| 1 | #include <cmath> | 
| 2 | #include <iostream> | 
| 3 | using namespace std; | 
| 4 |  | 
| 5 | #ifdef IS_MPI | 
| 6 | #include <mpi.h> | 
| 7 | #endif //is_mpi | 
| 8 |  | 
| 9 | #include "Thermo.hpp" | 
| 10 | #include "SRI.hpp" | 
| 11 | #include "Integrator.hpp" | 
| 12 | #include "simError.h" | 
| 13 |  | 
| 14 | #ifdef IS_MPI | 
| 15 | #define __C | 
| 16 | #include "mpiSimulation.hpp" | 
| 17 | #endif // is_mpi | 
| 18 |  | 
| 19 | Thermo::Thermo( SimInfo* the_info ) { | 
| 20 | info = the_info; | 
| 21 | int baseSeed = the_info->getSeed(); | 
| 22 |  | 
| 23 | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 24 | } | 
| 25 |  | 
| 26 | Thermo::~Thermo(){ | 
| 27 | delete gaussStream; | 
| 28 | } | 
| 29 |  | 
| 30 | double Thermo::getKinetic(){ | 
| 31 |  | 
| 32 | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 33 | double kinetic; | 
| 34 | double amass; | 
| 35 | double aVel[3], aJ[3], I[3][3]; | 
| 36 | int j, kl; | 
| 37 |  | 
| 38 | DirectionalAtom *dAtom; | 
| 39 |  | 
| 40 | int n_atoms; | 
| 41 | double kinetic_global; | 
| 42 | Atom** atoms; | 
| 43 |  | 
| 44 |  | 
| 45 | n_atoms = info->n_atoms; | 
| 46 | atoms = info->atoms; | 
| 47 |  | 
| 48 | kinetic = 0.0; | 
| 49 | kinetic_global = 0.0; | 
| 50 | for( kl=0; kl < n_atoms; kl++ ){ | 
| 51 |  | 
| 52 | atoms[kl]->getVel(aVel); | 
| 53 | amass = atoms[kl]->getMass(); | 
| 54 |  | 
| 55 | for (j=0; j < 3; j++) | 
| 56 | kinetic += amass * aVel[j] * aVel[j]; | 
| 57 |  | 
| 58 | if( atoms[kl]->isDirectional() ){ | 
| 59 |  | 
| 60 | dAtom = (DirectionalAtom *)atoms[kl]; | 
| 61 |  | 
| 62 | dAtom->getJ( aJ ); | 
| 63 | dAtom->getI( I ); | 
| 64 |  | 
| 65 | for (j=0; j<3; j++) | 
| 66 | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 67 |  | 
| 68 | } | 
| 69 | } | 
| 70 | #ifdef IS_MPI | 
| 71 | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 72 | MPI_SUM, MPI_COMM_WORLD); | 
| 73 | kinetic = kinetic_global; | 
| 74 | #endif //is_mpi | 
| 75 |  | 
| 76 | kinetic = kinetic * 0.5 / e_convert; | 
| 77 |  | 
| 78 | return kinetic; | 
| 79 | } | 
| 80 |  | 
| 81 | double Thermo::getPotential(){ | 
| 82 |  | 
| 83 | double potential_local; | 
| 84 | double potential; | 
| 85 | int el, nSRI; | 
| 86 | Molecule* molecules; | 
| 87 |  | 
| 88 | molecules = info->molecules; | 
| 89 | nSRI = info->n_SRI; | 
| 90 |  | 
| 91 | potential_local = 0.0; | 
| 92 | potential = 0.0; | 
| 93 | potential_local += info->lrPot; | 
| 94 |  | 
| 95 | for( el=0; el<info->n_mol; el++ ){ | 
| 96 | potential_local += molecules[el].getPotential(); | 
| 97 | } | 
| 98 |  | 
| 99 | // Get total potential for entire system from MPI. | 
| 100 | #ifdef IS_MPI | 
| 101 | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 102 | MPI_SUM, MPI_COMM_WORLD); | 
| 103 | #else | 
| 104 | potential = potential_local; | 
| 105 | #endif // is_mpi | 
| 106 |  | 
| 107 | #ifdef IS_MPI | 
| 108 | /* | 
| 109 | std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; | 
| 110 | */ | 
| 111 | #endif | 
| 112 |  | 
| 113 | return potential; | 
| 114 | } | 
| 115 |  | 
| 116 | double Thermo::getTotalE(){ | 
| 117 |  | 
| 118 | double total; | 
| 119 |  | 
| 120 | total = this->getKinetic() + this->getPotential(); | 
| 121 | return total; | 
| 122 | } | 
| 123 |  | 
| 124 | double Thermo::getTemperature(){ | 
| 125 |  | 
| 126 | const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) | 
| 127 | double temperature; | 
| 128 |  | 
| 129 | temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); | 
| 130 | return temperature; | 
| 131 | } | 
| 132 |  | 
| 133 | double Thermo::getEnthalpy() { | 
| 134 |  | 
| 135 | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 136 | double u, p, v; | 
| 137 | double press[3][3]; | 
| 138 |  | 
| 139 | u = this->getTotalE(); | 
| 140 |  | 
| 141 | this->getPressureTensor(press); | 
| 142 | p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 143 |  | 
| 144 | v = this->getVolume(); | 
| 145 |  | 
| 146 | return (u + (p*v)/e_convert); | 
| 147 | } | 
| 148 |  | 
| 149 | double Thermo::getVolume() { | 
| 150 |  | 
| 151 | return info->boxVol; | 
| 152 | } | 
| 153 |  | 
| 154 | double Thermo::getPressure() { | 
| 155 |  | 
| 156 | // Relies on the calculation of the full molecular pressure tensor | 
| 157 |  | 
| 158 | const double p_convert = 1.63882576e8; | 
| 159 | double press[3][3]; | 
| 160 | double pressure; | 
| 161 |  | 
| 162 | this->getPressureTensor(press); | 
| 163 |  | 
| 164 | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 165 |  | 
| 166 | return pressure; | 
| 167 | } | 
| 168 |  | 
| 169 | double Thermo::getPressureX() { | 
| 170 |  | 
| 171 | // Relies on the calculation of the full molecular pressure tensor | 
| 172 |  | 
| 173 | const double p_convert = 1.63882576e8; | 
| 174 | double press[3][3]; | 
| 175 | double pressureX; | 
| 176 |  | 
| 177 | this->getPressureTensor(press); | 
| 178 |  | 
| 179 | pressureX = p_convert * press[0][0]; | 
| 180 |  | 
| 181 | return pressureX; | 
| 182 | } | 
| 183 |  | 
| 184 | double Thermo::getPressureY() { | 
| 185 |  | 
| 186 | // Relies on the calculation of the full molecular pressure tensor | 
| 187 |  | 
| 188 | const double p_convert = 1.63882576e8; | 
| 189 | double press[3][3]; | 
| 190 | double pressureY; | 
| 191 |  | 
| 192 | this->getPressureTensor(press); | 
| 193 |  | 
| 194 | pressureY = p_convert * press[1][1]; | 
| 195 |  | 
| 196 | return pressureY; | 
| 197 | } | 
| 198 |  | 
| 199 | double Thermo::getPressureZ() { | 
| 200 |  | 
| 201 | // Relies on the calculation of the full molecular pressure tensor | 
| 202 |  | 
| 203 | const double p_convert = 1.63882576e8; | 
| 204 | double press[3][3]; | 
| 205 | double pressureZ; | 
| 206 |  | 
| 207 | this->getPressureTensor(press); | 
| 208 |  | 
| 209 | pressureZ = p_convert * press[2][2]; | 
| 210 |  | 
| 211 | return pressureZ; | 
| 212 | } | 
| 213 |  | 
| 214 |  | 
| 215 | void Thermo::getPressureTensor(double press[3][3]){ | 
| 216 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 217 | // routine derived via viral theorem description in: | 
| 218 | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 219 |  | 
| 220 | const double e_convert = 4.184e-4; | 
| 221 |  | 
| 222 | double molmass, volume; | 
| 223 | double vcom[3]; | 
| 224 | double p_local[9], p_global[9]; | 
| 225 | int i, j, k, nMols; | 
| 226 | Molecule* molecules; | 
| 227 |  | 
| 228 | nMols = info->n_mol; | 
| 229 | molecules = info->molecules; | 
| 230 | //tau = info->tau; | 
| 231 |  | 
| 232 | // use velocities of molecular centers of mass and molecular masses: | 
| 233 | for (i=0; i < 9; i++) { | 
| 234 | p_local[i] = 0.0; | 
| 235 | p_global[i] = 0.0; | 
| 236 | } | 
| 237 |  | 
| 238 | for (i=0; i < nMols; i++) { | 
| 239 | molmass = molecules[i].getCOMvel(vcom); | 
| 240 |  | 
| 241 | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 242 | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 243 | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 244 | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 245 | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 246 | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 247 | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 248 | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 249 | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 250 | } | 
| 251 |  | 
| 252 | // Get total for entire system from MPI. | 
| 253 |  | 
| 254 | #ifdef IS_MPI | 
| 255 | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 256 | #else | 
| 257 | for (i=0; i<9; i++) { | 
| 258 | p_global[i] = p_local[i]; | 
| 259 | } | 
| 260 | #endif // is_mpi | 
| 261 |  | 
| 262 | volume = this->getVolume(); | 
| 263 |  | 
| 264 | for(i = 0; i < 3; i++) { | 
| 265 | for (j = 0; j < 3; j++) { | 
| 266 | k = 3*i + j; | 
| 267 | press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; | 
| 268 |  | 
| 269 | } | 
| 270 | } | 
| 271 | } | 
| 272 |  | 
| 273 | void Thermo::velocitize() { | 
| 274 |  | 
| 275 | double aVel[3], aJ[3], I[3][3]; | 
| 276 | int i, j, vr, vd; // velocity randomizer loop counters | 
| 277 | double vdrift[3]; | 
| 278 | double vbar; | 
| 279 | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 280 | double av2; | 
| 281 | double kebar; | 
| 282 | int n_atoms; | 
| 283 | Atom** atoms; | 
| 284 | DirectionalAtom* dAtom; | 
| 285 | double temperature; | 
| 286 | int n_oriented; | 
| 287 | int n_constraints; | 
| 288 |  | 
| 289 | atoms         = info->atoms; | 
| 290 | n_atoms       = info->n_atoms; | 
| 291 | temperature   = info->target_temp; | 
| 292 | n_oriented    = info->n_oriented; | 
| 293 | n_constraints = info->n_constraints; | 
| 294 |  | 
| 295 | kebar = kb * temperature * (double)info->ndfRaw / | 
| 296 | ( 2.0 * (double)info->ndf ); | 
| 297 |  | 
| 298 | for(vr = 0; vr < n_atoms; vr++){ | 
| 299 |  | 
| 300 | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 301 |  | 
| 302 | av2 = 2.0 * kebar / atoms[vr]->getMass(); | 
| 303 | vbar = sqrt( av2 ); | 
| 304 |  | 
| 305 | //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | 
| 306 |  | 
| 307 | // picks random velocities from a gaussian distribution | 
| 308 | // centered on vbar | 
| 309 |  | 
| 310 | for (j=0; j<3; j++) | 
| 311 | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 312 |  | 
| 313 | atoms[vr]->setVel( aVel ); | 
| 314 |  | 
| 315 | } | 
| 316 |  | 
| 317 | // Get the Center of Mass drift velocity. | 
| 318 |  | 
| 319 | getCOMVel(vdrift); | 
| 320 |  | 
| 321 | //  Corrects for the center of mass drift. | 
| 322 | // sums all the momentum and divides by total mass. | 
| 323 |  | 
| 324 | for(vd = 0; vd < n_atoms; vd++){ | 
| 325 |  | 
| 326 | atoms[vd]->getVel(aVel); | 
| 327 |  | 
| 328 | for (j=0; j < 3; j++) | 
| 329 | aVel[j] -= vdrift[j]; | 
| 330 |  | 
| 331 | atoms[vd]->setVel( aVel ); | 
| 332 | } | 
| 333 | if( n_oriented ){ | 
| 334 |  | 
| 335 | for( i=0; i<n_atoms; i++ ){ | 
| 336 |  | 
| 337 | if( atoms[i]->isDirectional() ){ | 
| 338 |  | 
| 339 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 340 | dAtom->getI( I ); | 
| 341 |  | 
| 342 | for (j = 0 ; j < 3; j++) { | 
| 343 |  | 
| 344 | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 345 | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 346 |  | 
| 347 | } | 
| 348 |  | 
| 349 | dAtom->setJ( aJ ); | 
| 350 |  | 
| 351 | } | 
| 352 | } | 
| 353 | } | 
| 354 | } | 
| 355 |  | 
| 356 | void Thermo::getCOMVel(double vdrift[3]){ | 
| 357 |  | 
| 358 | double mtot, mtot_local; | 
| 359 | double aVel[3], amass; | 
| 360 | double vdrift_local[3]; | 
| 361 | int vd, n_atoms, j; | 
| 362 | Atom** atoms; | 
| 363 |  | 
| 364 | // We are very careless here with the distinction between n_atoms and n_local | 
| 365 | // We should really fix this before someone pokes an eye out. | 
| 366 |  | 
| 367 | n_atoms = info->n_atoms; | 
| 368 | atoms   = info->atoms; | 
| 369 |  | 
| 370 | mtot_local = 0.0; | 
| 371 | vdrift_local[0] = 0.0; | 
| 372 | vdrift_local[1] = 0.0; | 
| 373 | vdrift_local[2] = 0.0; | 
| 374 |  | 
| 375 | for(vd = 0; vd < n_atoms; vd++){ | 
| 376 |  | 
| 377 | amass = atoms[vd]->getMass(); | 
| 378 | atoms[vd]->getVel( aVel ); | 
| 379 |  | 
| 380 | for(j = 0; j < 3; j++) | 
| 381 | vdrift_local[j] += aVel[j] * amass; | 
| 382 |  | 
| 383 | mtot_local += amass; | 
| 384 | } | 
| 385 |  | 
| 386 | #ifdef IS_MPI | 
| 387 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 388 | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 389 | #else | 
| 390 | mtot = mtot_local; | 
| 391 | for(vd = 0; vd < 3; vd++) { | 
| 392 | vdrift[vd] = vdrift_local[vd]; | 
| 393 | } | 
| 394 | #endif | 
| 395 |  | 
| 396 | for (vd = 0; vd < 3; vd++) { | 
| 397 | vdrift[vd] = vdrift[vd] / mtot; | 
| 398 | } | 
| 399 |  | 
| 400 | } | 
| 401 |  | 
| 402 | void Thermo::getCOM(double COM[3]){ | 
| 403 |  | 
| 404 | double mtot, mtot_local; | 
| 405 | double aPos[3], amass; | 
| 406 | double COM_local[3]; | 
| 407 | int i, n_atoms, j; | 
| 408 | Atom** atoms; | 
| 409 |  | 
| 410 | // We are very careless here with the distinction between n_atoms and n_local | 
| 411 | // We should really fix this before someone pokes an eye out. | 
| 412 |  | 
| 413 | n_atoms = info->n_atoms; | 
| 414 | atoms   = info->atoms; | 
| 415 |  | 
| 416 | mtot_local = 0.0; | 
| 417 | COM_local[0] = 0.0; | 
| 418 | COM_local[1] = 0.0; | 
| 419 | COM_local[2] = 0.0; | 
| 420 |  | 
| 421 | for(i = 0; i < n_atoms; i++){ | 
| 422 |  | 
| 423 | amass = atoms[i]->getMass(); | 
| 424 | atoms[i]->getPos( aPos ); | 
| 425 |  | 
| 426 | for(j = 0; j < 3; j++) | 
| 427 | COM_local[j] += aPos[j] * amass; | 
| 428 |  | 
| 429 | mtot_local += amass; | 
| 430 | } | 
| 431 |  | 
| 432 | #ifdef IS_MPI | 
| 433 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 434 | MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 435 | #else | 
| 436 | mtot = mtot_local; | 
| 437 | for(i = 0; i < 3; i++) { | 
| 438 | COM[i] = COM_local[i]; | 
| 439 | } | 
| 440 | #endif | 
| 441 |  | 
| 442 | for (i = 0; i < 3; i++) { | 
| 443 | COM[i] = COM[i] / mtot; | 
| 444 | } | 
| 445 | } |