| 4 | 
  | 
 | 
| 5 | 
  | 
#ifdef IS_MPI | 
| 6 | 
  | 
#include <mpi.h> | 
| 7 | 
– | 
#include <mpi++.h> | 
| 7 | 
  | 
#endif //is_mpi | 
| 8 | 
  | 
 | 
| 9 | 
  | 
#include "Thermo.hpp" | 
| 10 | 
  | 
#include "SRI.hpp" | 
| 11 | 
  | 
#include "Integrator.hpp" | 
| 12 | 
+ | 
#include "simError.h" | 
| 13 | 
+ | 
 | 
| 14 | 
+ | 
#ifdef IS_MPI | 
| 15 | 
  | 
#define __C | 
| 16 | 
< | 
//#include "mpiSimulation.hpp" | 
| 16 | 
> | 
#include "mpiSimulation.hpp" | 
| 17 | 
> | 
#endif // is_mpi | 
| 18 | 
  | 
 | 
| 19 | 
+ | 
 | 
| 20 | 
  | 
#define BASE_SEED 123456789 | 
| 21 | 
  | 
 | 
| 22 | 
  | 
Thermo::Thermo( SimInfo* the_entry_plug ) {  | 
| 72 | 
  | 
    } | 
| 73 | 
  | 
  } | 
| 74 | 
  | 
#ifdef IS_MPI | 
| 75 | 
< | 
  MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); | 
| 75 | 
> | 
  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 76 | 
> | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 77 | 
  | 
  kinetic = kinetic_global; | 
| 78 | 
  | 
#endif //is_mpi | 
| 79 | 
  | 
 | 
| 87 | 
  | 
  double potential_local; | 
| 88 | 
  | 
  double potential; | 
| 89 | 
  | 
  int el, nSRI; | 
| 90 | 
< | 
  SRI** sris; | 
| 90 | 
> | 
  Molecule* molecules; | 
| 91 | 
  | 
 | 
| 92 | 
< | 
  sris = entry_plug->sr_interactions; | 
| 92 | 
> | 
  molecules = entry_plug->molecules; | 
| 93 | 
  | 
  nSRI = entry_plug->n_SRI; | 
| 94 | 
  | 
 | 
| 95 | 
  | 
  potential_local = 0.0; | 
| 96 | 
+ | 
  potential = 0.0; | 
| 97 | 
  | 
  potential_local += entry_plug->lrPot; | 
| 98 | 
  | 
 | 
| 99 | 
< | 
  for( el=0; el<nSRI; el++ ){     | 
| 100 | 
< | 
    potential_local += sris[el]->get_potential(); | 
| 99 | 
> | 
  for( el=0; el<entry_plug->n_mol; el++ ){     | 
| 100 | 
> | 
    potential_local += molecules[el].getPotential(); | 
| 101 | 
  | 
  } | 
| 102 | 
  | 
 | 
| 103 | 
  | 
  // Get total potential for entire system from MPI. | 
| 104 | 
  | 
#ifdef IS_MPI | 
| 105 | 
< | 
  MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); | 
| 105 | 
> | 
  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 106 | 
> | 
                MPI_SUM, MPI_COMM_WORLD); | 
| 107 | 
  | 
#else | 
| 108 | 
  | 
  potential = potential_local;  | 
| 109 | 
  | 
#endif // is_mpi | 
| 110 | 
  | 
 | 
| 111 | 
+ | 
#ifdef IS_MPI | 
| 112 | 
+ | 
  /* | 
| 113 | 
+ | 
  std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; | 
| 114 | 
+ | 
  */ | 
| 115 | 
+ | 
#endif | 
| 116 | 
+ | 
 | 
| 117 | 
  | 
  return potential; | 
| 118 | 
  | 
} | 
| 119 | 
  | 
 | 
| 135 | 
  | 
    - entry_plug->n_constraints; | 
| 136 | 
  | 
 | 
| 137 | 
  | 
#ifdef IS_MPI | 
| 138 | 
< | 
  MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); | 
| 138 | 
> | 
  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 139 | 
  | 
#else | 
| 140 | 
  | 
  ndf = ndf_local; | 
| 141 | 
  | 
#endif | 
| 147 | 
  | 
} | 
| 148 | 
  | 
 | 
| 149 | 
  | 
double Thermo::getPressure(){ | 
| 150 | 
< | 
 | 
| 151 | 
< | 
//  const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm | 
| 152 | 
< | 
// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa | 
| 140 | 
< | 
//  const double conv_A_m = 1.0E-10; //convert A -> m | 
| 150 | 
> | 
  // returns pressure in units amu*fs^-2*Ang^-1 | 
| 151 | 
> | 
  // routine derived via viral theorem description in: | 
| 152 | 
> | 
  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 153 | 
  | 
 | 
| 154 | 
  | 
  return 0.0; | 
| 155 | 
  | 
} | 
| 160 | 
  | 
  double vx, vy, vz; | 
| 161 | 
  | 
  double jx, jy, jz; | 
| 162 | 
  | 
  int i, vr, vd; // velocity randomizer loop counters | 
| 163 | 
< | 
  double *vdrift; | 
| 163 | 
> | 
  double vdrift[3]; | 
| 164 | 
  | 
  double vbar; | 
| 165 | 
  | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 166 | 
  | 
  double av2; | 
| 167 | 
  | 
  double kebar; | 
| 168 | 
< | 
  int ndf; // number of degrees of freedom | 
| 169 | 
< | 
  int ndfRaw; // the raw number of degrees of freedom | 
| 168 | 
> | 
  int ndf, ndf_local; // number of degrees of freedom | 
| 169 | 
> | 
  int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom | 
| 170 | 
  | 
  int n_atoms; | 
| 171 | 
  | 
  Atom** atoms; | 
| 172 | 
  | 
  DirectionalAtom* dAtom; | 
| 180 | 
  | 
  n_oriented    = entry_plug->n_oriented; | 
| 181 | 
  | 
  n_constraints = entry_plug->n_constraints; | 
| 182 | 
  | 
   | 
| 183 | 
+ | 
  // Raw degrees of freedom that we have to set | 
| 184 | 
+ | 
  ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; | 
| 185 | 
  | 
 | 
| 186 | 
< | 
  ndfRaw = 3 * n_atoms + 3 * n_oriented; | 
| 187 | 
< | 
  ndf = ndfRaw - n_constraints - 3; | 
| 186 | 
> | 
  // Degrees of freedom that can contain kinetic energy | 
| 187 | 
> | 
  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented | 
| 188 | 
> | 
    - entry_plug->n_constraints; | 
| 189 | 
> | 
   | 
| 190 | 
> | 
#ifdef IS_MPI | 
| 191 | 
> | 
  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 192 | 
> | 
  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 193 | 
> | 
#else | 
| 194 | 
> | 
  ndfRaw = ndfRaw_local; | 
| 195 | 
> | 
  ndf = ndf_local; | 
| 196 | 
> | 
#endif | 
| 197 | 
> | 
  ndf = ndf - 3; | 
| 198 | 
> | 
 | 
| 199 | 
  | 
  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); | 
| 200 | 
  | 
   | 
| 201 | 
  | 
  for(vr = 0; vr < n_atoms; vr++){ | 
| 204 | 
  | 
 | 
| 205 | 
  | 
    av2 = 2.0 * kebar / atoms[vr]->getMass(); | 
| 206 | 
  | 
    vbar = sqrt( av2 ); | 
| 207 | 
< | 
 | 
| 207 | 
> | 
  | 
| 208 | 
  | 
//     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | 
| 209 | 
  | 
     | 
| 210 | 
  | 
    // picks random velocities from a gaussian distribution | 
| 221 | 
  | 
 | 
| 222 | 
  | 
  // Get the Center of Mass drift velocity. | 
| 223 | 
  | 
 | 
| 224 | 
< | 
  vdrift = getCOMVel(); | 
| 224 | 
> | 
  getCOMVel(vdrift); | 
| 225 | 
  | 
   | 
| 226 | 
  | 
  //  Corrects for the center of mass drift. | 
| 227 | 
  | 
  // sums all the momentum and divides by total mass. | 
| 265 | 
  | 
  } | 
| 266 | 
  | 
} | 
| 267 | 
  | 
 | 
| 268 | 
< | 
double* Thermo::getCOMVel(){ | 
| 268 | 
> | 
void Thermo::getCOMVel(double vdrift[3]){ | 
| 269 | 
  | 
 | 
| 270 | 
  | 
  double mtot, mtot_local; | 
| 246 | 
– | 
  double* vdrift; | 
| 271 | 
  | 
  double vdrift_local[3]; | 
| 272 | 
  | 
  int vd, n_atoms; | 
| 273 | 
  | 
  Atom** atoms; | 
| 274 | 
  | 
 | 
| 251 | 
– | 
  vdrift = new double[3]; | 
| 275 | 
  | 
  // We are very careless here with the distinction between n_atoms and n_local | 
| 276 | 
  | 
  // We should really fix this before someone pokes an eye out. | 
| 277 | 
  | 
 | 
| 293 | 
  | 
  } | 
| 294 | 
  | 
 | 
| 295 | 
  | 
#ifdef IS_MPI | 
| 296 | 
< | 
  MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); | 
| 297 | 
< | 
  MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM); | 
| 296 | 
> | 
  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 297 | 
> | 
  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 298 | 
  | 
#else | 
| 299 | 
  | 
  mtot = mtot_local; | 
| 300 | 
  | 
  for(vd = 0; vd < 3; vd++) { | 
| 306 | 
  | 
    vdrift[vd] = vdrift[vd] / mtot; | 
| 307 | 
  | 
  } | 
| 308 | 
  | 
   | 
| 286 | 
– | 
  return vdrift; | 
| 309 | 
  | 
} | 
| 310 | 
  | 
 |