| 33 | 
  | 
double Thermo::getKinetic(){ | 
| 34 | 
  | 
 | 
| 35 | 
  | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 36 | 
< | 
  double vx2, vy2, vz2; | 
| 37 | 
< | 
  double kinetic, v_sqr; | 
| 38 | 
< | 
  int kl; | 
| 39 | 
< | 
  double jx2, jy2, jz2; // the square of the angular momentums | 
| 36 | 
> | 
  double kinetic; | 
| 37 | 
> | 
  double amass; | 
| 38 | 
> | 
  double aVel[3], aJ[3], I[3][3]; | 
| 39 | 
> | 
  int j, kl; | 
| 40 | 
  | 
 | 
| 41 | 
  | 
  DirectionalAtom *dAtom; | 
| 42 | 
  | 
 | 
| 51 | 
  | 
  kinetic = 0.0; | 
| 52 | 
  | 
  kinetic_global = 0.0; | 
| 53 | 
  | 
  for( kl=0; kl < n_atoms; kl++ ){ | 
| 54 | 
+ | 
     | 
| 55 | 
+ | 
    atoms[kl]->getVel(aVel); | 
| 56 | 
+ | 
    amass = atoms[kl]->getMass(); | 
| 57 | 
+ | 
     | 
| 58 | 
+ | 
    for (j=0; j < 3; j++)  | 
| 59 | 
+ | 
      kinetic += amass * aVel[j] * aVel[j]; | 
| 60 | 
  | 
 | 
| 55 | 
– | 
    vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); | 
| 56 | 
– | 
    vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); | 
| 57 | 
– | 
    vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); | 
| 58 | 
– | 
 | 
| 59 | 
– | 
    v_sqr = vx2 + vy2 + vz2; | 
| 60 | 
– | 
    kinetic += atoms[kl]->getMass() * v_sqr; | 
| 61 | 
– | 
 | 
| 61 | 
  | 
    if( atoms[kl]->isDirectional() ){ | 
| 62 | 
  | 
             | 
| 63 | 
  | 
      dAtom = (DirectionalAtom *)atoms[kl]; | 
| 64 | 
+ | 
 | 
| 65 | 
+ | 
      dAtom->getJ( aJ ); | 
| 66 | 
+ | 
      dAtom->getI( I ); | 
| 67 | 
  | 
       | 
| 68 | 
< | 
      jx2 = dAtom->getJx() * dAtom->getJx();     | 
| 69 | 
< | 
      jy2 = dAtom->getJy() * dAtom->getJy(); | 
| 68 | 
< | 
      jz2 = dAtom->getJz() * dAtom->getJz(); | 
| 68 | 
> | 
      for (j=0; j<3; j++)  | 
| 69 | 
> | 
        kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 70 | 
  | 
       | 
| 70 | 
– | 
      kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy())  | 
| 71 | 
– | 
        + (jz2 / dAtom->getIzz()); | 
| 71 | 
  | 
    } | 
| 72 | 
  | 
  } | 
| 73 | 
  | 
#ifdef IS_MPI | 
| 137 | 
  | 
 | 
| 138 | 
  | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 139 | 
  | 
  double u, p, v; | 
| 140 | 
< | 
  double press[9]; | 
| 140 | 
> | 
  double press[3][3]; | 
| 141 | 
  | 
 | 
| 142 | 
  | 
  u = this->getTotalE(); | 
| 143 | 
  | 
 | 
| 144 | 
  | 
  this->getPressureTensor(press); | 
| 145 | 
< | 
  p = (press[0] + press[4] + press[8]) / 3.0; | 
| 145 | 
> | 
  p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 146 | 
  | 
 | 
| 147 | 
  | 
  v = this->getVolume(); | 
| 148 | 
  | 
 | 
| 151 | 
  | 
 | 
| 152 | 
  | 
double Thermo::getVolume() { | 
| 153 | 
  | 
 | 
| 154 | 
< | 
  double volume; | 
| 156 | 
< | 
  double Hmat[9]; | 
| 157 | 
< | 
 | 
| 158 | 
< | 
  entry_plug->getBoxM(Hmat); | 
| 159 | 
< | 
 | 
| 160 | 
< | 
  // volume = h1 (dot) h2 (cross) h3 | 
| 161 | 
< | 
 | 
| 162 | 
< | 
  volume = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) | 
| 163 | 
< | 
         + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) | 
| 164 | 
< | 
         + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); | 
| 165 | 
< | 
 | 
| 166 | 
< | 
  return volume; | 
| 154 | 
> | 
  return entry_plug->boxVol; | 
| 155 | 
  | 
} | 
| 156 | 
  | 
 | 
| 157 | 
  | 
double Thermo::getPressure() { | 
| 159 | 
  | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 160 | 
  | 
   | 
| 161 | 
  | 
  const double p_convert = 1.63882576e8; | 
| 162 | 
< | 
  double press[9]; | 
| 162 | 
> | 
  double press[3][3]; | 
| 163 | 
  | 
  double pressure; | 
| 164 | 
  | 
 | 
| 165 | 
  | 
  this->getPressureTensor(press); | 
| 166 | 
  | 
 | 
| 167 | 
< | 
  pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0; | 
| 167 | 
> | 
  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 168 | 
  | 
 | 
| 169 | 
  | 
  return pressure; | 
| 170 | 
  | 
} | 
| 171 | 
  | 
 | 
| 172 | 
  | 
 | 
| 173 | 
< | 
void Thermo::getPressureTensor(double press[9]){ | 
| 173 | 
> | 
void Thermo::getPressureTensor(double press[3][3]){ | 
| 174 | 
  | 
  // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 175 | 
  | 
  // routine derived via viral theorem description in: | 
| 176 | 
  | 
  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 180 | 
  | 
  double molmass, volume; | 
| 181 | 
  | 
  double vcom[3]; | 
| 182 | 
  | 
  double p_local[9], p_global[9]; | 
| 183 | 
< | 
  double theBox[3]; | 
| 196 | 
< | 
  //double* tau; | 
| 197 | 
< | 
  int i, nMols; | 
| 183 | 
> | 
  int i, j, k, l, nMols; | 
| 184 | 
  | 
  Molecule* molecules; | 
| 185 | 
  | 
 | 
| 186 | 
  | 
  nMols = entry_plug->n_mol; | 
| 219 | 
  | 
 | 
| 220 | 
  | 
  volume = entry_plug->boxVol; | 
| 221 | 
  | 
 | 
| 222 | 
< | 
  for(i=0; i<9; i++) { | 
| 223 | 
< | 
    press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume; | 
| 222 | 
> | 
  for(i = 0; i < 3; i++) { | 
| 223 | 
> | 
    for (j = 0; j < 3; j++) { | 
| 224 | 
> | 
      k = 3*i + j; | 
| 225 | 
> | 
      l = 3*j + i; | 
| 226 | 
> | 
      press[i][j] = (p_global[k] - entry_plug->tau[l]*e_convert) / volume; | 
| 227 | 
> | 
    } | 
| 228 | 
  | 
  } | 
| 229 | 
  | 
} | 
| 230 | 
  | 
 | 
| 231 | 
  | 
void Thermo::velocitize() { | 
| 232 | 
  | 
   | 
| 233 | 
  | 
  double x,y; | 
| 234 | 
< | 
  double vx, vy, vz; | 
| 235 | 
< | 
  double jx, jy, jz; | 
| 246 | 
< | 
  int i, vr, vd; // velocity randomizer loop counters | 
| 234 | 
> | 
  double aVel[3], aJ[3], I[3][3]; | 
| 235 | 
> | 
  int i, j, vr, vd; // velocity randomizer loop counters | 
| 236 | 
  | 
  double vdrift[3]; | 
| 237 | 
  | 
  double vbar; | 
| 238 | 
  | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 266 | 
  | 
    // picks random velocities from a gaussian distribution | 
| 267 | 
  | 
    // centered on vbar | 
| 268 | 
  | 
 | 
| 269 | 
< | 
    vx = vbar * gaussStream->getGaussian(); | 
| 270 | 
< | 
    vy = vbar * gaussStream->getGaussian(); | 
| 271 | 
< | 
    vz = vbar * gaussStream->getGaussian(); | 
| 269 | 
> | 
    for (j=0; j<3; j++)  | 
| 270 | 
> | 
      aVel[j] = vbar * gaussStream->getGaussian(); | 
| 271 | 
> | 
     | 
| 272 | 
> | 
    atoms[vr]->setVel( aVel ); | 
| 273 | 
  | 
 | 
| 284 | 
– | 
    atoms[vr]->set_vx( vx );  | 
| 285 | 
– | 
    atoms[vr]->set_vy( vy ); | 
| 286 | 
– | 
    atoms[vr]->set_vz( vz ); | 
| 274 | 
  | 
  } | 
| 275 | 
  | 
 | 
| 276 | 
  | 
  // Get the Center of Mass drift velocity. | 
| 282 | 
  | 
 | 
| 283 | 
  | 
  for(vd = 0; vd < n_atoms; vd++){ | 
| 284 | 
  | 
     | 
| 285 | 
< | 
    vx = atoms[vd]->get_vx(); | 
| 299 | 
< | 
    vy = atoms[vd]->get_vy(); | 
| 300 | 
< | 
    vz = atoms[vd]->get_vz(); | 
| 301 | 
< | 
         | 
| 302 | 
< | 
    vx -= vdrift[0]; | 
| 303 | 
< | 
    vy -= vdrift[1]; | 
| 304 | 
< | 
    vz -= vdrift[2]; | 
| 285 | 
> | 
    atoms[vd]->getVel(aVel); | 
| 286 | 
  | 
     | 
| 287 | 
< | 
    atoms[vd]->set_vx(vx); | 
| 288 | 
< | 
    atoms[vd]->set_vy(vy); | 
| 289 | 
< | 
    atoms[vd]->set_vz(vz); | 
| 287 | 
> | 
    for (j=0; j < 3; j++)  | 
| 288 | 
> | 
      aVel[j] -= vdrift[j]; | 
| 289 | 
> | 
         | 
| 290 | 
> | 
    atoms[vd]->setVel( aVel ); | 
| 291 | 
  | 
  } | 
| 292 | 
  | 
  if( n_oriented ){ | 
| 293 | 
  | 
   | 
| 296 | 
  | 
      if( atoms[i]->isDirectional() ){ | 
| 297 | 
  | 
         | 
| 298 | 
  | 
        dAtom = (DirectionalAtom *)atoms[i]; | 
| 299 | 
+ | 
        dAtom->getI( I ); | 
| 300 | 
+ | 
         | 
| 301 | 
+ | 
        for (j = 0 ; j < 3; j++) { | 
| 302 | 
  | 
 | 
| 303 | 
< | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); | 
| 304 | 
< | 
        jx = vbar * gaussStream->getGaussian(); | 
| 303 | 
> | 
          vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 304 | 
> | 
          aJ[j] = vbar * gaussStream->getGaussian(); | 
| 305 | 
  | 
 | 
| 306 | 
< | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | 
| 307 | 
< | 
        jy = vbar * gaussStream->getGaussian(); | 
| 308 | 
< | 
         | 
| 309 | 
< | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | 
| 325 | 
< | 
        jz = vbar * gaussStream->getGaussian(); | 
| 326 | 
< | 
         | 
| 327 | 
< | 
        dAtom->setJx( jx ); | 
| 328 | 
< | 
        dAtom->setJy( jy ); | 
| 329 | 
< | 
        dAtom->setJz( jz ); | 
| 306 | 
> | 
        }        | 
| 307 | 
> | 
 | 
| 308 | 
> | 
        dAtom->setJ( aJ ); | 
| 309 | 
> | 
 | 
| 310 | 
  | 
      } | 
| 311 | 
  | 
    }    | 
| 312 | 
  | 
  } | 
| 315 | 
  | 
void Thermo::getCOMVel(double vdrift[3]){ | 
| 316 | 
  | 
 | 
| 317 | 
  | 
  double mtot, mtot_local; | 
| 318 | 
+ | 
  double aVel[3], amass; | 
| 319 | 
  | 
  double vdrift_local[3]; | 
| 320 | 
< | 
  int vd, n_atoms; | 
| 320 | 
> | 
  int vd, n_atoms, j; | 
| 321 | 
  | 
  Atom** atoms; | 
| 322 | 
  | 
 | 
| 323 | 
  | 
  // We are very careless here with the distinction between n_atoms and n_local | 
| 333 | 
  | 
   | 
| 334 | 
  | 
  for(vd = 0; vd < n_atoms; vd++){ | 
| 335 | 
  | 
     | 
| 336 | 
< | 
    vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); | 
| 337 | 
< | 
    vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); | 
| 338 | 
< | 
    vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); | 
| 336 | 
> | 
    amass = atoms[vd]->getMass(); | 
| 337 | 
> | 
    atoms[vd]->getVel( aVel ); | 
| 338 | 
> | 
 | 
| 339 | 
> | 
    for(j = 0; j < 3; j++)  | 
| 340 | 
> | 
      vdrift_local[j] += aVel[j] * amass; | 
| 341 | 
  | 
     | 
| 342 | 
< | 
    mtot_local += atoms[vd]->getMass(); | 
| 342 | 
> | 
    mtot_local += amass; | 
| 343 | 
  | 
  } | 
| 344 | 
  | 
 | 
| 345 | 
  | 
#ifdef IS_MPI |