| 2 | 
  | 
#include <cstring> | 
| 3 | 
  | 
#include <cmath> | 
| 4 | 
  | 
 | 
| 5 | 
+ | 
#include <iostream> | 
| 6 | 
+ | 
using namespace std; | 
| 7 | 
  | 
 | 
| 8 | 
  | 
#include "SimInfo.hpp" | 
| 9 | 
  | 
#define __C | 
| 16 | 
  | 
#include "mpiSimulation.hpp" | 
| 17 | 
  | 
#endif | 
| 18 | 
  | 
 | 
| 19 | 
+ | 
inline double roundMe( double x ){ | 
| 20 | 
+ | 
  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 21 | 
+ | 
} | 
| 22 | 
+ | 
           | 
| 23 | 
+ | 
 | 
| 24 | 
  | 
SimInfo* currentInfo; | 
| 25 | 
  | 
 | 
| 26 | 
  | 
SimInfo::SimInfo(){ | 
| 47 | 
  | 
} | 
| 48 | 
  | 
 | 
| 49 | 
  | 
void SimInfo::setBox(double newBox[3]) { | 
| 50 | 
+ | 
   | 
| 51 | 
+ | 
  int i, j; | 
| 52 | 
+ | 
  double tempMat[3][3]; | 
| 53 | 
  | 
 | 
| 54 | 
< | 
  double smallestBoxL, maxCutoff; | 
| 55 | 
< | 
  int status; | 
| 46 | 
< | 
  int i; | 
| 54 | 
> | 
  for(i=0; i<3; i++)  | 
| 55 | 
> | 
    for (j=0; j<3; j++) tempMat[i][j] = 0.0;; | 
| 56 | 
  | 
 | 
| 57 | 
< | 
  for(i=0; i<9; i++) Hmat[i] = 0.0;; | 
| 57 | 
> | 
  tempMat[0][0] = newBox[0]; | 
| 58 | 
> | 
  tempMat[1][1] = newBox[1]; | 
| 59 | 
> | 
  tempMat[2][2] = newBox[2]; | 
| 60 | 
  | 
 | 
| 61 | 
< | 
  Hmat[0] = newBox[0]; | 
| 51 | 
< | 
  Hmat[4] = newBox[1]; | 
| 52 | 
< | 
  Hmat[8] = newBox[2]; | 
| 61 | 
> | 
  setBoxM( tempMat ); | 
| 62 | 
  | 
 | 
| 63 | 
< | 
  calcHmatI(); | 
| 55 | 
< | 
  calcBoxL(); | 
| 63 | 
> | 
} | 
| 64 | 
  | 
 | 
| 65 | 
< | 
  setFortranBoxSize(Hmat, HmatI, &orthoRhombic); | 
| 65 | 
> | 
void SimInfo::setBoxM( double theBox[3][3] ){ | 
| 66 | 
> | 
   | 
| 67 | 
> | 
  int i, j, status; | 
| 68 | 
> | 
  double smallestBoxL, maxCutoff; | 
| 69 | 
> | 
  double FortranHmat[9]; // to preserve compatibility with Fortran the | 
| 70 | 
> | 
                         // ordering in the array is as follows: | 
| 71 | 
> | 
                         // [ 0 3 6 ] | 
| 72 | 
> | 
                         // [ 1 4 7 ] | 
| 73 | 
> | 
                         // [ 2 5 8 ] | 
| 74 | 
> | 
  double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | 
| 75 | 
  | 
 | 
| 59 | 
– | 
  smallestBoxL = boxLx; | 
| 60 | 
– | 
  if (boxLy < smallestBoxL) smallestBoxL = boxLy; | 
| 61 | 
– | 
  if (boxLz < smallestBoxL) smallestBoxL = boxLz; | 
| 76 | 
  | 
 | 
| 77 | 
< | 
  maxCutoff = smallestBoxL / 2.0; | 
| 77 | 
> | 
  for(i=0; i < 3; i++)  | 
| 78 | 
> | 
    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | 
| 79 | 
> | 
   | 
| 80 | 
> | 
  //  cerr  | 
| 81 | 
> | 
  // << "setting Hmat ->\n" | 
| 82 | 
> | 
  // << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" | 
| 83 | 
> | 
  // << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" | 
| 84 | 
> | 
  // << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; | 
| 85 | 
  | 
 | 
| 86 | 
< | 
  if (rList > maxCutoff) { | 
| 87 | 
< | 
    sprintf( painCave.errMsg, | 
| 67 | 
< | 
             "New Box size is forcing neighborlist radius down to %lf\n", | 
| 68 | 
< | 
             maxCutoff ); | 
| 69 | 
< | 
    painCave.isFatal = 0; | 
| 70 | 
< | 
    simError(); | 
| 86 | 
> | 
  calcBoxL(); | 
| 87 | 
> | 
  calcHmatInv(); | 
| 88 | 
  | 
 | 
| 89 | 
< | 
    rList = maxCutoff; | 
| 90 | 
< | 
 | 
| 91 | 
< | 
    sprintf( painCave.errMsg, | 
| 92 | 
< | 
             "New Box size is forcing cutoff radius down to %lf\n", | 
| 76 | 
< | 
             maxCutoff - 1.0 ); | 
| 77 | 
< | 
    painCave.isFatal = 0; | 
| 78 | 
< | 
    simError(); | 
| 79 | 
< | 
 | 
| 80 | 
< | 
    rCut = rList - 1.0; | 
| 81 | 
< | 
 | 
| 82 | 
< | 
    // list radius changed so we have to refresh the simulation structure. | 
| 83 | 
< | 
    refreshSim(); | 
| 84 | 
< | 
  } | 
| 85 | 
< | 
 | 
| 86 | 
< | 
  if (rCut > maxCutoff) { | 
| 87 | 
< | 
    sprintf( painCave.errMsg, | 
| 88 | 
< | 
             "New Box size is forcing cutoff radius down to %lf\n", | 
| 89 | 
< | 
             maxCutoff ); | 
| 90 | 
< | 
    painCave.isFatal = 0; | 
| 91 | 
< | 
    simError(); | 
| 92 | 
< | 
 | 
| 93 | 
< | 
    status = 0; | 
| 94 | 
< | 
    LJ_new_rcut(&rCut, &status); | 
| 95 | 
< | 
    if (status != 0) { | 
| 96 | 
< | 
      sprintf( painCave.errMsg, | 
| 97 | 
< | 
               "Error in recomputing LJ shifts based on new rcut\n"); | 
| 98 | 
< | 
      painCave.isFatal = 1; | 
| 99 | 
< | 
      simError(); | 
| 89 | 
> | 
  for(i=0; i < 3; i++) { | 
| 90 | 
> | 
    for (j=0; j < 3; j++) { | 
| 91 | 
> | 
      FortranHmat[3*j + i] = Hmat[i][j]; | 
| 92 | 
> | 
      FortranHmatInv[3*j + i] = HmatInv[i][j]; | 
| 93 | 
  | 
    } | 
| 94 | 
  | 
  } | 
| 102 | 
– | 
} | 
| 95 | 
  | 
 | 
| 96 | 
< | 
void SimInfo::setBoxM( double theBox[9] ){ | 
| 105 | 
< | 
   | 
| 106 | 
< | 
  int i, status; | 
| 107 | 
< | 
  double smallestBoxL, maxCutoff; | 
| 108 | 
< | 
 | 
| 109 | 
< | 
  for(i=0; i<9; i++) Hmat[i] = theBox[i]; | 
| 110 | 
< | 
  calcHmatI(); | 
| 111 | 
< | 
  calcBoxL(); | 
| 112 | 
< | 
 | 
| 113 | 
< | 
  setFortranBoxSize(Hmat, HmatI, &orthoRhombic); | 
| 96 | 
> | 
  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); | 
| 97 | 
  | 
  | 
| 98 | 
  | 
  smallestBoxL = boxLx; | 
| 99 | 
  | 
  if (boxLy < smallestBoxL) smallestBoxL = boxLy; | 
| 141 | 
  | 
} | 
| 142 | 
  | 
  | 
| 143 | 
  | 
 | 
| 144 | 
< | 
void SimInfo::getBox(double theBox[9]) { | 
| 144 | 
> | 
void SimInfo::getBoxM (double theBox[3][3]) { | 
| 145 | 
  | 
 | 
| 146 | 
< | 
  int i; | 
| 147 | 
< | 
  for(i=0; i<9; i++) theBox[i] = Hmat[i]; | 
| 146 | 
> | 
  int i, j; | 
| 147 | 
> | 
  for(i=0; i<3; i++)  | 
| 148 | 
> | 
    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; | 
| 149 | 
  | 
} | 
| 166 | 
– | 
  | 
| 150 | 
  | 
 | 
| 168 | 
– | 
void SimInfo::calcHmatI( void ) { | 
| 151 | 
  | 
 | 
| 152 | 
< | 
  double C[3][3]; | 
| 153 | 
< | 
  double detHmat; | 
| 154 | 
< | 
  int i, j, k; | 
| 173 | 
< | 
  double smallDiag; | 
| 174 | 
< | 
  double tol; | 
| 175 | 
< | 
  double sanity[3][3]; | 
| 152 | 
> | 
void SimInfo::scaleBox(double scale) { | 
| 153 | 
> | 
  double theBox[3][3]; | 
| 154 | 
> | 
  int i, j; | 
| 155 | 
  | 
 | 
| 156 | 
< | 
  // calculate the adjunct of Hmat; | 
| 156 | 
> | 
  // cerr << "Scaling box by " << scale << "\n"; | 
| 157 | 
  | 
 | 
| 158 | 
< | 
  C[0][0] =  ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); | 
| 159 | 
< | 
  C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); | 
| 181 | 
< | 
  C[2][0] =  ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); | 
| 158 | 
> | 
  for(i=0; i<3; i++)  | 
| 159 | 
> | 
    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; | 
| 160 | 
  | 
 | 
| 161 | 
< | 
  C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); | 
| 184 | 
< | 
  C[1][1] =  ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); | 
| 185 | 
< | 
  C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); | 
| 161 | 
> | 
  setBoxM(theBox); | 
| 162 | 
  | 
 | 
| 163 | 
< | 
  C[0][2] =  ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); | 
| 188 | 
< | 
  C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); | 
| 189 | 
< | 
  C[2][2] =  ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); | 
| 163 | 
> | 
} | 
| 164 | 
  | 
 | 
| 165 | 
< | 
  // calcutlate the determinant of Hmat | 
| 165 | 
> | 
void SimInfo::calcHmatInv( void ) { | 
| 166 | 
  | 
   | 
| 167 | 
< | 
  detHmat = 0.0; | 
| 168 | 
< | 
  for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; | 
| 167 | 
> | 
  int i,j; | 
| 168 | 
> | 
  double smallDiag; | 
| 169 | 
> | 
  double tol; | 
| 170 | 
> | 
  double sanity[3][3]; | 
| 171 | 
  | 
 | 
| 172 | 
< | 
   | 
| 197 | 
< | 
  // H^-1 = C^T / det(H) | 
| 198 | 
< | 
   | 
| 199 | 
< | 
  i=0; | 
| 200 | 
< | 
  for(j=0; j<3; j++){ | 
| 201 | 
< | 
    for(k=0; k<3; k++){ | 
| 172 | 
> | 
  invertMat3( Hmat, HmatInv ); | 
| 173 | 
  | 
 | 
| 174 | 
< | 
      HmatI[i] = C[j][k] / detHmat; | 
| 204 | 
< | 
      i++; | 
| 205 | 
< | 
    } | 
| 206 | 
< | 
  } | 
| 174 | 
> | 
  // Check the inverse to make sure it is sane: | 
| 175 | 
  | 
 | 
| 176 | 
< | 
  // sanity check | 
| 209 | 
< | 
 | 
| 210 | 
< | 
  for(i=0; i<3; i++){ | 
| 211 | 
< | 
    for(j=0; j<3; j++){ | 
| 212 | 
< | 
       | 
| 213 | 
< | 
      sanity[i][j] = 0.0; | 
| 214 | 
< | 
      for(k=0; k<3; k++){ | 
| 215 | 
< | 
        sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; | 
| 216 | 
< | 
      } | 
| 217 | 
< | 
    } | 
| 218 | 
< | 
  } | 
| 219 | 
< | 
 | 
| 220 | 
< | 
  cerr << "sanity => \n"  | 
| 221 | 
< | 
       << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" | 
| 222 | 
< | 
       << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" | 
| 223 | 
< | 
       << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]  | 
| 224 | 
< | 
       << "\n"; | 
| 176 | 
> | 
  matMul3( Hmat, HmatInv, sanity ); | 
| 177 | 
  | 
     | 
| 226 | 
– | 
 | 
| 178 | 
  | 
  // check to see if Hmat is orthorhombic | 
| 179 | 
  | 
   | 
| 180 | 
< | 
  smallDiag = Hmat[0]; | 
| 181 | 
< | 
  if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; | 
| 182 | 
< | 
  if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; | 
| 180 | 
> | 
  smallDiag = Hmat[0][0]; | 
| 181 | 
> | 
  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; | 
| 182 | 
> | 
  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; | 
| 183 | 
  | 
  tol = smallDiag * 1E-6; | 
| 184 | 
  | 
 | 
| 185 | 
  | 
  orthoRhombic = 1; | 
| 186 | 
< | 
  for(i=0; (i<9) && orthoRhombic; i++){ | 
| 187 | 
< | 
     | 
| 188 | 
< | 
    if( (i%4) ){ // ignore the diagonals (0, 4, and 8) | 
| 189 | 
< | 
      orthoRhombic = (Hmat[i] <= tol); | 
| 186 | 
> | 
   | 
| 187 | 
> | 
  for (i = 0; i < 3; i++ ) { | 
| 188 | 
> | 
    for (j = 0 ; j < 3; j++) { | 
| 189 | 
> | 
      if (i != j) { | 
| 190 | 
> | 
        if (orthoRhombic) { | 
| 191 | 
> | 
          if (Hmat[i][j] >= tol) orthoRhombic = 0; | 
| 192 | 
> | 
        }         | 
| 193 | 
> | 
      } | 
| 194 | 
  | 
    } | 
| 195 | 
  | 
  } | 
| 241 | 
– | 
     | 
| 196 | 
  | 
} | 
| 197 | 
  | 
 | 
| 198 | 
+ | 
double SimInfo::matDet3(double a[3][3]) { | 
| 199 | 
+ | 
  int i, j, k; | 
| 200 | 
+ | 
  double determinant; | 
| 201 | 
+ | 
 | 
| 202 | 
+ | 
  determinant = 0.0; | 
| 203 | 
+ | 
 | 
| 204 | 
+ | 
  for(i = 0; i < 3; i++) { | 
| 205 | 
+ | 
    j = (i+1)%3; | 
| 206 | 
+ | 
    k = (i+2)%3; | 
| 207 | 
+ | 
 | 
| 208 | 
+ | 
    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); | 
| 209 | 
+ | 
  } | 
| 210 | 
+ | 
 | 
| 211 | 
+ | 
  return determinant; | 
| 212 | 
+ | 
} | 
| 213 | 
+ | 
 | 
| 214 | 
+ | 
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { | 
| 215 | 
+ | 
   | 
| 216 | 
+ | 
  int  i, j, k, l, m, n; | 
| 217 | 
+ | 
  double determinant; | 
| 218 | 
+ | 
 | 
| 219 | 
+ | 
  determinant = matDet3( a ); | 
| 220 | 
+ | 
 | 
| 221 | 
+ | 
  if (determinant == 0.0) { | 
| 222 | 
+ | 
    sprintf( painCave.errMsg, | 
| 223 | 
+ | 
             "Can't invert a matrix with a zero determinant!\n"); | 
| 224 | 
+ | 
    painCave.isFatal = 1; | 
| 225 | 
+ | 
    simError(); | 
| 226 | 
+ | 
  } | 
| 227 | 
+ | 
 | 
| 228 | 
+ | 
  for (i=0; i < 3; i++) { | 
| 229 | 
+ | 
    j = (i+1)%3; | 
| 230 | 
+ | 
    k = (i+2)%3; | 
| 231 | 
+ | 
    for(l = 0; l < 3; l++) { | 
| 232 | 
+ | 
      m = (l+1)%3; | 
| 233 | 
+ | 
      n = (l+2)%3; | 
| 234 | 
+ | 
       | 
| 235 | 
+ | 
      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; | 
| 236 | 
+ | 
    } | 
| 237 | 
+ | 
  } | 
| 238 | 
+ | 
} | 
| 239 | 
+ | 
 | 
| 240 | 
+ | 
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { | 
| 241 | 
+ | 
  double r00, r01, r02, r10, r11, r12, r20, r21, r22; | 
| 242 | 
+ | 
 | 
| 243 | 
+ | 
  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; | 
| 244 | 
+ | 
  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; | 
| 245 | 
+ | 
  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; | 
| 246 | 
+ | 
   | 
| 247 | 
+ | 
  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; | 
| 248 | 
+ | 
  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; | 
| 249 | 
+ | 
  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; | 
| 250 | 
+ | 
   | 
| 251 | 
+ | 
  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; | 
| 252 | 
+ | 
  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; | 
| 253 | 
+ | 
  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; | 
| 254 | 
+ | 
   | 
| 255 | 
+ | 
  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; | 
| 256 | 
+ | 
  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; | 
| 257 | 
+ | 
  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; | 
| 258 | 
+ | 
} | 
| 259 | 
+ | 
 | 
| 260 | 
+ | 
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { | 
| 261 | 
+ | 
  double a0, a1, a2; | 
| 262 | 
+ | 
 | 
| 263 | 
+ | 
  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2]; | 
| 264 | 
+ | 
 | 
| 265 | 
+ | 
  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; | 
| 266 | 
+ | 
  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; | 
| 267 | 
+ | 
  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; | 
| 268 | 
+ | 
} | 
| 269 | 
+ | 
 | 
| 270 | 
+ | 
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { | 
| 271 | 
+ | 
  double temp[3][3]; | 
| 272 | 
+ | 
  int i, j; | 
| 273 | 
+ | 
 | 
| 274 | 
+ | 
  for (i = 0; i < 3; i++) { | 
| 275 | 
+ | 
    for (j = 0; j < 3; j++) { | 
| 276 | 
+ | 
      temp[j][i] = in[i][j]; | 
| 277 | 
+ | 
    } | 
| 278 | 
+ | 
  } | 
| 279 | 
+ | 
  for (i = 0; i < 3; i++) { | 
| 280 | 
+ | 
    for (j = 0; j < 3; j++) { | 
| 281 | 
+ | 
      out[i][j] = temp[i][j]; | 
| 282 | 
+ | 
    } | 
| 283 | 
+ | 
  } | 
| 284 | 
+ | 
} | 
| 285 | 
+ | 
   | 
| 286 | 
+ | 
void SimInfo::printMat3(double A[3][3] ){ | 
| 287 | 
+ | 
 | 
| 288 | 
+ | 
  std::cerr  | 
| 289 | 
+ | 
            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" | 
| 290 | 
+ | 
            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" | 
| 291 | 
+ | 
            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; | 
| 292 | 
+ | 
} | 
| 293 | 
+ | 
 | 
| 294 | 
+ | 
void SimInfo::printMat9(double A[9] ){ | 
| 295 | 
+ | 
 | 
| 296 | 
+ | 
  std::cerr  | 
| 297 | 
+ | 
            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" | 
| 298 | 
+ | 
            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" | 
| 299 | 
+ | 
            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; | 
| 300 | 
+ | 
} | 
| 301 | 
+ | 
 | 
| 302 | 
  | 
void SimInfo::calcBoxL( void ){ | 
| 303 | 
  | 
 | 
| 304 | 
  | 
  double dx, dy, dz, dsq; | 
| 305 | 
  | 
  int i; | 
| 306 | 
  | 
 | 
| 307 | 
< | 
  // boxVol = h1 (dot) h2 (cross) h3 | 
| 307 | 
> | 
  // boxVol = Determinant of Hmat | 
| 308 | 
  | 
 | 
| 309 | 
< | 
  boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) | 
| 252 | 
< | 
         + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) | 
| 253 | 
< | 
         + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); | 
| 309 | 
> | 
  boxVol = matDet3( Hmat ); | 
| 310 | 
  | 
 | 
| 255 | 
– | 
 | 
| 311 | 
  | 
  // boxLx | 
| 312 | 
  | 
   | 
| 313 | 
< | 
  dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; | 
| 313 | 
> | 
  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | 
| 314 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 315 | 
  | 
  boxLx = sqrt( dsq ); | 
| 316 | 
  | 
 | 
| 317 | 
  | 
  // boxLy | 
| 318 | 
  | 
   | 
| 319 | 
< | 
  dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; | 
| 319 | 
> | 
  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | 
| 320 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 321 | 
  | 
  boxLy = sqrt( dsq ); | 
| 322 | 
  | 
 | 
| 323 | 
  | 
  // boxLz | 
| 324 | 
  | 
   | 
| 325 | 
< | 
  dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; | 
| 325 | 
> | 
  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | 
| 326 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 327 | 
  | 
  boxLz = sqrt( dsq ); | 
| 328 | 
  | 
   | 
| 336 | 
  | 
 | 
| 337 | 
  | 
  if( !orthoRhombic ){ | 
| 338 | 
  | 
    // calc the scaled coordinates. | 
| 339 | 
+ | 
   | 
| 340 | 
+ | 
 | 
| 341 | 
+ | 
    matVecMul3(HmatInv, thePos, scaled); | 
| 342 | 
  | 
     | 
| 343 | 
  | 
    for(i=0; i<3; i++) | 
| 344 | 
< | 
      scaled[i] =  | 
| 287 | 
< | 
        thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; | 
| 344 | 
> | 
      scaled[i] -= roundMe(scaled[i]); | 
| 345 | 
  | 
     | 
| 289 | 
– | 
    // wrap the scaled coordinates | 
| 290 | 
– | 
     | 
| 291 | 
– | 
    for(i=0; i<3; i++) | 
| 292 | 
– | 
      scaled[i] -= round(scaled[i]); | 
| 293 | 
– | 
     | 
| 346 | 
  | 
    // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 347 | 
  | 
     | 
| 348 | 
< | 
    for(i=0; i<3; i++) | 
| 349 | 
< | 
      thePos[i] =  | 
| 298 | 
< | 
        scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[3]*Hmat[i+6]; | 
| 348 | 
> | 
    matVecMul3(Hmat, scaled, thePos); | 
| 349 | 
> | 
 | 
| 350 | 
  | 
  } | 
| 351 | 
  | 
  else{ | 
| 352 | 
  | 
    // calc the scaled coordinates. | 
| 353 | 
  | 
     | 
| 354 | 
  | 
    for(i=0; i<3; i++) | 
| 355 | 
< | 
      scaled[i] = thePos[i]*HmatI[i*4]; | 
| 355 | 
> | 
      scaled[i] = thePos[i]*HmatInv[i][i]; | 
| 356 | 
  | 
     | 
| 357 | 
  | 
    // wrap the scaled coordinates | 
| 358 | 
  | 
     | 
| 359 | 
  | 
    for(i=0; i<3; i++) | 
| 360 | 
< | 
      scaled[i] -= round(scaled[i]); | 
| 360 | 
> | 
      scaled[i] -= roundMe(scaled[i]); | 
| 361 | 
  | 
     | 
| 362 | 
  | 
    // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 363 | 
  | 
     | 
| 364 | 
  | 
    for(i=0; i<3; i++) | 
| 365 | 
< | 
      thePos[i] = scaled[i]*Hmat[i*4]; | 
| 365 | 
> | 
      thePos[i] = scaled[i]*Hmat[i][i]; | 
| 366 | 
  | 
  } | 
| 367 | 
  | 
     | 
| 317 | 
– | 
     | 
| 368 | 
  | 
} | 
| 369 | 
  | 
 | 
| 370 | 
  | 
 | 
| 410 | 
  | 
  fInfo.rt = 0.0; | 
| 411 | 
  | 
  fInfo.dielect = 0.0; | 
| 412 | 
  | 
 | 
| 363 | 
– | 
  fInfo.box[0] = box_x; | 
| 364 | 
– | 
  fInfo.box[1] = box_y; | 
| 365 | 
– | 
  fInfo.box[2] = box_z; | 
| 366 | 
– | 
 | 
| 413 | 
  | 
  fInfo.rlist = rList; | 
| 414 | 
  | 
  fInfo.rcut = rCut; | 
| 415 | 
  | 
 |