351     Title = {Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results},
1352     Type = {Article},
1353     Unique-Id = {ISI:A1997YC32200056},
1354     Volume = {56},
1355     Year = {1997}}
1356    
1357     @article{Meineke:2005gd,
1358     Abstract = {OOPSE is a new molecular dynamics simulation program
1359     that is capable of efficiently integrating equations
1360     of motion for atom types with orientational degrees
1361     of freedom (e.g. #sticky# atoms and point
1362     dipoles). Transition metals can also be simulated
1363     using the embedded atom method (EAM) potential
1364     included in the code. Parallel simulations are
1365     carried out using the force-based decomposition
1366     method. Simulations are specified using a very
1367     simple C-based meta-data language. A number of
1368     advanced integrators are included, and the basic
1369     integrator for orientational dynamics provides
1370     substantial improvements over older quaternion-based
1371     schemes.},
1372     Address = {111 RIVER ST, HOBOKEN, NJ 07030 USA},
1373     Author = {Meineke, M. A. and Vardeman, C. F. and Lin, T and Fennell, CJ and Gezelter, J. D.},
1374     Date-Added = {2009-10-01 18:43:03 -0400},
1375     Date-Modified = {2010-04-13 09:11:16 -0400},
1376     Doi = {DOI 10.1002/jcc.20161},
1377     Isi = {000226558200006},
1378     Isi-Recid = {142688207},
1379     Isi-Ref-Recids = {67885400 50663994 64190493 93668415 46699855 89992422 57614458 49016001 61447131 111114169 68770425 52728075 102422498 66381878 32391149 134477335 53221357 9929643 59492217 69681001 99223832 142688208 94600872 91658572 54857943 117365867 69323123 49588888 109970172 101670714 142688209 121603296 94652379 96449138 99938010 112825758 114905670 86802042 121339042 104794914 82674909 72096791 93668384 90513335 142688210 23060767 63731466 109033408 76303716 31384453 97861662 71842426 130707771 125809946 66381889 99676497},
1380     Journal = {J. Comp. Chem.},
1381     Keywords = {OOPSE; molecular dynamics},
1382     Month = feb,
1383     Number = {3},
1384     Pages = {252-271},
1385     Publisher = {JOHN WILEY \& SONS INC},
1386     Times-Cited = {9},
1387     Title = {OOPSE: An object-oriented parallel simulation engine for molecular dynamics},
1388     Volume = {26},
1389     Year = {2005},
1390     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000226558200006},
1391     Bdsk-Url-2 = {http://dx.doi.org/10.1002/jcc.20161}}
1392    
1393     @article{ISI:000080382700030,
1394     Abstract = {A nonequilibrium method for calculating the shear
1395     viscosity is presented. It reverses the
1396     cause-and-effect picture customarily used in
1397     nonequilibrium molecular dynamics: the effect, the
1398     momentum flux or stress, is imposed, whereas the
1399     cause, the velocity gradient or shear rate, is
1400     obtained from the simulation. It differs from other
1401     Norton-ensemble methods by the way in which the
1402     steady-state momentum flux is maintained. This
1403     method involves a simple exchange of particle
1404     momenta, which is easy to implement. Moreover, it
1405     can be made to conserve the total energy as well as
1406     the total linear momentum, so no coupling to an
1407     external temperature bath is needed. The resulting
1408     raw data, the velocity profile, is a robust and
1409     rapidly converging property. The method is tested on
1410     the Lennard-Jones fluid near its triple point. It
1411     yields a viscosity of 3.2-3.3, in Lennard-Jones
1412     reduced units, in agreement with literature
1413     results. {[}S1063-651X(99)03105-0].},
1414     Address = {ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA},
1415     Affiliation = {Muller-Plathe, F (Reprint Author), Max Planck Inst Polymerforsch, Ackermannweg 10, D-55128 Mainz, Germany. Max Planck Inst Polymerforsch, D-55128 Mainz, Germany.},
1416     Author = {M\"{u}ller-Plathe, F},
1417     Date-Added = {2009-10-01 14:07:30 -0400},
1418     Date-Modified = {2009-10-01 14:07:30 -0400},
1419     Doc-Delivery-Number = {197TX},
1420     Issn = {1063-651X},
1421     Journal = {Phys. Rev. E},
1422     Journal-Iso = {Phys. Rev. E},
1423     Language = {English},
1424     Month = {MAY},
1425     Number = {5, Part A},
1426     Number-Of-Cited-References = {17},
1427     Pages = {4894-4898},
1428     Publisher = {AMERICAN PHYSICAL SOC},
1429     Subject-Category = {Physics, Fluids \& Plasmas; Physics, Mathematical},
1430     Times-Cited = {57},
1431     Title = {Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluids},
1432     Type = {Article},
1433     Unique-Id = {ISI:000080382700030},
1434     Volume = {59},
1435     Year = {1999}}
1436    
1437     @article{Maginn:2007,
1438     Abstract = {Atomistic simulations are conducted to examine the
1439     dependence of the viscosity of
1440     1-ethyl-3-methylimidazolium
1441     bis(trifluoromethanesulfonyl)imide on temperature
1442     and water content. A nonequilibrium molecular
1443     dynamics procedure is utilized along with an
1444     established fixed charge force field. It is found
1445     that the simulations quantitatively capture the
1446     temperature dependence of the viscosity as well as
1447     the drop in viscosity that occurs with increasing
1448     water content. Using mixture viscosity models, we
1449     show that the relative drop in viscosity with water
1450     content is actually less than that that would be
1451     predicted for an ideal system. This finding is at
1452     odds with the popular notion that small amounts of
1453     water cause an unusually large drop in the viscosity
1454     of ionic liquids. The simulations suggest that, due
1455     to preferential association of water with anions and
1456     the formation of water clusters, the excess molar
1457     volume is negative. This means that dissolved water
1458     is actually less effective at lowering the viscosity
1459     of these mixtures when compared to a solute obeying
1460     ideal mixing behavior. The use of a nonequilibrium
1461     simulation technique enables diffusive behavior to
1462     be observed on the time scale of the simulations,
1463     and standard equilibrium molecular dynamics resulted
1464     in sub-diffusive behavior even over 2 ns of
1465     simulation time.},
1466     Address = {1155 16TH ST, NW, WASHINGTON, DC 20036 USA},
1467     Affiliation = {Maginn, EJ (Reprint Author), Univ Notre Dame, Dept Chem \& Biomol Engn, 182 Fitzpatrick Hall, Notre Dame, IN 46556 USA. Univ Notre Dame, Dept Chem \& Biomol Engn, Notre Dame, IN 46556 USA.},
1468     Author = {Kelkar, Manish S. and Maginn, Edward J.},
1469     Author-Email = {ed@nd.edu},
1470     Date-Added = {2009-09-29 17:07:17 -0400},
1471     Date-Modified = {2010-04-14 12:51:02 -0400},
1472     Doc-Delivery-Number = {163VA},
1473     Doi = {10.1021/jp0686893},
1474     Issn = {1520-6106},
1475     Journal = {J. Phys. Chem. B},
1476     Journal-Iso = {J. Phys. Chem. B},
1477     Keywords-Plus = {MOLECULAR-DYNAMICS SIMULATION; MOMENTUM IMPULSE RELAXATION; FORCE-FIELD; TRANSPORT-PROPERTIES; PHYSICAL-PROPERTIES; SIMPLE FLUID; CHLORIDE; MODEL; SALTS; ARCHITECTURE},
1478     Language = {English},
1479     Month = {MAY 10},
1480     Number = {18},
1481     Number-Of-Cited-References = {57},
1482     Pages = {4867-4876},
1483     Publisher = {AMER CHEMICAL SOC},
1484     Subject-Category = {Chemistry, Physical},
1485     Times-Cited = {35},
1486     Title = {Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations},
1487     Type = {Article},
1488     Unique-Id = {ISI:000246190100032},
1489     Volume = {111},
1490     Year = {2007},
1491     Bdsk-Url-1 = {http://dx.doi.org/10.1021/jp0686893%7D},
1492     Bdsk-Url-2 = {http://dx.doi.org/10.1021/jp0686893}}
1493    
1494     @article{MullerPlathe:1997xw,
1495     Abstract = {A nonequilibrium molecular dynamics method for
1496     calculating the thermal conductivity is
1497     presented. It reverses the usual cause and effect
1498     picture. The ''effect,'' the heat flux, is imposed
1499     on the system and the ''cause,'' the temperature
1500     gradient is obtained from the simulation. Besides
1501     being very simple to implement, the scheme offers
1502     several advantages such as compatibility with
1503     periodic boundary conditions, conservation of total
1504     energy and total linear momentum, and the sampling
1505     of a rapidly converging quantity (temperature
1506     gradient) rather than a slowly converging one (heat
1507     flux). The scheme is tested on the Lennard-Jones
1508     fluid. (C) 1997 American Institute of Physics.},
1509     Address = {WOODBURY},
1510     Author = {M\"{u}ller-Plathe, F.},
1511     Cited-Reference-Count = {13},
1512     Date = {APR 8},
1513     Date-Added = {2009-09-21 16:51:21 -0400},
1514     Date-Modified = {2009-09-21 16:51:21 -0400},
1515     Document-Type = {Article},
1516     Isi = {ISI:A1997WR62000032},
1517     Isi-Document-Delivery-Number = {WR620},
1518     Iso-Source-Abbreviation = {J. Chem. Phys.},
1519     Issn = {0021-9606},
1520     Journal = {J. Chem. Phys.},
1521     Language = {English},
1522     Month = {Apr},
1523     Number = {14},
1524     Page-Count = {4},
1525     Pages = {6082--6085},
1526     Publication-Type = {J},
1527     Publisher = {AMER INST PHYSICS},
1528     Publisher-Address = {CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999},
1529     Reprint-Address = {MullerPlathe, F, MAX PLANCK INST POLYMER RES, D-55128 MAINZ, GERMANY.},
1530     Source = {J CHEM PHYS},
1531     Subject-Category = {Physics, Atomic, Molecular & Chemical},
1532     Times-Cited = {106},
1533     Title = {A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity},
1534     Volume = {106},
1535     Year = {1997}}
1536    
1537     @article{Muller-Plathe:1999ek,
1538     Abstract = {A novel non-equilibrium method for calculating
1539     transport coefficients is presented. It reverses the
1540     experimental cause-and-effect picture, e.g. for the
1541     calculation of viscosities: the effect, the momentum
1542     flux or stress, is imposed, whereas the cause, the
1543     velocity gradient or shear rates, is obtained from
1544     the simulation. It differs from other
1545     Norton-ensemble methods by the way, in which the
1546     steady-state fluxes are maintained. This method
1547     involves a simple exchange of particle momenta,
1548     which is easy to implement and to analyse. Moreover,
1549     it can be made to conserve the total energy as well
1550     as the total linear momentum, so no thermostatting
1551     is needed. The resulting raw data are robust and
1552     rapidly converging. The method is tested on the
1553     calculation of the shear viscosity, the thermal
1554     conductivity and the Soret coefficient (thermal
1555     diffusion) for the Lennard-Jones (LJ) fluid near its
1556     triple point. Possible applications to other
1557     transport coefficients and more complicated systems
1558     are discussed. (C) 1999 Elsevier Science Ltd. All
1559     rights reserved.},
1560     Address = {THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND},
1561     Author = {M\"{u}ller-Plathe, F and Reith, D},
1562     Date-Added = {2009-09-21 16:47:07 -0400},
1563     Date-Modified = {2009-09-21 16:47:07 -0400},
1564     Isi = {000082266500004},
1565     Isi-Recid = {111564960},
1566     Isi-Ref-Recids = {64516210 89773595 53816621 60134000 94875498 60964023 90228608 85968509 86405859 63979644 108048497 87560156 577165 103281654 111564961 83735333 99953572 88476740 110174781 111564963 6599000 75892253},
1567     Journal = {Computational and Theoretical Polymer Science},
1568     Keywords = {viscosity; Ludwig-Soret effect; thermal conductivity; Onsager coefficents; non-equilibrium molecular dynamics},
1569     Number = {3-4},
1570     Pages = {203-209},
1571     Publisher = {ELSEVIER SCI LTD},
1572     Times-Cited = {15},
1573     Title = {Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients},
1574     Volume = {9},
1575     Year = {1999},
1576     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000082266500004}}
1577    
1578     @article{Viscardy:2007lq,
1579     Abstract = {The thermal conductivity is calculated with the
1580     Helfand-moment method in the Lennard-Jones fluid
1581     near the triple point. The Helfand moment of thermal
1582     conductivity is here derived for molecular dynamics
1583     with periodic boundary conditions. Thermal
1584     conductivity is given by a generalized Einstein
1585     relation with this Helfand moment. The authors
1586     compute thermal conductivity by this new method and
1587     compare it with their own values obtained by the
1588     standard Green-Kubo method. The agreement is
1589     excellent. (C) 2007 American Institute of Physics.},
1590     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1591     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1592     Date-Added = {2009-09-21 16:37:20 -0400},
1593     Date-Modified = {2010-07-19 16:18:44 -0400},
1594     Doi = {DOI 10.1063/1.2724821},
1595     Isi = {000246453900035},
1596     Isi-Recid = {156192451},
1597     Isi-Ref-Recids = {18794442 84473620 156192452 41891249 90040203 110174972 59859940 47256160 105716249 91804339 93329429 95967319 6199670 1785176 105872066 6325196 65361295 71941152 4307928 23120502 54053395 149068110 4811016 99953572 59859908 132156782 156192449},
1598     Journal = {J. Chem. Phys.},
1599     Month = may,
1600     Number = {18},
1601     Pages = {184513},
1602     Publisher = {AMER INST PHYSICS},
1603     Times-Cited = {3},
1604     Title = {Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity},
1605     Volume = {126},
1606     Year = {2007},
1607     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900035},
1608     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724821}}
1609    
1610     @article{Viscardy:2007bh,
1611     Abstract = {The authors propose a new method, the Helfand-moment
1612     method, to compute the shear viscosity by
1613     equilibrium molecular dynamics in periodic
1614     systems. In this method, the shear viscosity is
1615     written as an Einstein-type relation in terms of the
1616     variance of the so-called Helfand moment. This
1617     quantity is modified in order to satisfy systems
1618     with periodic boundary conditions usually considered
1619     in molecular dynamics. They calculate the shear
1620     viscosity in the Lennard-Jones fluid near the triple
1621     point thanks to this new technique. They show that
1622     the results of the Helfand-moment method are in
1623     excellent agreement with the results of the standard
1624     Green-Kubo method. (C) 2007 American Institute of
1625     Physics.},
1626     Address = {CIRCULATION \& FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA},
1627     Author = {Viscardy, S. and Servantie, J. and Gaspard, P.},
1628     Date-Added = {2009-09-21 16:37:19 -0400},
1629     Date-Modified = {2010-07-19 16:19:03 -0400},
1630     Doi = {DOI 10.1063/1.2724820},
1631     Isi = {000246453900034},
1632     Isi-Recid = {156192449},
1633     Isi-Ref-Recids = {18794442 89109900 84473620 86837966 26564374 23367140 83161139 75750220 90040203 110174972 5885 67722779 91461489 42484251 77907850 93329429 95967319 105716249 6199670 1785176 105872066 6325196 129596740 120782555 51131244 65361295 41141868 4307928 21555860 23120502 563068 120721875 142813985 135942402 4811016 86224873 57621419 85506488 89860062 44796632 51381285 132156779 156192450 132156782 156192451},
1634     Journal = {J. Chem. Phys.},
1635     Month = may,
1636     Number = {18},
1637     Pages = {184512},
1638     Publisher = {AMER INST PHYSICS},
1639     Times-Cited = {1},
1640     Title = {Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity},
1641     Volume = {126},
1642     Year = {2007},
1643     Bdsk-Url-1 = {http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=WOS&DestLinkType=FullRecord;KeyUT=000246453900034},
1644     Bdsk-Url-2 = {http://dx.doi.org/10.1063/1.2724820}}
1645    
1646     @inproceedings{384119,
1647     Address = {New York, NY, USA},
1648     Author = {Fortune, Steven},
1649     Booktitle = {ISSAC '01: Proceedings of the 2001 international symposium on Symbolic and algebraic computation},
1650     Doi = {http://doi.acm.org/10.1145/384101.384119},
1651     Isbn = {1-58113-417-7},
1652     Location = {London, Ontario, Canada},
1653     Pages = {121--128},
1654     Publisher = {ACM},
1655     Title = {Polynomial root finding using iterated Eigenvalue computation},
1656     Year = {2001},
1657     Bdsk-Url-1 = {http://doi.acm.org/10.1145/384101.384119}}
1658    
1659     @article{Fennell06,
1660 skuang 3721 Author = {C.~J. Fennell and J.~D. Gezelter},
1661     Date-Added = {2006-08-24 09:49:57 -0400},
1662     Date-Modified = {2006-08-24 09:49:57 -0400},
1663     Doi = {10.1063/1.2206581},
1664     Journal = {J. Chem. Phys.},
1665     Number = {23},
1666     Pages = {234104(12)},
1667     Rating = {5},
1668     Read = {Yes},
1669     Title = {Is the \uppercase{E}wald summation still necessary? \uppercase{P}airwise alternatives to the accepted standard for long-range electrostatics},
1670     Volume = {124},
1671     Year = {2006},
1672     Bdsk-Url-1 = {http://dx.doi.org/10.1063/1.2206581}}
1673 skuang 3719
1674 skuang 3721 @book{Sommese2005,
1675     Address = {Singapore},
1676     Author = {Andrew J. Sommese and Charles W. Wampler},
1677     Publisher = {World Scientific Press},
1678     Title = {The numerical solution of systems of polynomials arising in engineering and science},
1679     Year = 2005}