| 151 |
|
} |
| 152 |
|
|
| 153 |
|
double Thermo::getVolume() { |
| 154 |
– |
double theBox[3]; |
| 154 |
|
|
| 155 |
< |
entry_plug->getBox(theBox); |
| 156 |
< |
return (theBox[0] * theBox[1] * theBox[2]); |
| 155 |
> |
double volume; |
| 156 |
> |
double Hmat[9]; |
| 157 |
> |
|
| 158 |
> |
entry_plug->getBoxM(Hmat); |
| 159 |
> |
|
| 160 |
> |
// volume = h1 (dot) h2 (cross) h3 |
| 161 |
> |
|
| 162 |
> |
volume = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
| 163 |
> |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
| 164 |
> |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
| 165 |
> |
|
| 166 |
> |
return volume; |
| 167 |
|
} |
| 168 |
|
|
| 169 |
|
double Thermo::getPressure() { |
| 170 |
< |
// returns the pressure in units of atm |
| 170 |
> |
|
| 171 |
|
// Relies on the calculation of the full molecular pressure tensor |
| 172 |
|
|
| 173 |
|
const double p_convert = 1.63882576e8; |
| 193 |
|
double vcom[3]; |
| 194 |
|
double p_local[9], p_global[9]; |
| 195 |
|
double theBox[3]; |
| 196 |
< |
double* tau; |
| 196 |
> |
//double* tau; |
| 197 |
|
int i, nMols; |
| 198 |
|
Molecule* molecules; |
| 199 |
|
|
| 200 |
|
nMols = entry_plug->n_mol; |
| 201 |
|
molecules = entry_plug->molecules; |
| 202 |
< |
tau = entry_plug->tau; |
| 202 |
> |
//tau = entry_plug->tau; |
| 203 |
|
|
| 204 |
|
// use velocities of molecular centers of mass and molecular masses: |
| 205 |
|
for (i=0; i < 9; i++) { |
| 231 |
|
} |
| 232 |
|
#endif // is_mpi |
| 233 |
|
|
| 234 |
< |
entry_plug->getBox(theBox); |
| 234 |
> |
volume = entry_plug->boxVol; |
| 235 |
|
|
| 227 |
– |
volume = theBox[0] * theBox[1] * theBox[2]; |
| 228 |
– |
|
| 236 |
|
for(i=0; i<9; i++) { |
| 237 |
< |
press[i] = (p_global[i] - tau[i]*e_convert) / volume; |
| 237 |
> |
press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume; |
| 238 |
|
} |
| 239 |
|
} |
| 240 |
|
|