| 1 |
#include "Atom.hpp" |
| 2 |
#include "SRI.hpp" |
| 3 |
#include "AbstractClasses.hpp" |
| 4 |
#include "SimInfo.hpp" |
| 5 |
#include "ForceFields.hpp" |
| 6 |
#include "Thermo.hpp" |
| 7 |
#include "ReadWrite.hpp" |
| 8 |
#include "Integrator.hpp" |
| 9 |
#include "simError.h" |
| 10 |
|
| 11 |
|
| 12 |
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 13 |
|
| 14 |
template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
| 15 |
T( theInfo, the_ff ) |
| 16 |
{ |
| 17 |
chi = 0.0; |
| 18 |
have_tau_thermostat = 0; |
| 19 |
have_target_temp = 0; |
| 20 |
have_chi_tolerance = 0; |
| 21 |
integralOfChidt = 0.0; |
| 22 |
|
| 23 |
oldVel = new double[3*nAtoms]; |
| 24 |
oldJi = new double[3*nAtoms]; |
| 25 |
} |
| 26 |
|
| 27 |
template<typename T> NVT<T>::~NVT() { |
| 28 |
delete[] oldVel; |
| 29 |
delete[] oldJi; |
| 30 |
} |
| 31 |
|
| 32 |
template<typename T> void NVT<T>::moveA() { |
| 33 |
|
| 34 |
int i, j; |
| 35 |
DirectionalAtom* dAtom; |
| 36 |
double Tb[3], ji[3]; |
| 37 |
double A[3][3], I[3][3]; |
| 38 |
double angle, mass; |
| 39 |
double vel[3], pos[3], frc[3]; |
| 40 |
|
| 41 |
double instTemp; |
| 42 |
|
| 43 |
// We need the temperature at time = t for the chi update below: |
| 44 |
|
| 45 |
instTemp = tStats->getTemperature(); |
| 46 |
|
| 47 |
for( i=0; i<nAtoms; i++ ){ |
| 48 |
|
| 49 |
atoms[i]->getVel( vel ); |
| 50 |
atoms[i]->getPos( pos ); |
| 51 |
atoms[i]->getFrc( frc ); |
| 52 |
|
| 53 |
mass = atoms[i]->getMass(); |
| 54 |
|
| 55 |
for (j=0; j < 3; j++) { |
| 56 |
// velocity half step (use chi from previous step here): |
| 57 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
| 58 |
// position whole step |
| 59 |
pos[j] += dt * vel[j]; |
| 60 |
} |
| 61 |
|
| 62 |
atoms[i]->setVel( vel ); |
| 63 |
atoms[i]->setPos( pos ); |
| 64 |
|
| 65 |
if( atoms[i]->isDirectional() ){ |
| 66 |
|
| 67 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 68 |
|
| 69 |
// get and convert the torque to body frame |
| 70 |
|
| 71 |
dAtom->getTrq( Tb ); |
| 72 |
dAtom->lab2Body( Tb ); |
| 73 |
|
| 74 |
// get the angular momentum, and propagate a half step |
| 75 |
|
| 76 |
dAtom->getJ( ji ); |
| 77 |
|
| 78 |
for (j=0; j < 3; j++) |
| 79 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 80 |
|
| 81 |
// use the angular velocities to propagate the rotation matrix a |
| 82 |
// full time step |
| 83 |
|
| 84 |
dAtom->getA(A); |
| 85 |
dAtom->getI(I); |
| 86 |
|
| 87 |
// rotate about the x-axis |
| 88 |
angle = dt2 * ji[0] / I[0][0]; |
| 89 |
this->rotate( 1, 2, angle, ji, A ); |
| 90 |
|
| 91 |
// rotate about the y-axis |
| 92 |
angle = dt2 * ji[1] / I[1][1]; |
| 93 |
this->rotate( 2, 0, angle, ji, A ); |
| 94 |
|
| 95 |
// rotate about the z-axis |
| 96 |
angle = dt * ji[2] / I[2][2]; |
| 97 |
this->rotate( 0, 1, angle, ji, A); |
| 98 |
|
| 99 |
// rotate about the y-axis |
| 100 |
angle = dt2 * ji[1] / I[1][1]; |
| 101 |
this->rotate( 2, 0, angle, ji, A ); |
| 102 |
|
| 103 |
// rotate about the x-axis |
| 104 |
angle = dt2 * ji[0] / I[0][0]; |
| 105 |
this->rotate( 1, 2, angle, ji, A ); |
| 106 |
|
| 107 |
dAtom->setJ( ji ); |
| 108 |
dAtom->setA( A ); |
| 109 |
} |
| 110 |
} |
| 111 |
|
| 112 |
if (nConstrained){ |
| 113 |
constrainA(); |
| 114 |
} |
| 115 |
|
| 116 |
// Finally, evolve chi a half step (just like a velocity) using |
| 117 |
// temperature at time t, not time t+dt/2 |
| 118 |
|
| 119 |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 120 |
integralOfChidt += chi*dt2; |
| 121 |
|
| 122 |
} |
| 123 |
|
| 124 |
template<typename T> void NVT<T>::moveB( void ){ |
| 125 |
int i, j, k; |
| 126 |
DirectionalAtom* dAtom; |
| 127 |
double Tb[3], ji[3]; |
| 128 |
double vel[3], frc[3]; |
| 129 |
double mass; |
| 130 |
double instTemp; |
| 131 |
double oldChi, prevChi; |
| 132 |
|
| 133 |
// Set things up for the iteration: |
| 134 |
|
| 135 |
oldChi = chi; |
| 136 |
|
| 137 |
for( i=0; i<nAtoms; i++ ){ |
| 138 |
|
| 139 |
atoms[i]->getVel( vel ); |
| 140 |
|
| 141 |
for (j=0; j < 3; j++) |
| 142 |
oldVel[3*i + j] = vel[j]; |
| 143 |
|
| 144 |
if( atoms[i]->isDirectional() ){ |
| 145 |
|
| 146 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 147 |
|
| 148 |
dAtom->getJ( ji ); |
| 149 |
|
| 150 |
for (j=0; j < 3; j++) |
| 151 |
oldJi[3*i + j] = ji[j]; |
| 152 |
|
| 153 |
} |
| 154 |
} |
| 155 |
|
| 156 |
// do the iteration: |
| 157 |
|
| 158 |
for (k=0; k < 4; k++) { |
| 159 |
|
| 160 |
instTemp = tStats->getTemperature(); |
| 161 |
|
| 162 |
// evolve chi another half step using the temperature at t + dt/2 |
| 163 |
|
| 164 |
prevChi = chi; |
| 165 |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
| 166 |
(tauThermostat*tauThermostat); |
| 167 |
|
| 168 |
for( i=0; i<nAtoms; i++ ){ |
| 169 |
|
| 170 |
atoms[i]->getFrc( frc ); |
| 171 |
atoms[i]->getVel(vel); |
| 172 |
|
| 173 |
mass = atoms[i]->getMass(); |
| 174 |
|
| 175 |
// velocity half step |
| 176 |
for (j=0; j < 3; j++) |
| 177 |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); |
| 178 |
|
| 179 |
atoms[i]->setVel( vel ); |
| 180 |
|
| 181 |
if( atoms[i]->isDirectional() ){ |
| 182 |
|
| 183 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 184 |
|
| 185 |
// get and convert the torque to body frame |
| 186 |
|
| 187 |
dAtom->getTrq( Tb ); |
| 188 |
dAtom->lab2Body( Tb ); |
| 189 |
|
| 190 |
for (j=0; j < 3; j++) |
| 191 |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 192 |
|
| 193 |
dAtom->setJ( ji ); |
| 194 |
} |
| 195 |
} |
| 196 |
|
| 197 |
if (nConstrained){ |
| 198 |
constrainB(); |
| 199 |
} |
| 200 |
|
| 201 |
if (fabs(prevChi - chi) <= chiTolerance) break; |
| 202 |
} |
| 203 |
|
| 204 |
integralOfChidt += dt2*chi; |
| 205 |
} |
| 206 |
|
| 207 |
template<typename T> void NVT<T>::resetIntegrator( void ){ |
| 208 |
|
| 209 |
chi = 0.0; |
| 210 |
integralOfChidt = 0.0; |
| 211 |
} |
| 212 |
|
| 213 |
template<typename T> int NVT<T>::readyCheck() { |
| 214 |
|
| 215 |
//check parent's readyCheck() first |
| 216 |
if (T::readyCheck() == -1) |
| 217 |
return -1; |
| 218 |
|
| 219 |
// First check to see if we have a target temperature. |
| 220 |
// Not having one is fatal. |
| 221 |
|
| 222 |
if (!have_target_temp) { |
| 223 |
sprintf( painCave.errMsg, |
| 224 |
"NVT error: You can't use the NVT integrator without a targetTemp!\n" |
| 225 |
); |
| 226 |
painCave.isFatal = 1; |
| 227 |
simError(); |
| 228 |
return -1; |
| 229 |
} |
| 230 |
|
| 231 |
// We must set tauThermostat. |
| 232 |
|
| 233 |
if (!have_tau_thermostat) { |
| 234 |
sprintf( painCave.errMsg, |
| 235 |
"NVT error: If you use the constant temperature\n" |
| 236 |
" integrator, you must set tauThermostat.\n"); |
| 237 |
painCave.isFatal = 1; |
| 238 |
simError(); |
| 239 |
return -1; |
| 240 |
} |
| 241 |
|
| 242 |
if (!have_chi_tolerance) { |
| 243 |
sprintf( painCave.errMsg, |
| 244 |
"NVT warning: setting chi tolerance to 1e-6\n"); |
| 245 |
chiTolerance = 1e-6; |
| 246 |
have_chi_tolerance = 1; |
| 247 |
painCave.isFatal = 0; |
| 248 |
simError(); |
| 249 |
} |
| 250 |
|
| 251 |
return 1; |
| 252 |
|
| 253 |
} |
| 254 |
|
| 255 |
template<typename T> double NVT<T>::getConservedQuantity(void){ |
| 256 |
|
| 257 |
double conservedQuantity; |
| 258 |
double E_NVT; |
| 259 |
|
| 260 |
//HNVE |
| 261 |
conservedQuantity = tStats->getTotalE(); |
| 262 |
//HNVE |
| 263 |
|
| 264 |
E_NVT = (info->getNDF() * kB * targetTemp * |
| 265 |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0 )) / eConvert; |
| 266 |
|
| 267 |
conservedQuantity += E_NVT; |
| 268 |
|
| 269 |
//cerr << info->getTime() << "\t" << chi << "\t" << integralOfChidt << "\t" << E_NVT << endl; |
| 270 |
|
| 271 |
return conservedQuantity; |
| 272 |
} |