| 1 |
#include <cstdlib> |
| 2 |
#include <cstring> |
| 3 |
#include <cmath> |
| 4 |
|
| 5 |
#include <iostream> |
| 6 |
using namespace std; |
| 7 |
|
| 8 |
#include "SimInfo.hpp" |
| 9 |
#define __C |
| 10 |
#include "fSimulation.h" |
| 11 |
#include "simError.h" |
| 12 |
|
| 13 |
#include "fortranWrappers.hpp" |
| 14 |
|
| 15 |
#ifdef IS_MPI |
| 16 |
#include "mpiSimulation.hpp" |
| 17 |
#endif |
| 18 |
|
| 19 |
inline double roundMe( double x ){ |
| 20 |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
| 21 |
} |
| 22 |
|
| 23 |
|
| 24 |
SimInfo* currentInfo; |
| 25 |
|
| 26 |
SimInfo::SimInfo(){ |
| 27 |
excludes = NULL; |
| 28 |
n_constraints = 0; |
| 29 |
n_oriented = 0; |
| 30 |
n_dipoles = 0; |
| 31 |
ndf = 0; |
| 32 |
ndfRaw = 0; |
| 33 |
the_integrator = NULL; |
| 34 |
setTemp = 0; |
| 35 |
thermalTime = 0.0; |
| 36 |
rCut = 0.0; |
| 37 |
|
| 38 |
usePBC = 0; |
| 39 |
useLJ = 0; |
| 40 |
useSticky = 0; |
| 41 |
useDipole = 0; |
| 42 |
useReactionField = 0; |
| 43 |
useGB = 0; |
| 44 |
useEAM = 0; |
| 45 |
|
| 46 |
wrapMeSimInfo( this ); |
| 47 |
} |
| 48 |
|
| 49 |
void SimInfo::setBox(double newBox[3]) { |
| 50 |
|
| 51 |
int i; |
| 52 |
double tempMat[9]; |
| 53 |
|
| 54 |
for(i=0; i<9; i++) tempMat[i] = 0.0;; |
| 55 |
|
| 56 |
tempMat[0] = newBox[0]; |
| 57 |
tempMat[4] = newBox[1]; |
| 58 |
tempMat[8] = newBox[2]; |
| 59 |
|
| 60 |
setBoxM( tempMat ); |
| 61 |
|
| 62 |
} |
| 63 |
|
| 64 |
void SimInfo::setBoxM( double theBox[9] ){ |
| 65 |
|
| 66 |
int i, status; |
| 67 |
double smallestBoxL, maxCutoff; |
| 68 |
|
| 69 |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
| 70 |
|
| 71 |
cerr |
| 72 |
<< "setting Hmat ->\n" |
| 73 |
<< "[ " << Hmat[0] << ", " << Hmat[3] << ", " << Hmat[6] << " ]\n" |
| 74 |
<< "[ " << Hmat[1] << ", " << Hmat[4] << ", " << Hmat[7] << " ]\n" |
| 75 |
<< "[ " << Hmat[2] << ", " << Hmat[5] << ", " << Hmat[8] << " ]\n"; |
| 76 |
|
| 77 |
calcHmatI(); |
| 78 |
calcBoxL(); |
| 79 |
|
| 80 |
|
| 81 |
|
| 82 |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 83 |
|
| 84 |
smallestBoxL = boxLx; |
| 85 |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 86 |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
| 87 |
|
| 88 |
maxCutoff = smallestBoxL / 2.0; |
| 89 |
|
| 90 |
if (rList > maxCutoff) { |
| 91 |
sprintf( painCave.errMsg, |
| 92 |
"New Box size is forcing neighborlist radius down to %lf\n", |
| 93 |
maxCutoff ); |
| 94 |
painCave.isFatal = 0; |
| 95 |
simError(); |
| 96 |
|
| 97 |
rList = maxCutoff; |
| 98 |
|
| 99 |
sprintf( painCave.errMsg, |
| 100 |
"New Box size is forcing cutoff radius down to %lf\n", |
| 101 |
maxCutoff - 1.0 ); |
| 102 |
painCave.isFatal = 0; |
| 103 |
simError(); |
| 104 |
|
| 105 |
rCut = rList - 1.0; |
| 106 |
|
| 107 |
// list radius changed so we have to refresh the simulation structure. |
| 108 |
refreshSim(); |
| 109 |
} |
| 110 |
|
| 111 |
if (rCut > maxCutoff) { |
| 112 |
sprintf( painCave.errMsg, |
| 113 |
"New Box size is forcing cutoff radius down to %lf\n", |
| 114 |
maxCutoff ); |
| 115 |
painCave.isFatal = 0; |
| 116 |
simError(); |
| 117 |
|
| 118 |
status = 0; |
| 119 |
LJ_new_rcut(&rCut, &status); |
| 120 |
if (status != 0) { |
| 121 |
sprintf( painCave.errMsg, |
| 122 |
"Error in recomputing LJ shifts based on new rcut\n"); |
| 123 |
painCave.isFatal = 1; |
| 124 |
simError(); |
| 125 |
} |
| 126 |
} |
| 127 |
} |
| 128 |
|
| 129 |
|
| 130 |
void SimInfo::getBoxM (double theBox[9]) { |
| 131 |
|
| 132 |
int i; |
| 133 |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
| 134 |
} |
| 135 |
|
| 136 |
|
| 137 |
void SimInfo::scaleBox(double scale) { |
| 138 |
double theBox[9]; |
| 139 |
int i; |
| 140 |
|
| 141 |
cerr << "Scaling box by " << scale << "\n"; |
| 142 |
|
| 143 |
for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
| 144 |
|
| 145 |
setBoxM(theBox); |
| 146 |
|
| 147 |
} |
| 148 |
|
| 149 |
void SimInfo::calcHmatI( void ) { |
| 150 |
|
| 151 |
double C[3][3]; |
| 152 |
double detHmat; |
| 153 |
int i, j, k; |
| 154 |
double smallDiag; |
| 155 |
double tol; |
| 156 |
double sanity[3][3]; |
| 157 |
|
| 158 |
// calculate the adjunct of Hmat; |
| 159 |
|
| 160 |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
| 161 |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
| 162 |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
| 163 |
|
| 164 |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
| 165 |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
| 166 |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
| 167 |
|
| 168 |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
| 169 |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
| 170 |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
| 171 |
|
| 172 |
// calcutlate the determinant of Hmat |
| 173 |
|
| 174 |
detHmat = 0.0; |
| 175 |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
| 176 |
|
| 177 |
|
| 178 |
// H^-1 = C^T / det(H) |
| 179 |
|
| 180 |
i=0; |
| 181 |
for(j=0; j<3; j++){ |
| 182 |
for(k=0; k<3; k++){ |
| 183 |
|
| 184 |
HmatI[i] = C[j][k] / detHmat; |
| 185 |
i++; |
| 186 |
} |
| 187 |
} |
| 188 |
|
| 189 |
// sanity check |
| 190 |
|
| 191 |
for(i=0; i<3; i++){ |
| 192 |
for(j=0; j<3; j++){ |
| 193 |
|
| 194 |
sanity[i][j] = 0.0; |
| 195 |
for(k=0; k<3; k++){ |
| 196 |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
| 197 |
} |
| 198 |
} |
| 199 |
} |
| 200 |
|
| 201 |
cerr << "sanity => \n" |
| 202 |
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
| 203 |
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
| 204 |
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
| 205 |
<< "\n"; |
| 206 |
|
| 207 |
|
| 208 |
// check to see if Hmat is orthorhombic |
| 209 |
|
| 210 |
smallDiag = Hmat[0]; |
| 211 |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
| 212 |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
| 213 |
tol = smallDiag * 1E-6; |
| 214 |
|
| 215 |
orthoRhombic = 1; |
| 216 |
for(i=0; (i<9) && orthoRhombic; i++){ |
| 217 |
|
| 218 |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
| 219 |
orthoRhombic = (Hmat[i] <= tol); |
| 220 |
} |
| 221 |
} |
| 222 |
|
| 223 |
} |
| 224 |
|
| 225 |
void SimInfo::calcBoxL( void ){ |
| 226 |
|
| 227 |
double dx, dy, dz, dsq; |
| 228 |
int i; |
| 229 |
|
| 230 |
// boxVol = h1 (dot) h2 (cross) h3 |
| 231 |
|
| 232 |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
| 233 |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
| 234 |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
| 235 |
|
| 236 |
|
| 237 |
// boxLx |
| 238 |
|
| 239 |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
| 240 |
dsq = dx*dx + dy*dy + dz*dz; |
| 241 |
boxLx = sqrt( dsq ); |
| 242 |
|
| 243 |
// boxLy |
| 244 |
|
| 245 |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
| 246 |
dsq = dx*dx + dy*dy + dz*dz; |
| 247 |
boxLy = sqrt( dsq ); |
| 248 |
|
| 249 |
// boxLz |
| 250 |
|
| 251 |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
| 252 |
dsq = dx*dx + dy*dy + dz*dz; |
| 253 |
boxLz = sqrt( dsq ); |
| 254 |
|
| 255 |
} |
| 256 |
|
| 257 |
|
| 258 |
void SimInfo::wrapVector( double thePos[3] ){ |
| 259 |
|
| 260 |
int i, j, k; |
| 261 |
double scaled[3]; |
| 262 |
|
| 263 |
if( !orthoRhombic ){ |
| 264 |
// calc the scaled coordinates. |
| 265 |
|
| 266 |
for(i=0; i<3; i++) |
| 267 |
scaled[i] = |
| 268 |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
| 269 |
|
| 270 |
// wrap the scaled coordinates |
| 271 |
|
| 272 |
for(i=0; i<3; i++) |
| 273 |
scaled[i] -= roundMe(scaled[i]); |
| 274 |
|
| 275 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 276 |
|
| 277 |
for(i=0; i<3; i++) |
| 278 |
thePos[i] = |
| 279 |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
| 280 |
} |
| 281 |
else{ |
| 282 |
// calc the scaled coordinates. |
| 283 |
|
| 284 |
for(i=0; i<3; i++) |
| 285 |
scaled[i] = thePos[i]*HmatI[i*4]; |
| 286 |
|
| 287 |
// wrap the scaled coordinates |
| 288 |
|
| 289 |
for(i=0; i<3; i++) |
| 290 |
scaled[i] -= roundMe(scaled[i]); |
| 291 |
|
| 292 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 293 |
|
| 294 |
for(i=0; i<3; i++) |
| 295 |
thePos[i] = scaled[i]*Hmat[i*4]; |
| 296 |
} |
| 297 |
|
| 298 |
|
| 299 |
} |
| 300 |
|
| 301 |
|
| 302 |
int SimInfo::getNDF(){ |
| 303 |
int ndf_local, ndf; |
| 304 |
|
| 305 |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
| 306 |
|
| 307 |
#ifdef IS_MPI |
| 308 |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 309 |
#else |
| 310 |
ndf = ndf_local; |
| 311 |
#endif |
| 312 |
|
| 313 |
ndf = ndf - 3; |
| 314 |
|
| 315 |
return ndf; |
| 316 |
} |
| 317 |
|
| 318 |
int SimInfo::getNDFraw() { |
| 319 |
int ndfRaw_local, ndfRaw; |
| 320 |
|
| 321 |
// Raw degrees of freedom that we have to set |
| 322 |
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
| 323 |
|
| 324 |
#ifdef IS_MPI |
| 325 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 326 |
#else |
| 327 |
ndfRaw = ndfRaw_local; |
| 328 |
#endif |
| 329 |
|
| 330 |
return ndfRaw; |
| 331 |
} |
| 332 |
|
| 333 |
void SimInfo::refreshSim(){ |
| 334 |
|
| 335 |
simtype fInfo; |
| 336 |
int isError; |
| 337 |
int n_global; |
| 338 |
int* excl; |
| 339 |
|
| 340 |
fInfo.rrf = 0.0; |
| 341 |
fInfo.rt = 0.0; |
| 342 |
fInfo.dielect = 0.0; |
| 343 |
|
| 344 |
fInfo.rlist = rList; |
| 345 |
fInfo.rcut = rCut; |
| 346 |
|
| 347 |
if( useDipole ){ |
| 348 |
fInfo.rrf = ecr; |
| 349 |
fInfo.rt = ecr - est; |
| 350 |
if( useReactionField )fInfo.dielect = dielectric; |
| 351 |
} |
| 352 |
|
| 353 |
fInfo.SIM_uses_PBC = usePBC; |
| 354 |
//fInfo.SIM_uses_LJ = 0; |
| 355 |
fInfo.SIM_uses_LJ = useLJ; |
| 356 |
fInfo.SIM_uses_sticky = useSticky; |
| 357 |
//fInfo.SIM_uses_sticky = 0; |
| 358 |
fInfo.SIM_uses_dipoles = useDipole; |
| 359 |
//fInfo.SIM_uses_dipoles = 0; |
| 360 |
//fInfo.SIM_uses_RF = useReactionField; |
| 361 |
fInfo.SIM_uses_RF = 0; |
| 362 |
fInfo.SIM_uses_GB = useGB; |
| 363 |
fInfo.SIM_uses_EAM = useEAM; |
| 364 |
|
| 365 |
excl = Exclude::getArray(); |
| 366 |
|
| 367 |
#ifdef IS_MPI |
| 368 |
n_global = mpiSim->getTotAtoms(); |
| 369 |
#else |
| 370 |
n_global = n_atoms; |
| 371 |
#endif |
| 372 |
|
| 373 |
isError = 0; |
| 374 |
|
| 375 |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
| 376 |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
| 377 |
&isError ); |
| 378 |
|
| 379 |
if( isError ){ |
| 380 |
|
| 381 |
sprintf( painCave.errMsg, |
| 382 |
"There was an error setting the simulation information in fortran.\n" ); |
| 383 |
painCave.isFatal = 1; |
| 384 |
simError(); |
| 385 |
} |
| 386 |
|
| 387 |
#ifdef IS_MPI |
| 388 |
sprintf( checkPointMsg, |
| 389 |
"succesfully sent the simulation information to fortran.\n"); |
| 390 |
MPIcheckPoint(); |
| 391 |
#endif // is_mpi |
| 392 |
|
| 393 |
this->ndf = this->getNDF(); |
| 394 |
this->ndfRaw = this->getNDFraw(); |
| 395 |
|
| 396 |
} |
| 397 |
|