| 11 |
|
#include "SRI.hpp" |
| 12 |
|
#include "Integrator.hpp" |
| 13 |
|
|
| 14 |
+ |
#ifdef IS_MPI |
| 15 |
+ |
#define __C |
| 16 |
+ |
#include "mpiSimulation.hpp" |
| 17 |
+ |
#endif // is_mpi |
| 18 |
+ |
|
| 19 |
+ |
|
| 20 |
|
#define BASE_SEED 123456789 |
| 21 |
|
|
| 22 |
|
Thermo::Thermo( SimInfo* the_entry_plug ) { |
| 83 |
|
|
| 84 |
|
double Thermo::getPotential(){ |
| 85 |
|
|
| 86 |
+ |
double potential_local; |
| 87 |
|
double potential; |
| 81 |
– |
double potential_global; |
| 88 |
|
int el, nSRI; |
| 89 |
|
SRI** sris; |
| 90 |
|
|
| 91 |
|
sris = entry_plug->sr_interactions; |
| 92 |
|
nSRI = entry_plug->n_SRI; |
| 93 |
|
|
| 94 |
< |
potential = 0.0; |
| 95 |
< |
potential_global = 0.0; |
| 90 |
< |
potential += entry_plug->lrPot; |
| 94 |
> |
potential_local = 0.0; |
| 95 |
> |
potential_local += entry_plug->lrPot; |
| 96 |
|
|
| 97 |
< |
for( el=0; el<nSRI; el++ ){ |
| 98 |
< |
|
| 94 |
< |
potential += sris[el]->get_potential(); |
| 97 |
> |
for( el=0; el<entry_plug->n_mol; el++ ){ |
| 98 |
> |
potential_local += entry_plug->molecules[el]->get_potential(); |
| 99 |
|
} |
| 100 |
|
|
| 101 |
|
// Get total potential for entire system from MPI. |
| 102 |
|
#ifdef IS_MPI |
| 103 |
< |
MPI::COMM_WORLD.Allreduce(&potential,&potential_global,1,MPI_DOUBLE,MPI_SUM); |
| 104 |
< |
potential = potential_global; |
| 105 |
< |
|
| 103 |
> |
MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
| 104 |
> |
#else |
| 105 |
> |
potential = potential_local; |
| 106 |
|
#endif // is_mpi |
| 107 |
|
|
| 108 |
|
return potential; |
| 120 |
|
|
| 121 |
|
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
| 122 |
|
double temperature; |
| 123 |
+ |
int ndf_local, ndf; |
| 124 |
|
|
| 125 |
< |
int ndf = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 126 |
< |
- entry_plug->n_constraints - 3; |
| 125 |
> |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 126 |
> |
- entry_plug->n_constraints; |
| 127 |
|
|
| 128 |
+ |
#ifdef IS_MPI |
| 129 |
+ |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 130 |
+ |
#else |
| 131 |
+ |
ndf = ndf_local; |
| 132 |
+ |
#endif |
| 133 |
+ |
|
| 134 |
+ |
ndf = ndf - 3; |
| 135 |
+ |
|
| 136 |
|
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
| 137 |
|
return temperature; |
| 138 |
|
} |
| 153 |
|
double jx, jy, jz; |
| 154 |
|
int i, vr, vd; // velocity randomizer loop counters |
| 155 |
|
double vdrift[3]; |
| 143 |
– |
double mtot = 0.0; |
| 156 |
|
double vbar; |
| 157 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
| 158 |
|
double av2; |
| 159 |
|
double kebar; |
| 160 |
< |
int ndf; // number of degrees of freedom |
| 161 |
< |
int ndfRaw; // the raw number of degrees of freedom |
| 160 |
> |
int ndf, ndf_local; // number of degrees of freedom |
| 161 |
> |
int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom |
| 162 |
|
int n_atoms; |
| 163 |
|
Atom** atoms; |
| 164 |
|
DirectionalAtom* dAtom; |
| 172 |
|
n_oriented = entry_plug->n_oriented; |
| 173 |
|
n_constraints = entry_plug->n_constraints; |
| 174 |
|
|
| 175 |
+ |
// Raw degrees of freedom that we have to set |
| 176 |
+ |
ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; |
| 177 |
|
|
| 178 |
< |
ndfRaw = 3 * n_atoms + 3 * n_oriented; |
| 179 |
< |
ndf = ndfRaw - n_constraints - 3; |
| 178 |
> |
// Degrees of freedom that can contain kinetic energy |
| 179 |
> |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
| 180 |
> |
- entry_plug->n_constraints; |
| 181 |
> |
|
| 182 |
> |
#ifdef IS_MPI |
| 183 |
> |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
| 184 |
> |
MPI::COMM_WORLD.Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM); |
| 185 |
> |
#else |
| 186 |
> |
ndfRaw = ndfRaw_local; |
| 187 |
> |
ndf = ndf_local; |
| 188 |
> |
#endif |
| 189 |
> |
ndf = ndf - 3; |
| 190 |
> |
|
| 191 |
|
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
| 192 |
|
|
| 193 |
|
for(vr = 0; vr < n_atoms; vr++){ |
| 210 |
|
atoms[vr]->set_vy( vy ); |
| 211 |
|
atoms[vr]->set_vz( vz ); |
| 212 |
|
} |
| 213 |
+ |
|
| 214 |
+ |
// Get the Center of Mass drift velocity. |
| 215 |
+ |
|
| 216 |
+ |
getCOMVel(vdrift); |
| 217 |
|
|
| 218 |
|
// Corrects for the center of mass drift. |
| 219 |
|
// sums all the momentum and divides by total mass. |
| 191 |
– |
|
| 192 |
– |
mtot = 0.0; |
| 193 |
– |
vdrift[0] = 0.0; |
| 194 |
– |
vdrift[1] = 0.0; |
| 195 |
– |
vdrift[2] = 0.0; |
| 196 |
– |
for(vd = 0; vd < n_atoms; vd++){ |
| 197 |
– |
|
| 198 |
– |
vdrift[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
| 199 |
– |
vdrift[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
| 200 |
– |
vdrift[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
| 201 |
– |
|
| 202 |
– |
mtot += atoms[vd]->getMass(); |
| 203 |
– |
} |
| 204 |
– |
|
| 205 |
– |
for (vd = 0; vd < 3; vd++) { |
| 206 |
– |
vdrift[vd] = vdrift[vd] / mtot; |
| 207 |
– |
} |
| 208 |
– |
|
| 220 |
|
|
| 221 |
|
for(vd = 0; vd < n_atoms; vd++){ |
| 222 |
|
|
| 223 |
|
vx = atoms[vd]->get_vx(); |
| 224 |
|
vy = atoms[vd]->get_vy(); |
| 225 |
|
vz = atoms[vd]->get_vz(); |
| 226 |
< |
|
| 216 |
< |
|
| 226 |
> |
|
| 227 |
|
vx -= vdrift[0]; |
| 228 |
|
vy -= vdrift[1]; |
| 229 |
|
vz -= vdrift[2]; |
| 256 |
|
} |
| 257 |
|
} |
| 258 |
|
} |
| 259 |
+ |
|
| 260 |
+ |
void Thermo::getCOMVel(double vdrift[3]){ |
| 261 |
+ |
|
| 262 |
+ |
double mtot, mtot_local; |
| 263 |
+ |
double vdrift_local[3]; |
| 264 |
+ |
int vd, n_atoms; |
| 265 |
+ |
Atom** atoms; |
| 266 |
+ |
|
| 267 |
+ |
// We are very careless here with the distinction between n_atoms and n_local |
| 268 |
+ |
// We should really fix this before someone pokes an eye out. |
| 269 |
+ |
|
| 270 |
+ |
n_atoms = entry_plug->n_atoms; |
| 271 |
+ |
atoms = entry_plug->atoms; |
| 272 |
+ |
|
| 273 |
+ |
mtot_local = 0.0; |
| 274 |
+ |
vdrift_local[0] = 0.0; |
| 275 |
+ |
vdrift_local[1] = 0.0; |
| 276 |
+ |
vdrift_local[2] = 0.0; |
| 277 |
+ |
|
| 278 |
+ |
for(vd = 0; vd < n_atoms; vd++){ |
| 279 |
+ |
|
| 280 |
+ |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
| 281 |
+ |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
| 282 |
+ |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
| 283 |
+ |
|
| 284 |
+ |
mtot_local += atoms[vd]->getMass(); |
| 285 |
+ |
} |
| 286 |
+ |
|
| 287 |
+ |
#ifdef IS_MPI |
| 288 |
+ |
MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
| 289 |
+ |
MPI::COMM_WORLD.Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM); |
| 290 |
+ |
#else |
| 291 |
+ |
mtot = mtot_local; |
| 292 |
+ |
for(vd = 0; vd < 3; vd++) { |
| 293 |
+ |
vdrift[vd] = vdrift_local[vd]; |
| 294 |
+ |
} |
| 295 |
+ |
#endif |
| 296 |
+ |
|
| 297 |
+ |
for (vd = 0; vd < 3; vd++) { |
| 298 |
+ |
vdrift[vd] = vdrift[vd] / mtot; |
| 299 |
+ |
} |
| 300 |
+ |
|
| 301 |
+ |
} |
| 302 |
+ |
|