| 1 | 
mmeineke | 
10 | 
#include <cmath> | 
| 2 | 
  | 
  | 
 | 
| 3 | 
  | 
  | 
#include "Thermo.hpp" | 
| 4 | 
  | 
  | 
#include "SRI.hpp" | 
| 5 | 
  | 
  | 
#include "LRI.hpp" | 
| 6 | 
  | 
  | 
#include "Integrator.hpp" | 
| 7 | 
  | 
  | 
 | 
| 8 | 
  | 
  | 
 | 
| 9 | 
  | 
  | 
double Thermo::getKinetic(){ | 
| 10 | 
  | 
  | 
 | 
| 11 | 
  | 
  | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 12 | 
  | 
  | 
  double vx2, vy2, vz2; | 
| 13 | 
  | 
  | 
  double kinetic, v_sqr; | 
| 14 | 
  | 
  | 
  int kl; | 
| 15 | 
  | 
  | 
  double jx2, jy2, jz2; // the square of the angular momentums | 
| 16 | 
  | 
  | 
 | 
| 17 | 
  | 
  | 
  DirectionalAtom *dAtom; | 
| 18 | 
  | 
  | 
 | 
| 19 | 
  | 
  | 
  int n_atoms; | 
| 20 | 
  | 
  | 
  Atom** atoms; | 
| 21 | 
  | 
  | 
   | 
| 22 | 
  | 
  | 
  n_atoms = entry_plug->n_atoms; | 
| 23 | 
  | 
  | 
  atoms = entry_plug->atoms; | 
| 24 | 
  | 
  | 
 | 
| 25 | 
  | 
  | 
  kinetic = 0.0; | 
| 26 | 
  | 
  | 
  for( kl=0; kl < n_atoms; kl++ ){ | 
| 27 | 
  | 
  | 
 | 
| 28 | 
  | 
  | 
    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); | 
| 29 | 
  | 
  | 
    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); | 
| 30 | 
  | 
  | 
    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); | 
| 31 | 
  | 
  | 
 | 
| 32 | 
  | 
  | 
    v_sqr = vx2 + vy2 + vz2; | 
| 33 | 
  | 
  | 
    kinetic += atoms[kl]->getMass() * v_sqr; | 
| 34 | 
  | 
  | 
 | 
| 35 | 
  | 
  | 
    if( atoms[kl]->isDirectional() ){ | 
| 36 | 
  | 
  | 
             | 
| 37 | 
  | 
  | 
      dAtom = (DirectionalAtom *)atoms[kl]; | 
| 38 | 
  | 
  | 
       | 
| 39 | 
  | 
  | 
      jx2 = dAtom->getJx() * dAtom->getJx();     | 
| 40 | 
  | 
  | 
      jy2 = dAtom->getJy() * dAtom->getJy(); | 
| 41 | 
  | 
  | 
      jz2 = dAtom->getJz() * dAtom->getJz(); | 
| 42 | 
  | 
  | 
       | 
| 43 | 
  | 
  | 
      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())  | 
| 44 | 
  | 
  | 
        + (jz2 / dAtom->getIzz()); | 
| 45 | 
  | 
  | 
    } | 
| 46 | 
  | 
  | 
  } | 
| 47 | 
  | 
  | 
   | 
| 48 | 
  | 
  | 
  kinetic = kinetic * 0.5 / e_convert; | 
| 49 | 
  | 
  | 
 | 
| 50 | 
  | 
  | 
  return kinetic; | 
| 51 | 
  | 
  | 
} | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
double Thermo::getPotential(){ | 
| 54 | 
  | 
  | 
   | 
| 55 | 
  | 
  | 
  double potential; | 
| 56 | 
  | 
  | 
  int el, nSRI; | 
| 57 | 
  | 
  | 
  SRI** sris; | 
| 58 | 
  | 
  | 
 | 
| 59 | 
  | 
  | 
  sris = entry_plug->sr_interactions; | 
| 60 | 
  | 
  | 
  nSRI = entry_plug->n_SRI; | 
| 61 | 
  | 
  | 
 | 
| 62 | 
  | 
  | 
  potential = 0.0; | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
  potential += entry_plug->longRange->get_potential();; | 
| 65 | 
  | 
  | 
 | 
| 66 | 
  | 
  | 
  // std::cerr << "long range potential: " << potential << "\n"; | 
| 67 | 
  | 
  | 
 | 
| 68 | 
  | 
  | 
  for( el=0; el<nSRI; el++ ){ | 
| 69 | 
  | 
  | 
     | 
| 70 | 
  | 
  | 
    potential += sris[el]->get_potential(); | 
| 71 | 
  | 
  | 
  } | 
| 72 | 
  | 
  | 
 | 
| 73 | 
  | 
  | 
  return potential; | 
| 74 | 
  | 
  | 
} | 
| 75 | 
  | 
  | 
 | 
| 76 | 
  | 
  | 
double Thermo::getTotalE(){ | 
| 77 | 
  | 
  | 
 | 
| 78 | 
  | 
  | 
  double total; | 
| 79 | 
  | 
  | 
 | 
| 80 | 
  | 
  | 
  total = this->getKinetic() + this->getPotential(); | 
| 81 | 
  | 
  | 
  return total; | 
| 82 | 
  | 
  | 
} | 
| 83 | 
  | 
  | 
 | 
| 84 | 
  | 
  | 
double Thermo::getTemperature(){ | 
| 85 | 
  | 
  | 
 | 
| 86 | 
mmeineke | 
25 | 
  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | 
| 87 | 
mmeineke | 
10 | 
  double temperature; | 
| 88 | 
  | 
  | 
   | 
| 89 | 
  | 
  | 
  int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented | 
| 90 | 
  | 
  | 
    - entry_plug->n_constraints - 3; | 
| 91 | 
  | 
  | 
 | 
| 92 | 
  | 
  | 
  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); | 
| 93 | 
  | 
  | 
  return temperature; | 
| 94 | 
  | 
  | 
} | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
double Thermo::getPressure(){ | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm | 
| 99 | 
  | 
  | 
  const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa | 
| 100 | 
  | 
  | 
  const double conv_A_m = 1.0E-10; //convert A -> m | 
| 101 | 
  | 
  | 
 | 
| 102 | 
  | 
  | 
  return 0.0; | 
| 103 | 
  | 
  | 
} | 
| 104 | 
  | 
  | 
 | 
| 105 | 
  | 
  | 
void Thermo::velocitize() { | 
| 106 | 
  | 
  | 
   | 
| 107 | 
  | 
  | 
  double x,y; | 
| 108 | 
  | 
  | 
  double vx, vy, vz; | 
| 109 | 
  | 
  | 
  double jx, jy, jz; | 
| 110 | 
  | 
  | 
  int i, vr, vd; // velocity randomizer loop counters | 
| 111 | 
  | 
  | 
  double vdrift[3]; | 
| 112 | 
  | 
  | 
  double mtot = 0.0; | 
| 113 | 
  | 
  | 
  double vbar; | 
| 114 | 
  | 
  | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 115 | 
  | 
  | 
  double av2; | 
| 116 | 
  | 
  | 
  double kebar; | 
| 117 | 
  | 
  | 
  int ndf; // number of degrees of freedom | 
| 118 | 
  | 
  | 
  int ndfRaw; // the raw number of degrees of freedom | 
| 119 | 
  | 
  | 
  int n_atoms; | 
| 120 | 
  | 
  | 
  Atom** atoms; | 
| 121 | 
  | 
  | 
  DirectionalAtom* dAtom; | 
| 122 | 
  | 
  | 
  double temperature; | 
| 123 | 
  | 
  | 
  int n_oriented; | 
| 124 | 
  | 
  | 
  int n_constraints; | 
| 125 | 
  | 
  | 
 | 
| 126 | 
  | 
  | 
  atoms         = entry_plug->atoms; | 
| 127 | 
  | 
  | 
  n_atoms       = entry_plug->n_atoms; | 
| 128 | 
  | 
  | 
  temperature   = entry_plug->target_temp; | 
| 129 | 
  | 
  | 
  n_oriented    = entry_plug->n_oriented; | 
| 130 | 
  | 
  | 
  n_constraints = entry_plug->n_constraints; | 
| 131 | 
  | 
  | 
   | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
  ndfRaw = 3 * n_atoms + 3 * n_oriented; | 
| 134 | 
  | 
  | 
  ndf = ndfRaw - n_constraints - 3; | 
| 135 | 
  | 
  | 
  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); | 
| 136 | 
  | 
  | 
   | 
| 137 | 
  | 
  | 
  for(vr = 0; vr < n_atoms; vr++){ | 
| 138 | 
  | 
  | 
     | 
| 139 | 
  | 
  | 
    // uses equipartition theory to solve for vbar in angstrom/fs | 
| 140 | 
  | 
  | 
 | 
| 141 | 
  | 
  | 
    av2 = 2.0 * kebar / atoms[vr]->getMass(); | 
| 142 | 
  | 
  | 
    vbar = sqrt( av2 ); | 
| 143 | 
  | 
  | 
 | 
| 144 | 
  | 
  | 
//     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | 
| 145 | 
  | 
  | 
     | 
| 146 | 
  | 
  | 
    // picks random velocities from a gaussian distribution | 
| 147 | 
  | 
  | 
    // centered on vbar | 
| 148 | 
  | 
  | 
     | 
| 149 | 
  | 
  | 
    x = drand48(); | 
| 150 | 
  | 
  | 
    y = drand48(); | 
| 151 | 
  | 
  | 
    vx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 152 | 
  | 
  | 
     | 
| 153 | 
  | 
  | 
    x = drand48(); | 
| 154 | 
  | 
  | 
    y = drand48(); | 
| 155 | 
  | 
  | 
    vy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 156 | 
  | 
  | 
     | 
| 157 | 
  | 
  | 
    x = drand48(); | 
| 158 | 
  | 
  | 
    y = drand48(); | 
| 159 | 
  | 
  | 
    vz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 160 | 
  | 
  | 
     | 
| 161 | 
  | 
  | 
    atoms[vr]->set_vx( vx );  | 
| 162 | 
  | 
  | 
    atoms[vr]->set_vy( vy ); | 
| 163 | 
  | 
  | 
    atoms[vr]->set_vz( vz ); | 
| 164 | 
  | 
  | 
  } | 
| 165 | 
  | 
  | 
   | 
| 166 | 
  | 
  | 
  //  Corrects for the center of mass drift. | 
| 167 | 
  | 
  | 
  // sums all the momentum and divides by total mass. | 
| 168 | 
  | 
  | 
   | 
| 169 | 
  | 
  | 
  mtot = 0.0; | 
| 170 | 
  | 
  | 
  vdrift[0] = 0.0; | 
| 171 | 
  | 
  | 
  vdrift[1] = 0.0; | 
| 172 | 
  | 
  | 
  vdrift[2] = 0.0; | 
| 173 | 
  | 
  | 
  for(vd = 0; vd < n_atoms; vd++){ | 
| 174 | 
  | 
  | 
     | 
| 175 | 
  | 
  | 
    vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); | 
| 176 | 
  | 
  | 
    vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); | 
| 177 | 
  | 
  | 
    vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); | 
| 178 | 
  | 
  | 
     | 
| 179 | 
  | 
  | 
    mtot = mtot + atoms[vd]->getMass(); | 
| 180 | 
  | 
  | 
  } | 
| 181 | 
  | 
  | 
   | 
| 182 | 
  | 
  | 
  for (vd = 0; vd < 3; vd++) { | 
| 183 | 
  | 
  | 
    vdrift[vd] = vdrift[vd] / mtot; | 
| 184 | 
  | 
  | 
  } | 
| 185 | 
  | 
  | 
   | 
| 186 | 
  | 
  | 
  for(vd = 0; vd < n_atoms; vd++){ | 
| 187 | 
  | 
  | 
     | 
| 188 | 
  | 
  | 
    vx = atoms[vd]->get_vx(); | 
| 189 | 
  | 
  | 
    vy = atoms[vd]->get_vy(); | 
| 190 | 
  | 
  | 
    vz = atoms[vd]->get_vz(); | 
| 191 | 
  | 
  | 
     | 
| 192 | 
  | 
  | 
     | 
| 193 | 
  | 
  | 
    vx -= vdrift[0]; | 
| 194 | 
  | 
  | 
    vy -= vdrift[1]; | 
| 195 | 
  | 
  | 
    vz -= vdrift[2]; | 
| 196 | 
  | 
  | 
     | 
| 197 | 
  | 
  | 
    atoms[vd]->set_vx(vx); | 
| 198 | 
  | 
  | 
    atoms[vd]->set_vy(vy); | 
| 199 | 
  | 
  | 
    atoms[vd]->set_vz(vz); | 
| 200 | 
  | 
  | 
  } | 
| 201 | 
  | 
  | 
  if( n_oriented ){ | 
| 202 | 
  | 
  | 
   | 
| 203 | 
  | 
  | 
    for( i=0; i<n_atoms; i++ ){ | 
| 204 | 
  | 
  | 
       | 
| 205 | 
  | 
  | 
      if( atoms[i]->isDirectional() ){ | 
| 206 | 
  | 
  | 
         | 
| 207 | 
  | 
  | 
        dAtom = (DirectionalAtom *)atoms[i]; | 
| 208 | 
  | 
  | 
         | 
| 209 | 
  | 
  | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); | 
| 210 | 
  | 
  | 
        x = drand48(); | 
| 211 | 
  | 
  | 
        y = drand48(); | 
| 212 | 
  | 
  | 
        jx = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 213 | 
  | 
  | 
         | 
| 214 | 
  | 
  | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | 
| 215 | 
  | 
  | 
        x = drand48(); | 
| 216 | 
  | 
  | 
        y = drand48(); | 
| 217 | 
  | 
  | 
        jy = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 218 | 
  | 
  | 
         | 
| 219 | 
  | 
  | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | 
| 220 | 
  | 
  | 
        x = drand48(); | 
| 221 | 
  | 
  | 
        y = drand48(); | 
| 222 | 
  | 
  | 
        jz = vbar * sqrt( -2.0 * log(x)) * cos(2 * M_PI * y); | 
| 223 | 
  | 
  | 
         | 
| 224 | 
  | 
  | 
        dAtom->setJx( jx ); | 
| 225 | 
  | 
  | 
        dAtom->setJy( jy ); | 
| 226 | 
  | 
  | 
        dAtom->setJz( jz ); | 
| 227 | 
  | 
  | 
      } | 
| 228 | 
  | 
  | 
    }    | 
| 229 | 
  | 
  | 
  } | 
| 230 | 
  | 
  | 
} |