| 1 |
mmeineke |
10 |
subroutine force_VDW ( i, j, rcutsq, rijsq, sigma, epslon, v, & |
| 2 |
|
|
fx, fy, fz, rxij, ryij, rzij, natoms ) |
| 3 |
|
|
implicit none |
| 4 |
|
|
|
| 5 |
|
|
|
| 6 |
|
|
! Passed parameters |
| 7 |
|
|
|
| 8 |
|
|
integer :: natoms ! the number of atoms |
| 9 |
|
|
integer :: i, j ! the index of the two atoms |
| 10 |
|
|
|
| 11 |
|
|
real(kind=8) :: rcutsq ! the square of rcut (needed for the shift potential) |
| 12 |
|
|
real(kind=8) :: rijsq ! the square of the distance twixt i and j |
| 13 |
|
|
real(kind=8) :: v ! the potential energy |
| 14 |
|
|
real(kind=8) :: rxij, ryij, rzij ! vector components of the distance |
| 15 |
|
|
|
| 16 |
|
|
! Passed arrays |
| 17 |
|
|
|
| 18 |
|
|
real(kind=8), dimension(natoms) :: sigma ! the distance parameters |
| 19 |
|
|
real(kind=8), dimension(natoms) :: epslon ! the wel depth parameters |
| 20 |
|
|
real(kind=8), dimension(natoms) :: fx, fy, fz ! the force arrays |
| 21 |
|
|
|
| 22 |
|
|
! local variables |
| 23 |
|
|
|
| 24 |
|
|
real(kind=8), parameter :: beta = 2.25_8, alpha = 1.84e5_8 |
| 25 |
|
|
|
| 26 |
|
|
real(kind=8) :: sr2, sr6, vij, vsij, fij |
| 27 |
|
|
real(kind=8) :: srexp, sr, sr_i |
| 28 |
|
|
real(kind=8) :: sigm, sigsq, epsl |
| 29 |
|
|
real(kind=8) :: fxij, fyij, fzij |
| 30 |
|
|
real(kind=8) :: preterm, r_exp_6 |
| 31 |
|
|
|
| 32 |
|
|
! ********************************************************************* |
| 33 |
|
|
|
| 34 |
|
|
epsl = sqrt( epslon(i) * epslon(j) ) |
| 35 |
|
|
sigm = ( sigma(i) + sigma(j) ) / 2.0_8 |
| 36 |
|
|
sigsq = sigm * sigm |
| 37 |
|
|
|
| 38 |
|
|
sr2 = sigsq / rijsq |
| 39 |
|
|
sr = sqrt(sr2) |
| 40 |
|
|
sr_i = 1.0_8 / sr |
| 41 |
|
|
sr6 = beta * sr2 * sr2 * sr2 |
| 42 |
|
|
srexp = alpha * dexp( -12.0_8 * sr_i ) |
| 43 |
|
|
|
| 44 |
|
|
vij = epsl * ( srexp - sr6 ) |
| 45 |
|
|
|
| 46 |
|
|
r_exp_6= ( 2.0_8 * srexp ) - ( sr * sr6 ) |
| 47 |
|
|
preterm= ( 6.0_8 * epsl ) / ( sigsq * sr_i ) |
| 48 |
|
|
fij = preterm * r_exp_6 |
| 49 |
|
|
|
| 50 |
|
|
fxij = rxij * fij |
| 51 |
|
|
fyij = ryij * fij |
| 52 |
|
|
fzij = rzij * fij |
| 53 |
|
|
|
| 54 |
|
|
fx(i) = fx(i) - fxij |
| 55 |
|
|
fy(i) = fy(i) - fyij |
| 56 |
|
|
fz(i) = fz(i) - fzij |
| 57 |
|
|
|
| 58 |
|
|
fx(j) = fx(j) + fxij |
| 59 |
|
|
fy(j) = fy(j) + fyij |
| 60 |
|
|
fz(j) = fz(j) + fzij |
| 61 |
|
|
|
| 62 |
|
|
! calculate the shifted potential |
| 63 |
|
|
|
| 64 |
|
|
sr2 = sigsq / rcutsq |
| 65 |
|
|
sr = sqrt( sr2 ) |
| 66 |
|
|
sr_i = 1.0_8 / sr |
| 67 |
|
|
sr6 = beta * sr2 * sr2 * sr2 |
| 68 |
|
|
srexp = alpha * exp(-12.0_8 * sr_i) |
| 69 |
|
|
|
| 70 |
|
|
vsij = epsl * ( srexp - sr6 ) |
| 71 |
|
|
|
| 72 |
|
|
! calculate the continous potential |
| 73 |
|
|
|
| 74 |
|
|
v = v + vij - vsij |
| 75 |
|
|
|
| 76 |
|
|
end subroutine force_vdw |
| 77 |
|
|
|