| 1 | mmeineke | 377 | #include <cmath> | 
| 2 |  |  | #include <iostream> | 
| 3 |  |  | using namespace std; | 
| 4 |  |  |  | 
| 5 |  |  | #ifdef IS_MPI | 
| 6 |  |  | #include <mpi.h> | 
| 7 |  |  | #endif //is_mpi | 
| 8 |  |  |  | 
| 9 |  |  | #include "Thermo.hpp" | 
| 10 |  |  | #include "SRI.hpp" | 
| 11 |  |  | #include "Integrator.hpp" | 
| 12 | chuckv | 438 | #include "simError.h" | 
| 13 | mmeineke | 402 |  | 
| 14 |  |  | #ifdef IS_MPI | 
| 15 | chuckv | 401 | #define __C | 
| 16 | mmeineke | 402 | #include "mpiSimulation.hpp" | 
| 17 |  |  | #endif // is_mpi | 
| 18 | mmeineke | 377 |  | 
| 19 | mmeineke | 402 |  | 
| 20 | mmeineke | 377 | #define BASE_SEED 123456789 | 
| 21 |  |  |  | 
| 22 |  |  | Thermo::Thermo( SimInfo* the_entry_plug ) { | 
| 23 |  |  | entry_plug = the_entry_plug; | 
| 24 |  |  | int baseSeed = BASE_SEED; | 
| 25 |  |  |  | 
| 26 |  |  | gaussStream = new gaussianSPRNG( baseSeed ); | 
| 27 |  |  | } | 
| 28 |  |  |  | 
| 29 |  |  | Thermo::~Thermo(){ | 
| 30 |  |  | delete gaussStream; | 
| 31 |  |  | } | 
| 32 |  |  |  | 
| 33 |  |  | double Thermo::getKinetic(){ | 
| 34 |  |  |  | 
| 35 |  |  | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 36 | gezelter | 608 | double kinetic; | 
| 37 |  |  | double amass; | 
| 38 |  |  | double aVel[3], aJ[3], I[3][3]; | 
| 39 |  |  | int j, kl; | 
| 40 | mmeineke | 377 |  | 
| 41 |  |  | DirectionalAtom *dAtom; | 
| 42 |  |  |  | 
| 43 |  |  | int n_atoms; | 
| 44 |  |  | double kinetic_global; | 
| 45 |  |  | Atom** atoms; | 
| 46 |  |  |  | 
| 47 |  |  |  | 
| 48 |  |  | n_atoms = entry_plug->n_atoms; | 
| 49 |  |  | atoms = entry_plug->atoms; | 
| 50 |  |  |  | 
| 51 |  |  | kinetic = 0.0; | 
| 52 |  |  | kinetic_global = 0.0; | 
| 53 |  |  | for( kl=0; kl < n_atoms; kl++ ){ | 
| 54 | gezelter | 608 |  | 
| 55 |  |  | atoms[kl]->getVel(aVel); | 
| 56 |  |  | amass = atoms[kl]->getMass(); | 
| 57 |  |  |  | 
| 58 |  |  | for (j=0; j < 3; j++) | 
| 59 |  |  | kinetic += amass * aVel[j] * aVel[j]; | 
| 60 | mmeineke | 377 |  | 
| 61 |  |  | if( atoms[kl]->isDirectional() ){ | 
| 62 |  |  |  | 
| 63 |  |  | dAtom = (DirectionalAtom *)atoms[kl]; | 
| 64 | gezelter | 608 |  | 
| 65 |  |  | dAtom->getJ( aJ ); | 
| 66 |  |  | dAtom->getI( I ); | 
| 67 | mmeineke | 377 |  | 
| 68 | gezelter | 608 | for (j=0; j<3; j++) | 
| 69 |  |  | kinetic += aJ[j]*aJ[j] / I[j][j]; | 
| 70 | mmeineke | 377 |  | 
| 71 |  |  | } | 
| 72 |  |  | } | 
| 73 |  |  | #ifdef IS_MPI | 
| 74 | mmeineke | 447 | MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, | 
| 75 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 76 | mmeineke | 377 | kinetic = kinetic_global; | 
| 77 |  |  | #endif //is_mpi | 
| 78 |  |  |  | 
| 79 |  |  | kinetic = kinetic * 0.5 / e_convert; | 
| 80 |  |  |  | 
| 81 |  |  | return kinetic; | 
| 82 |  |  | } | 
| 83 |  |  |  | 
| 84 |  |  | double Thermo::getPotential(){ | 
| 85 |  |  |  | 
| 86 | chuckv | 401 | double potential_local; | 
| 87 | mmeineke | 377 | double potential; | 
| 88 |  |  | int el, nSRI; | 
| 89 | mmeineke | 428 | Molecule* molecules; | 
| 90 | mmeineke | 377 |  | 
| 91 | mmeineke | 428 | molecules = entry_plug->molecules; | 
| 92 | mmeineke | 377 | nSRI = entry_plug->n_SRI; | 
| 93 |  |  |  | 
| 94 | chuckv | 401 | potential_local = 0.0; | 
| 95 | chuckv | 438 | potential = 0.0; | 
| 96 | chuckv | 401 | potential_local += entry_plug->lrPot; | 
| 97 | mmeineke | 377 |  | 
| 98 | mmeineke | 423 | for( el=0; el<entry_plug->n_mol; el++ ){ | 
| 99 | mmeineke | 428 | potential_local += molecules[el].getPotential(); | 
| 100 | mmeineke | 377 | } | 
| 101 |  |  |  | 
| 102 |  |  | // Get total potential for entire system from MPI. | 
| 103 |  |  | #ifdef IS_MPI | 
| 104 | mmeineke | 447 | MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, | 
| 105 |  |  | MPI_SUM, MPI_COMM_WORLD); | 
| 106 | chuckv | 401 | #else | 
| 107 |  |  | potential = potential_local; | 
| 108 | mmeineke | 377 | #endif // is_mpi | 
| 109 |  |  |  | 
| 110 | chuckv | 438 | #ifdef IS_MPI | 
| 111 |  |  | /* | 
| 112 |  |  | std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; | 
| 113 |  |  | */ | 
| 114 |  |  | #endif | 
| 115 |  |  |  | 
| 116 | mmeineke | 377 | return potential; | 
| 117 |  |  | } | 
| 118 |  |  |  | 
| 119 |  |  | double Thermo::getTotalE(){ | 
| 120 |  |  |  | 
| 121 |  |  | double total; | 
| 122 |  |  |  | 
| 123 |  |  | total = this->getKinetic() + this->getPotential(); | 
| 124 |  |  | return total; | 
| 125 |  |  | } | 
| 126 |  |  |  | 
| 127 | gezelter | 454 | double Thermo::getTemperature(){ | 
| 128 |  |  |  | 
| 129 |  |  | const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) | 
| 130 |  |  | double temperature; | 
| 131 |  |  |  | 
| 132 | gezelter | 458 | temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); | 
| 133 | mmeineke | 377 | return temperature; | 
| 134 |  |  | } | 
| 135 |  |  |  | 
| 136 | gezelter | 484 | double Thermo::getEnthalpy() { | 
| 137 |  |  |  | 
| 138 |  |  | const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 | 
| 139 |  |  | double u, p, v; | 
| 140 | gezelter | 588 | double press[3][3]; | 
| 141 | gezelter | 484 |  | 
| 142 |  |  | u = this->getTotalE(); | 
| 143 |  |  |  | 
| 144 |  |  | this->getPressureTensor(press); | 
| 145 | gezelter | 588 | p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 146 | gezelter | 484 |  | 
| 147 |  |  | v = this->getVolume(); | 
| 148 |  |  |  | 
| 149 |  |  | return (u + (p*v)/e_convert); | 
| 150 |  |  | } | 
| 151 |  |  |  | 
| 152 |  |  | double Thermo::getVolume() { | 
| 153 | gezelter | 574 |  | 
| 154 | mmeineke | 582 | return entry_plug->boxVol; | 
| 155 | gezelter | 484 | } | 
| 156 |  |  |  | 
| 157 | gezelter | 483 | double Thermo::getPressure() { | 
| 158 | gezelter | 574 |  | 
| 159 | gezelter | 483 | // Relies on the calculation of the full molecular pressure tensor | 
| 160 |  |  |  | 
| 161 |  |  | const double p_convert = 1.63882576e8; | 
| 162 | gezelter | 588 | double press[3][3]; | 
| 163 | gezelter | 483 | double pressure; | 
| 164 |  |  |  | 
| 165 |  |  | this->getPressureTensor(press); | 
| 166 |  |  |  | 
| 167 | gezelter | 588 | pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; | 
| 168 | gezelter | 483 |  | 
| 169 |  |  | return pressure; | 
| 170 |  |  | } | 
| 171 |  |  |  | 
| 172 |  |  |  | 
| 173 | gezelter | 588 | void Thermo::getPressureTensor(double press[3][3]){ | 
| 174 | gezelter | 483 | // returns pressure tensor in units amu*fs^-2*Ang^-1 | 
| 175 | gezelter | 445 | // routine derived via viral theorem description in: | 
| 176 |  |  | // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 | 
| 177 | mmeineke | 377 |  | 
| 178 | gezelter | 477 | const double e_convert = 4.184e-4; | 
| 179 | gezelter | 483 |  | 
| 180 |  |  | double molmass, volume; | 
| 181 | gezelter | 468 | double vcom[3]; | 
| 182 | gezelter | 483 | double p_local[9], p_global[9]; | 
| 183 | mmeineke | 590 | int i, j, k, l, nMols; | 
| 184 | gezelter | 468 | Molecule* molecules; | 
| 185 |  |  |  | 
| 186 |  |  | nMols = entry_plug->n_mol; | 
| 187 |  |  | molecules = entry_plug->molecules; | 
| 188 | mmeineke | 486 | //tau = entry_plug->tau; | 
| 189 | gezelter | 468 |  | 
| 190 |  |  | // use velocities of molecular centers of mass and molecular masses: | 
| 191 | gezelter | 483 | for (i=0; i < 9; i++) { | 
| 192 |  |  | p_local[i] = 0.0; | 
| 193 |  |  | p_global[i] = 0.0; | 
| 194 |  |  | } | 
| 195 | gezelter | 475 |  | 
| 196 | gezelter | 468 | for (i=0; i < nMols; i++) { | 
| 197 | gezelter | 475 | molmass = molecules[i].getCOMvel(vcom); | 
| 198 | gezelter | 483 |  | 
| 199 |  |  | p_local[0] += molmass * (vcom[0] * vcom[0]); | 
| 200 |  |  | p_local[1] += molmass * (vcom[0] * vcom[1]); | 
| 201 |  |  | p_local[2] += molmass * (vcom[0] * vcom[2]); | 
| 202 |  |  | p_local[3] += molmass * (vcom[1] * vcom[0]); | 
| 203 |  |  | p_local[4] += molmass * (vcom[1] * vcom[1]); | 
| 204 |  |  | p_local[5] += molmass * (vcom[1] * vcom[2]); | 
| 205 |  |  | p_local[6] += molmass * (vcom[2] * vcom[0]); | 
| 206 |  |  | p_local[7] += molmass * (vcom[2] * vcom[1]); | 
| 207 |  |  | p_local[8] += molmass * (vcom[2] * vcom[2]); | 
| 208 | gezelter | 468 | } | 
| 209 |  |  |  | 
| 210 |  |  | // Get total for entire system from MPI. | 
| 211 | chuckv | 479 |  | 
| 212 | gezelter | 468 | #ifdef IS_MPI | 
| 213 | gezelter | 483 | MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); | 
| 214 | gezelter | 468 | #else | 
| 215 | gezelter | 483 | for (i=0; i<9; i++) { | 
| 216 |  |  | p_global[i] = p_local[i]; | 
| 217 |  |  | } | 
| 218 | gezelter | 468 | #endif // is_mpi | 
| 219 |  |  |  | 
| 220 | gezelter | 611 | volume = this->getVolume(); | 
| 221 | gezelter | 468 |  | 
| 222 | gezelter | 588 | for(i = 0; i < 3; i++) { | 
| 223 |  |  | for (j = 0; j < 3; j++) { | 
| 224 |  |  | k = 3*i + j; | 
| 225 | gezelter | 611 | press[i][j] = (p_global[k] + entry_plug->tau[k]*e_convert) / volume; | 
| 226 | gezelter | 588 | } | 
| 227 | gezelter | 483 | } | 
| 228 | mmeineke | 377 | } | 
| 229 |  |  |  | 
| 230 |  |  | void Thermo::velocitize() { | 
| 231 |  |  |  | 
| 232 |  |  | double x,y; | 
| 233 | gezelter | 608 | double aVel[3], aJ[3], I[3][3]; | 
| 234 |  |  | int i, j, vr, vd; // velocity randomizer loop counters | 
| 235 | chuckv | 403 | double vdrift[3]; | 
| 236 | mmeineke | 377 | double vbar; | 
| 237 |  |  | const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. | 
| 238 |  |  | double av2; | 
| 239 |  |  | double kebar; | 
| 240 |  |  | int n_atoms; | 
| 241 |  |  | Atom** atoms; | 
| 242 |  |  | DirectionalAtom* dAtom; | 
| 243 |  |  | double temperature; | 
| 244 |  |  | int n_oriented; | 
| 245 |  |  | int n_constraints; | 
| 246 |  |  |  | 
| 247 |  |  | atoms         = entry_plug->atoms; | 
| 248 |  |  | n_atoms       = entry_plug->n_atoms; | 
| 249 |  |  | temperature   = entry_plug->target_temp; | 
| 250 |  |  | n_oriented    = entry_plug->n_oriented; | 
| 251 |  |  | n_constraints = entry_plug->n_constraints; | 
| 252 |  |  |  | 
| 253 | gezelter | 458 | kebar = kb * temperature * (double)entry_plug->ndf / | 
| 254 |  |  | ( 2.0 * (double)entry_plug->ndfRaw ); | 
| 255 | chuckv | 403 |  | 
| 256 | mmeineke | 377 | for(vr = 0; vr < n_atoms; vr++){ | 
| 257 |  |  |  | 
| 258 |  |  | // uses equipartition theory to solve for vbar in angstrom/fs | 
| 259 |  |  |  | 
| 260 |  |  | av2 = 2.0 * kebar / atoms[vr]->getMass(); | 
| 261 |  |  | vbar = sqrt( av2 ); | 
| 262 | gezelter | 444 |  | 
| 263 | mmeineke | 377 | //     vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); | 
| 264 |  |  |  | 
| 265 |  |  | // picks random velocities from a gaussian distribution | 
| 266 |  |  | // centered on vbar | 
| 267 |  |  |  | 
| 268 | gezelter | 608 | for (j=0; j<3; j++) | 
| 269 |  |  | aVel[j] = vbar * gaussStream->getGaussian(); | 
| 270 |  |  |  | 
| 271 |  |  | atoms[vr]->setVel( aVel ); | 
| 272 | mmeineke | 377 |  | 
| 273 |  |  | } | 
| 274 | chuckv | 401 |  | 
| 275 |  |  | // Get the Center of Mass drift velocity. | 
| 276 |  |  |  | 
| 277 | chuckv | 403 | getCOMVel(vdrift); | 
| 278 | mmeineke | 377 |  | 
| 279 |  |  | //  Corrects for the center of mass drift. | 
| 280 |  |  | // sums all the momentum and divides by total mass. | 
| 281 |  |  |  | 
| 282 |  |  | for(vd = 0; vd < n_atoms; vd++){ | 
| 283 |  |  |  | 
| 284 | gezelter | 608 | atoms[vd]->getVel(aVel); | 
| 285 |  |  |  | 
| 286 |  |  | for (j=0; j < 3; j++) | 
| 287 |  |  | aVel[j] -= vdrift[j]; | 
| 288 | chuckv | 401 |  | 
| 289 | gezelter | 608 | atoms[vd]->setVel( aVel ); | 
| 290 | mmeineke | 377 | } | 
| 291 |  |  | if( n_oriented ){ | 
| 292 |  |  |  | 
| 293 |  |  | for( i=0; i<n_atoms; i++ ){ | 
| 294 |  |  |  | 
| 295 |  |  | if( atoms[i]->isDirectional() ){ | 
| 296 |  |  |  | 
| 297 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 298 | gezelter | 608 | dAtom->getI( I ); | 
| 299 |  |  |  | 
| 300 |  |  | for (j = 0 ; j < 3; j++) { | 
| 301 | mmeineke | 377 |  | 
| 302 | gezelter | 608 | vbar = sqrt( 2.0 * kebar * I[j][j] ); | 
| 303 |  |  | aJ[j] = vbar * gaussStream->getGaussian(); | 
| 304 | mmeineke | 377 |  | 
| 305 | gezelter | 608 | } | 
| 306 |  |  |  | 
| 307 |  |  | dAtom->setJ( aJ ); | 
| 308 |  |  |  | 
| 309 | mmeineke | 377 | } | 
| 310 |  |  | } | 
| 311 |  |  | } | 
| 312 |  |  | } | 
| 313 | chuckv | 401 |  | 
| 314 | chuckv | 403 | void Thermo::getCOMVel(double vdrift[3]){ | 
| 315 | chuckv | 401 |  | 
| 316 |  |  | double mtot, mtot_local; | 
| 317 | gezelter | 608 | double aVel[3], amass; | 
| 318 | chuckv | 401 | double vdrift_local[3]; | 
| 319 | gezelter | 608 | int vd, n_atoms, j; | 
| 320 | chuckv | 401 | Atom** atoms; | 
| 321 |  |  |  | 
| 322 |  |  | // We are very careless here with the distinction between n_atoms and n_local | 
| 323 |  |  | // We should really fix this before someone pokes an eye out. | 
| 324 |  |  |  | 
| 325 |  |  | n_atoms = entry_plug->n_atoms; | 
| 326 |  |  | atoms   = entry_plug->atoms; | 
| 327 |  |  |  | 
| 328 |  |  | mtot_local = 0.0; | 
| 329 |  |  | vdrift_local[0] = 0.0; | 
| 330 |  |  | vdrift_local[1] = 0.0; | 
| 331 |  |  | vdrift_local[2] = 0.0; | 
| 332 |  |  |  | 
| 333 |  |  | for(vd = 0; vd < n_atoms; vd++){ | 
| 334 |  |  |  | 
| 335 | gezelter | 608 | amass = atoms[vd]->getMass(); | 
| 336 |  |  | atoms[vd]->getVel( aVel ); | 
| 337 |  |  |  | 
| 338 |  |  | for(j = 0; j < 3; j++) | 
| 339 |  |  | vdrift_local[j] += aVel[j] * amass; | 
| 340 | chuckv | 401 |  | 
| 341 | gezelter | 608 | mtot_local += amass; | 
| 342 | chuckv | 401 | } | 
| 343 |  |  |  | 
| 344 |  |  | #ifdef IS_MPI | 
| 345 | mmeineke | 447 | MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 346 |  |  | MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); | 
| 347 | chuckv | 401 | #else | 
| 348 |  |  | mtot = mtot_local; | 
| 349 |  |  | for(vd = 0; vd < 3; vd++) { | 
| 350 |  |  | vdrift[vd] = vdrift_local[vd]; | 
| 351 |  |  | } | 
| 352 |  |  | #endif | 
| 353 |  |  |  | 
| 354 |  |  | for (vd = 0; vd < 3; vd++) { | 
| 355 |  |  | vdrift[vd] = vdrift[vd] / mtot; | 
| 356 |  |  | } | 
| 357 |  |  |  | 
| 358 |  |  | } | 
| 359 |  |  |  |