| 10 |
|
#include "Thermo.hpp" |
| 11 |
|
#include "SRI.hpp" |
| 12 |
|
#include "Integrator.hpp" |
| 13 |
+ |
#define __C |
| 14 |
+ |
//#include "mpiSimulation.hpp" |
| 15 |
|
|
| 16 |
|
#define BASE_SEED 123456789 |
| 17 |
|
|
| 79 |
|
|
| 80 |
|
double Thermo::getPotential(){ |
| 81 |
|
|
| 82 |
+ |
double potential_local; |
| 83 |
|
double potential; |
| 81 |
– |
double potential_global; |
| 84 |
|
int el, nSRI; |
| 85 |
|
SRI** sris; |
| 86 |
|
|
| 87 |
|
sris = entry_plug->sr_interactions; |
| 88 |
|
nSRI = entry_plug->n_SRI; |
| 89 |
|
|
| 90 |
< |
potential = 0.0; |
| 91 |
< |
potential_global = 0.0; |
| 90 |
< |
potential += entry_plug->lrPot; |
| 90 |
> |
potential_local = 0.0; |
| 91 |
> |
potential_local += entry_plug->lrPot; |
| 92 |
|
|
| 93 |
< |
for( el=0; el<nSRI; el++ ){ |
| 94 |
< |
|
| 94 |
< |
potential += sris[el]->get_potential(); |
| 93 |
> |
for( el=0; el<nSRI; el++ ){ |
| 94 |
> |
potential_local += sris[el]->get_potential(); |
| 95 |
|
} |
| 96 |
|
|
| 97 |
|
// Get total potential for entire system from MPI. |
| 98 |
|
#ifdef IS_MPI |
| 99 |
< |
MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM); |
| 100 |
< |
potential = potential_global; |
| 101 |
< |
|
| 99 |
> |
MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
| 100 |
> |
#else |
| 101 |
> |
potential = potential_local; |
| 102 |
|
#endif // is_mpi |
| 103 |
|
|
| 104 |
|
return potential; |
| 116 |
|
|
| 117 |
|
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
| 118 |
|
double temperature; |
| 119 |
+ |
int ndf_local, ndf; |
| 120 |
|
|
| 121 |
< |
int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 122 |
< |
- entry_plug->n_constraints - 3; |
| 121 |
> |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 122 |
> |
- entry_plug->n_constraints; |
| 123 |
|
|
| 124 |
+ |
#ifdef IS_MPI |
| 125 |
+ |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 126 |
+ |
#else |
| 127 |
+ |
ndf = ndf_local; |
| 128 |
+ |
#endif |
| 129 |
+ |
|
| 130 |
+ |
ndf = ndf - 3; |
| 131 |
+ |
|
| 132 |
|
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
| 133 |
|
return temperature; |
| 134 |
|
} |
| 148 |
|
double vx, vy, vz; |
| 149 |
|
double jx, jy, jz; |
| 150 |
|
int i, vr, vd; // velocity randomizer loop counters |
| 151 |
< |
double vdrift[3]; |
| 143 |
< |
double mtot = 0.0; |
| 151 |
> |
double *vdrift; |
| 152 |
|
double vbar; |
| 153 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 154 |
|
double av2; |
| 193 |
|
atoms[vr]->set_vy( vy ); |
| 194 |
|
atoms[vr]->set_vz( vz ); |
| 195 |
|
} |
| 196 |
+ |
|
| 197 |
+ |
// Get the Center of Mass drift velocity. |
| 198 |
+ |
|
| 199 |
+ |
vdrift = getCOMVel(); |
| 200 |
|
|
| 201 |
|
// Corrects for the center of mass drift. |
| 202 |
|
// sums all the momentum and divides by total mass. |
| 191 |
– |
|
| 192 |
– |
mtot = 0.0; |
| 193 |
– |
vdrift[0] = 0.0; |
| 194 |
– |
vdrift[1] = 0.0; |
| 195 |
– |
vdrift[2] = 0.0; |
| 196 |
– |
for(vd = 0; vd < n_atoms; vd++){ |
| 197 |
– |
|
| 198 |
– |
vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
| 199 |
– |
vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
| 200 |
– |
vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
| 201 |
– |
|
| 202 |
– |
mtot += atoms[vd]->getMass(); |
| 203 |
– |
} |
| 204 |
– |
|
| 205 |
– |
for (vd = 0; vd < 3; vd++) { |
| 206 |
– |
vdrift[vd] = vdrift[vd] / mtot; |
| 207 |
– |
} |
| 208 |
– |
|
| 203 |
|
|
| 204 |
|
for(vd = 0; vd < n_atoms; vd++){ |
| 205 |
|
|
| 206 |
|
vx = atoms[vd]->get_vx(); |
| 207 |
|
vy = atoms[vd]->get_vy(); |
| 208 |
|
vz = atoms[vd]->get_vz(); |
| 209 |
< |
|
| 216 |
< |
|
| 209 |
> |
|
| 210 |
|
vx -= vdrift[0]; |
| 211 |
|
vy -= vdrift[1]; |
| 212 |
|
vz -= vdrift[2]; |
| 239 |
|
} |
| 240 |
|
} |
| 241 |
|
} |
| 242 |
+ |
|
| 243 |
+ |
double* Thermo::getCOMVel(){ |
| 244 |
+ |
|
| 245 |
+ |
double mtot, mtot_local; |
| 246 |
+ |
double* vdrift; |
| 247 |
+ |
double vdrift_local[3]; |
| 248 |
+ |
int vd, n_atoms; |
| 249 |
+ |
Atom** atoms; |
| 250 |
+ |
|
| 251 |
+ |
vdrift = new double[3]; |
| 252 |
+ |
// We are very careless here with the distinction between n_atoms and n_local |
| 253 |
+ |
// We should really fix this before someone pokes an eye out. |
| 254 |
+ |
|
| 255 |
+ |
n_atoms = entry_plug->n_atoms; |
| 256 |
+ |
atoms = entry_plug->atoms; |
| 257 |
+ |
|
| 258 |
+ |
mtot_local = 0.0; |
| 259 |
+ |
vdrift_local[0] = 0.0; |
| 260 |
+ |
vdrift_local[1] = 0.0; |
| 261 |
+ |
vdrift_local[2] = 0.0; |
| 262 |
+ |
|
| 263 |
+ |
for(vd = 0; vd < n_atoms; vd++){ |
| 264 |
+ |
|
| 265 |
+ |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
| 266 |
+ |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
| 267 |
+ |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
| 268 |
+ |
|
| 269 |
+ |
mtot_local += atoms[vd]->getMass(); |
| 270 |
+ |
} |
| 271 |
+ |
|
| 272 |
+ |
#ifdef IS_MPI |
| 273 |
+ |
MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
| 274 |
+ |
MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM); |
| 275 |
+ |
#else |
| 276 |
+ |
mtot = mtot_local; |
| 277 |
+ |
for(vd = 0; vd < 3; vd++) { |
| 278 |
+ |
vdrift[vd] = vdrift_local[vd]; |
| 279 |
+ |
} |
| 280 |
+ |
#endif |
| 281 |
+ |
|
| 282 |
+ |
for (vd = 0; vd < 3; vd++) { |
| 283 |
+ |
vdrift[vd] = vdrift[vd] / mtot; |
| 284 |
+ |
} |
| 285 |
+ |
|
| 286 |
+ |
return vdrift; |
| 287 |
+ |
} |
| 288 |
+ |
|