| 2 | 
  | 
 | 
| 3 | 
  | 
#include <cstdlib> | 
| 4 | 
  | 
#include <cstring> | 
| 5 | 
+ | 
#include <cmath> | 
| 6 | 
  | 
#include <mpi.h> | 
| 7 | 
  | 
#include <mpi++.h> | 
| 8 | 
  | 
 | 
| 11 | 
  | 
#include "fortranWrappers.hpp" | 
| 12 | 
  | 
#include "randomSPRNG.hpp" | 
| 13 | 
  | 
 | 
| 14 | 
+ | 
#define BASE_SEED 123456789 | 
| 15 | 
  | 
 | 
| 16 | 
  | 
mpiSimulation* mpiSim; | 
| 17 | 
  | 
 | 
| 35 | 
  | 
 | 
| 36 | 
  | 
mpiSimulation::~mpiSimulation(){ | 
| 37 | 
  | 
   | 
| 38 | 
+ | 
  delete[] MolToProcMap; | 
| 39 | 
+ | 
  delete[] MolComponentType; | 
| 40 | 
+ | 
  delete[] AtomToProcMap; | 
| 41 | 
+ | 
 | 
| 42 | 
  | 
  delete mpiPlug; | 
| 43 | 
  | 
  // perhaps we should let fortran know the party is over. | 
| 44 | 
  | 
   | 
| 50 | 
  | 
 | 
| 51 | 
  | 
  int nComponents; | 
| 52 | 
  | 
  MoleculeStamp** compStamps; | 
| 53 | 
< | 
  randomSPRNG myRandom; | 
| 53 | 
> | 
  randomSPRNG *myRandom; | 
| 54 | 
  | 
  int* componentsNmol; | 
| 55 | 
  | 
  int* AtomsPerProc; | 
| 56 | 
  | 
 | 
| 64 | 
  | 
  int molIndex, atomIndex, compIndex, compStart; | 
| 65 | 
  | 
  int done; | 
| 66 | 
  | 
  int nLocal, molLocal; | 
| 67 | 
< | 
  int i, index; | 
| 67 | 
> | 
  int i, j, loops, which_proc, nmol_local, natoms_local; | 
| 68 | 
> | 
  int nmol_global, natoms_global; | 
| 69 | 
> | 
  int local_index, index; | 
| 70 | 
  | 
  int smallDiff, bigDiff; | 
| 71 | 
+ | 
  int baseSeed = BASE_SEED; | 
| 72 | 
  | 
 | 
| 73 | 
  | 
  int testSum; | 
| 74 | 
  | 
 | 
| 84 | 
  | 
  mpiPlug->nSRIGlobal = entryPlug->n_SRI; | 
| 85 | 
  | 
  mpiPlug->nMolGlobal = entryPlug->n_mol; | 
| 86 | 
  | 
 | 
| 87 | 
< | 
  myRandom = new randomSPRNG(); | 
| 87 | 
> | 
  myRandom = new randomSPRNG( baseSeed ); | 
| 88 | 
  | 
 | 
| 89 | 
  | 
  a = (double)mpiPlug->nMolGlobal / (double)mpiPlug->nAtomsGlobal; | 
| 90 | 
  | 
 | 
| 129 | 
  | 
         | 
| 130 | 
  | 
        // Pick a processor at random | 
| 131 | 
  | 
 | 
| 132 | 
< | 
        which_proc = (int) (myRandom.getRandom() * mpiPlug->numberProcessors); | 
| 132 | 
> | 
        which_proc = (int) (myRandom->getRandom() * mpiPlug->numberProcessors); | 
| 133 | 
  | 
 | 
| 134 | 
  | 
        // How many atoms does this processor have? | 
| 135 | 
  | 
         | 
| 140 | 
  | 
 | 
| 141 | 
  | 
        if (old_atoms >= nTarget) continue; | 
| 142 | 
  | 
 | 
| 143 | 
< | 
        add_atoms = compStamps[MolComponentType[i]]->getNatoms(); | 
| 143 | 
> | 
        add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); | 
| 144 | 
  | 
        new_atoms = old_atoms + add_atoms; | 
| 145 | 
  | 
     | 
| 146 | 
  | 
        // If we can add this molecule to this processor without sending | 
| 189 | 
  | 
        // where a = 1 / (average atoms per molecule) | 
| 190 | 
  | 
 | 
| 191 | 
  | 
        x = (double) (new_atoms - nTarget); | 
| 192 | 
< | 
        y = myRandom.getRandom(); | 
| 192 | 
> | 
        y = myRandom->getRandom(); | 
| 193 | 
  | 
         | 
| 194 | 
  | 
        if (exp(- a * x) > y) { | 
| 195 | 
  | 
          MolToProcMap[i] = which_proc; | 
| 209 | 
  | 
 | 
| 210 | 
  | 
    // Spray out this nonsense to all other processors: | 
| 211 | 
  | 
 | 
| 212 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 212 | 
> | 
    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,  | 
| 213 | 
  | 
                          MPI_INT, 0); | 
| 214 | 
  | 
 | 
| 215 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 215 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 216 | 
  | 
                          MPI_INT, 0); | 
| 217 | 
  | 
 | 
| 218 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 218 | 
> | 
    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,  | 
| 219 | 
  | 
                          MPI_INT, 0); | 
| 220 | 
  | 
 | 
| 221 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 221 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, | 
| 222 | 
  | 
                          MPI_INT, 0);     | 
| 223 | 
  | 
  } else { | 
| 224 | 
  | 
 | 
| 225 | 
  | 
    // Listen to your marching orders from processor 0: | 
| 226 | 
  | 
     | 
| 227 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolToProcMap, mpiPlug->nMolGlobal,  | 
| 227 | 
> | 
    MPI::COMM_WORLD.Bcast(MolToProcMap, mpiPlug->nMolGlobal,  | 
| 228 | 
  | 
                          MPI_INT, 0); | 
| 229 | 
  | 
     | 
| 230 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 230 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomToProcMap, mpiPlug->nAtomsGlobal,  | 
| 231 | 
  | 
                          MPI_INT, 0); | 
| 232 | 
  | 
 | 
| 233 | 
< | 
    MPI::COMM_WORLD.Bcast(&MolComponentType, mpiPlug->nMolGlobal,  | 
| 233 | 
> | 
    MPI::COMM_WORLD.Bcast(MolComponentType, mpiPlug->nMolGlobal,  | 
| 234 | 
  | 
                          MPI_INT, 0); | 
| 235 | 
  | 
     | 
| 236 | 
< | 
    MPI::COMM_WORLD.Bcast(&AtomsPerProc, mpiPlug->numberProcessors, | 
| 236 | 
> | 
    MPI::COMM_WORLD.Bcast(AtomsPerProc, mpiPlug->numberProcessors, | 
| 237 | 
  | 
                          MPI_INT, 0); | 
| 238 | 
  | 
  } | 
| 239 | 
  | 
 | 
| 290 | 
  | 
      globalIndex[local_index] = i; | 
| 291 | 
  | 
    } | 
| 292 | 
  | 
  } | 
| 293 | 
< | 
   | 
| 294 | 
< | 
 | 
| 286 | 
< | 
 | 
| 287 | 
< | 
 | 
| 288 | 
< | 
   index = mpiPlug->myAtomStart; | 
| 289 | 
< | 
//   for( i=0; i<mpiPlug->myNlocal; i++){ | 
| 290 | 
< | 
//     globalIndex[i] = index; | 
| 291 | 
< | 
//     index++; | 
| 292 | 
< | 
//   } | 
| 293 | 
< | 
 | 
| 294 | 
< | 
//   return globalIndex; | 
| 293 | 
> | 
  | 
| 294 | 
> | 
  return globalIndex; | 
| 295 | 
  | 
} | 
| 296 | 
  | 
 | 
| 297 | 
  | 
 |