| 129 | 
  | 
 | 
| 130 | 
  | 
  const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | 
| 131 | 
  | 
  double temperature; | 
| 132 | 
– | 
  int ndf_local, ndf; | 
| 132 | 
  | 
   | 
| 133 | 
< | 
  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented | 
| 134 | 
< | 
    - entry_plug->n_constraints; | 
| 133 | 
> | 
  temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); | 
| 134 | 
> | 
  return temperature; | 
| 135 | 
> | 
} | 
| 136 | 
  | 
 | 
| 137 | 
< | 
#ifdef IS_MPI | 
| 138 | 
< | 
  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 139 | 
< | 
#else | 
| 140 | 
< | 
  ndf = ndf_local; | 
| 141 | 
< | 
#endif | 
| 137 | 
> | 
double Thermo::getEnthalpy() { | 
| 138 | 
  | 
 | 
| 139 | 
< | 
  ndf = ndf - 3; | 
| 139 | 
> | 
  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 140 | 
> | 
  double u, p, v; | 
| 141 | 
> | 
  double press[9]; | 
| 142 | 
> | 
 | 
| 143 | 
> | 
  u = this->getTotalE(); | 
| 144 | 
> | 
 | 
| 145 | 
> | 
  this->getPressureTensor(press); | 
| 146 | 
> | 
  p = (press[0] + press[4] + press[8]) / 3.0; | 
| 147 | 
> | 
 | 
| 148 | 
> | 
  v = this->getVolume(); | 
| 149 | 
> | 
 | 
| 150 | 
> | 
  return (u + (p*v)/e_convert); | 
| 151 | 
> | 
} | 
| 152 | 
> | 
 | 
| 153 | 
> | 
double Thermo::getVolume() { | 
| 154 | 
> | 
 | 
| 155 | 
> | 
  double volume; | 
| 156 | 
> | 
  double Hmat[9]; | 
| 157 | 
> | 
 | 
| 158 | 
> | 
  entry_plug->getBoxM(Hmat); | 
| 159 | 
> | 
 | 
| 160 | 
> | 
  // volume = h1 (dot) h2 (cross) h3 | 
| 161 | 
> | 
 | 
| 162 | 
> | 
  volume = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) | 
| 163 | 
> | 
         + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) | 
| 164 | 
> | 
         + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); | 
| 165 | 
> | 
 | 
| 166 | 
> | 
  return volume; | 
| 167 | 
> | 
} | 
| 168 | 
> | 
 | 
| 169 | 
> | 
double Thermo::getPressure() { | 
| 170 | 
> | 
 | 
| 171 | 
> | 
  // Relies on the calculation of the full molecular pressure tensor | 
| 172 | 
  | 
   | 
| 173 | 
< | 
  temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); | 
| 174 | 
< | 
  return temperature; | 
| 173 | 
> | 
  const double p_convert = 1.63882576e8; | 
| 174 | 
> | 
  double press[9]; | 
| 175 | 
> | 
  double pressure; | 
| 176 | 
> | 
 | 
| 177 | 
> | 
  this->getPressureTensor(press); | 
| 178 | 
> | 
 | 
| 179 | 
> | 
  pressure = p_convert * (press[0] + press[4] + press[8]) / 3.0; | 
| 180 | 
> | 
 | 
| 181 | 
> | 
  return pressure; | 
| 182 | 
  | 
} | 
| 183 | 
  | 
 | 
| 184 | 
< | 
double Thermo::getPressure(){ | 
| 185 | 
< | 
  // returns pressure in units amu*fs^-2*Ang^-1 | 
| 184 | 
> | 
 | 
| 185 | 
> | 
void Thermo::getPressureTensor(double press[9]){ | 
| 186 | 
> | 
  // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 187 | 
  | 
  // routine derived via viral theorem description in: | 
| 188 | 
  | 
  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 189 | 
  | 
 | 
| 190 | 
< | 
  return 0.0; | 
| 190 | 
> | 
  const double e_convert = 4.184e-4; | 
| 191 | 
> | 
 | 
| 192 | 
> | 
  double molmass, volume; | 
| 193 | 
> | 
  double vcom[3]; | 
| 194 | 
> | 
  double p_local[9], p_global[9]; | 
| 195 | 
> | 
  double theBox[3]; | 
| 196 | 
> | 
  //double* tau; | 
| 197 | 
> | 
  int i, nMols; | 
| 198 | 
> | 
  Molecule* molecules; | 
| 199 | 
> | 
 | 
| 200 | 
> | 
  nMols = entry_plug->n_mol; | 
| 201 | 
> | 
  molecules = entry_plug->molecules; | 
| 202 | 
> | 
  //tau = entry_plug->tau; | 
| 203 | 
> | 
 | 
| 204 | 
> | 
  // use velocities of molecular centers of mass and molecular masses: | 
| 205 | 
> | 
  for (i=0; i < 9; i++) {     | 
| 206 | 
> | 
    p_local[i] = 0.0; | 
| 207 | 
> | 
    p_global[i] = 0.0; | 
| 208 | 
> | 
  } | 
| 209 | 
> | 
 | 
| 210 | 
> | 
  for (i=0; i < nMols; i++) { | 
| 211 | 
> | 
    molmass = molecules[i].getCOMvel(vcom); | 
| 212 | 
> | 
 | 
| 213 | 
> | 
    p_local[0] += molmass * (vcom[0] * vcom[0]);  | 
| 214 | 
> | 
    p_local[1] += molmass * (vcom[0] * vcom[1]);  | 
| 215 | 
> | 
    p_local[2] += molmass * (vcom[0] * vcom[2]);  | 
| 216 | 
> | 
    p_local[3] += molmass * (vcom[1] * vcom[0]);  | 
| 217 | 
> | 
    p_local[4] += molmass * (vcom[1] * vcom[1]);  | 
| 218 | 
> | 
    p_local[5] += molmass * (vcom[1] * vcom[2]);  | 
| 219 | 
> | 
    p_local[6] += molmass * (vcom[2] * vcom[0]);  | 
| 220 | 
> | 
    p_local[7] += molmass * (vcom[2] * vcom[1]);  | 
| 221 | 
> | 
    p_local[8] += molmass * (vcom[2] * vcom[2]);  | 
| 222 | 
> | 
  } | 
| 223 | 
> | 
 | 
| 224 | 
> | 
  // Get total for entire system from MPI. | 
| 225 | 
> | 
 | 
| 226 | 
> | 
#ifdef IS_MPI | 
| 227 | 
> | 
  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 228 | 
> | 
#else | 
| 229 | 
> | 
  for (i=0; i<9; i++) { | 
| 230 | 
> | 
    p_global[i] = p_local[i];  | 
| 231 | 
> | 
  } | 
| 232 | 
> | 
#endif // is_mpi | 
| 233 | 
> | 
 | 
| 234 | 
> | 
  volume = entry_plug->boxVol; | 
| 235 | 
> | 
 | 
| 236 | 
> | 
  for(i=0; i<9; i++) { | 
| 237 | 
> | 
    press[i] = (p_global[i] - entry_plug->tau[i]*e_convert) / volume; | 
| 238 | 
> | 
  } | 
| 239 | 
  | 
} | 
| 240 | 
  | 
 | 
| 241 | 
  | 
void Thermo::velocitize() { | 
| 249 | 
  | 
  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 250 | 
  | 
  double av2; | 
| 251 | 
  | 
  double kebar; | 
| 168 | 
– | 
  int ndf, ndf_local; // number of degrees of freedom | 
| 169 | 
– | 
  int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom | 
| 252 | 
  | 
  int n_atoms; | 
| 253 | 
  | 
  Atom** atoms; | 
| 254 | 
  | 
  DirectionalAtom* dAtom; | 
| 262 | 
  | 
  n_oriented    = entry_plug->n_oriented; | 
| 263 | 
  | 
  n_constraints = entry_plug->n_constraints; | 
| 264 | 
  | 
   | 
| 265 | 
< | 
  // Raw degrees of freedom that we have to set | 
| 266 | 
< | 
  ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; | 
| 185 | 
< | 
 | 
| 186 | 
< | 
  // Degrees of freedom that can contain kinetic energy | 
| 187 | 
< | 
  ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented | 
| 188 | 
< | 
    - entry_plug->n_constraints; | 
| 265 | 
> | 
  kebar = kb * temperature * (double)entry_plug->ndf /  | 
| 266 | 
> | 
    ( 2.0 * (double)entry_plug->ndfRaw ); | 
| 267 | 
  | 
   | 
| 190 | 
– | 
#ifdef IS_MPI | 
| 191 | 
– | 
  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 192 | 
– | 
  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 193 | 
– | 
#else | 
| 194 | 
– | 
  ndfRaw = ndfRaw_local; | 
| 195 | 
– | 
  ndf = ndf_local; | 
| 196 | 
– | 
#endif | 
| 197 | 
– | 
  ndf = ndf - 3; | 
| 198 | 
– | 
 | 
| 199 | 
– | 
  kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); | 
| 200 | 
– | 
   | 
| 268 | 
  | 
  for(vr = 0; vr < n_atoms; vr++){ | 
| 269 | 
  | 
     | 
| 270 | 
  | 
    // uses equipartition theory to solve for vbar in angstrom/fs | 
| 320 | 
  | 
 | 
| 321 | 
  | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); | 
| 322 | 
  | 
        jy = vbar * gaussStream->getGaussian(); | 
| 323 | 
< | 
 | 
| 323 | 
> | 
         | 
| 324 | 
  | 
        vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); | 
| 325 | 
  | 
        jz = vbar * gaussStream->getGaussian(); | 
| 326 | 
  | 
         |