| 1 |
+ |
#include <cmath> |
| 2 |
|
#include "Atom.hpp" |
| 3 |
|
#include "SRI.hpp" |
| 4 |
|
#include "AbstractClasses.hpp" |
| 9 |
|
#include "Integrator.hpp" |
| 10 |
|
#include "simError.h" |
| 11 |
|
|
| 12 |
+ |
#ifdef IS_MPI |
| 13 |
+ |
#include "mpiSimulation.hpp" |
| 14 |
+ |
#endif |
| 15 |
|
|
| 16 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
| 17 |
|
// modification of the Hoover algorithm: |
| 23 |
|
// |
| 24 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 25 |
|
|
| 26 |
< |
NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
< |
Integrator( theInfo, the_ff ) |
| 26 |
> |
template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
> |
T( theInfo, the_ff ) |
| 28 |
|
{ |
| 29 |
|
chi = 0.0; |
| 30 |
|
eta = 0.0; |
| 31 |
+ |
integralOfChidt = 0.0; |
| 32 |
|
have_tau_thermostat = 0; |
| 33 |
|
have_tau_barostat = 0; |
| 34 |
|
have_target_temp = 0; |
| 35 |
|
have_target_pressure = 0; |
| 36 |
+ |
have_chi_tolerance = 0; |
| 37 |
+ |
have_eta_tolerance = 0; |
| 38 |
+ |
have_pos_iter_tolerance = 0; |
| 39 |
+ |
|
| 40 |
+ |
oldPos = new double[3*nAtoms]; |
| 41 |
+ |
oldVel = new double[3*nAtoms]; |
| 42 |
+ |
oldJi = new double[3*nAtoms]; |
| 43 |
+ |
#ifdef IS_MPI |
| 44 |
+ |
Nparticles = mpiSim->getTotAtoms(); |
| 45 |
+ |
#else |
| 46 |
+ |
Nparticles = theInfo->n_atoms; |
| 47 |
+ |
#endif |
| 48 |
+ |
|
| 49 |
|
} |
| 50 |
|
|
| 51 |
< |
void NPTi::moveA() { |
| 52 |
< |
|
| 53 |
< |
int i,j,k; |
| 54 |
< |
int atomIndex, aMatIndex; |
| 51 |
> |
template<typename T> NPTi<T>::~NPTi() { |
| 52 |
> |
delete[] oldPos; |
| 53 |
> |
delete[] oldVel; |
| 54 |
> |
delete[] oldJi; |
| 55 |
> |
} |
| 56 |
> |
|
| 57 |
> |
template<typename T> void NPTi<T>::moveA() { |
| 58 |
> |
|
| 59 |
> |
//new version of NPTi |
| 60 |
> |
int i, j, k; |
| 61 |
|
DirectionalAtom* dAtom; |
| 62 |
< |
double Tb[3]; |
| 63 |
< |
double ji[3]; |
| 62 |
> |
double Tb[3], ji[3]; |
| 63 |
> |
double A[3][3], I[3][3]; |
| 64 |
> |
double angle, mass; |
| 65 |
> |
double vel[3], pos[3], frc[3]; |
| 66 |
> |
|
| 67 |
|
double rj[3]; |
| 68 |
|
double instaTemp, instaPress, instaVol; |
| 69 |
< |
double tt2, tb2; |
| 70 |
< |
double angle; |
| 69 |
> |
double tt2, tb2, scaleFactor; |
| 70 |
> |
double COM[3]; |
| 71 |
|
|
| 72 |
|
tt2 = tauThermostat * tauThermostat; |
| 73 |
|
tb2 = tauBarostat * tauBarostat; |
| 75 |
|
instaTemp = tStats->getTemperature(); |
| 76 |
|
instaPress = tStats->getPressure(); |
| 77 |
|
instaVol = tStats->getVolume(); |
| 51 |
– |
|
| 52 |
– |
// first evolve chi a half step |
| 78 |
|
|
| 79 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 80 |
< |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
| 81 |
< |
|
| 79 |
> |
tStats->getCOM(COM); |
| 80 |
> |
|
| 81 |
> |
//evolve velocity half step |
| 82 |
|
for( i=0; i<nAtoms; i++ ){ |
| 58 |
– |
atomIndex = i * 3; |
| 59 |
– |
aMatIndex = i * 9; |
| 60 |
– |
|
| 61 |
– |
// velocity half step |
| 62 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 63 |
– |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 64 |
– |
- vel[j]*(chi+eta)); |
| 83 |
|
|
| 84 |
< |
// position whole step |
| 84 |
> |
atoms[i]->getVel( vel ); |
| 85 |
> |
atoms[i]->getFrc( frc ); |
| 86 |
|
|
| 87 |
< |
for( j=atomIndex; j<(atomIndex+3); j=j+3 ) { |
| 69 |
< |
rj[0] = pos[j]; |
| 70 |
< |
rj[1] = pos[j+1]; |
| 71 |
< |
rj[2] = pos[j+2]; |
| 87 |
> |
mass = atoms[i]->getMass(); |
| 88 |
|
|
| 89 |
< |
info->wrapVector(rj); |
| 90 |
< |
|
| 91 |
< |
pos[j] += dt * (vel[j] + eta*rj[0]); |
| 76 |
< |
pos[j+1] += dt * (vel[j+1] + eta*rj[1]); |
| 77 |
< |
pos[j+2] += dt * (vel[j+2] + eta*rj[2]); |
| 89 |
> |
for (j=0; j < 3; j++) { |
| 90 |
> |
// velocity half step |
| 91 |
> |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); |
| 92 |
|
} |
| 93 |
|
|
| 94 |
< |
// Scale the box after all the positions have been moved: |
| 81 |
< |
|
| 82 |
< |
info->scaleBox(exp(dt*eta)); |
| 94 |
> |
atoms[i]->setVel( vel ); |
| 95 |
|
|
| 96 |
|
if( atoms[i]->isDirectional() ){ |
| 97 |
|
|
| 98 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 99 |
< |
|
| 99 |
> |
|
| 100 |
|
// get and convert the torque to body frame |
| 101 |
|
|
| 102 |
< |
Tb[0] = dAtom->getTx(); |
| 91 |
< |
Tb[1] = dAtom->getTy(); |
| 92 |
< |
Tb[2] = dAtom->getTz(); |
| 93 |
< |
|
| 102 |
> |
dAtom->getTrq( Tb ); |
| 103 |
|
dAtom->lab2Body( Tb ); |
| 104 |
|
|
| 105 |
|
// get the angular momentum, and propagate a half step |
| 106 |
|
|
| 107 |
< |
ji[0] = dAtom->getJx(); |
| 108 |
< |
ji[1] = dAtom->getJy(); |
| 109 |
< |
ji[2] = dAtom->getJz(); |
| 107 |
> |
dAtom->getJ( ji ); |
| 108 |
> |
|
| 109 |
> |
for (j=0; j < 3; j++) |
| 110 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 111 |
|
|
| 102 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 103 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 104 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 105 |
– |
|
| 112 |
|
// use the angular velocities to propagate the rotation matrix a |
| 113 |
|
// full time step |
| 114 |
< |
|
| 114 |
> |
|
| 115 |
> |
dAtom->getA(A); |
| 116 |
> |
dAtom->getI(I); |
| 117 |
> |
|
| 118 |
|
// rotate about the x-axis |
| 119 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 120 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 121 |
< |
|
| 119 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 120 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 121 |
> |
|
| 122 |
|
// rotate about the y-axis |
| 123 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 124 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 123 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 124 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 125 |
|
|
| 126 |
|
// rotate about the z-axis |
| 127 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 128 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 127 |
> |
angle = dt * ji[2] / I[2][2]; |
| 128 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 129 |
|
|
| 130 |
|
// rotate about the y-axis |
| 131 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 132 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 131 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 132 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 133 |
|
|
| 134 |
|
// rotate about the x-axis |
| 135 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 136 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 135 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 136 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 137 |
|
|
| 138 |
< |
dAtom->setJx( ji[0] ); |
| 139 |
< |
dAtom->setJy( ji[1] ); |
| 140 |
< |
dAtom->setJz( ji[2] ); |
| 138 |
> |
dAtom->setJ( ji ); |
| 139 |
> |
dAtom->setA( A ); |
| 140 |
> |
} |
| 141 |
> |
} |
| 142 |
> |
|
| 143 |
> |
// advance chi half step |
| 144 |
> |
|
| 145 |
> |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 146 |
> |
|
| 147 |
> |
// calculate the integral of chidt |
| 148 |
> |
|
| 149 |
> |
integralOfChidt += dt2*chi; |
| 150 |
> |
|
| 151 |
> |
// advance eta half step |
| 152 |
> |
|
| 153 |
> |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); |
| 154 |
> |
|
| 155 |
> |
//save the old positions |
| 156 |
> |
for(i = 0; i < nAtoms; i++){ |
| 157 |
> |
atoms[i]->getPos(pos); |
| 158 |
> |
for(j = 0; j < 3; j++) |
| 159 |
> |
oldPos[i*3 + j] = pos[j]; |
| 160 |
> |
} |
| 161 |
> |
|
| 162 |
> |
//the first estimation of r(t+dt) is equal to r(t) |
| 163 |
> |
|
| 164 |
> |
for(k = 0; k < 4; k ++){ |
| 165 |
> |
|
| 166 |
> |
for(i =0 ; i < nAtoms; i++){ |
| 167 |
> |
|
| 168 |
> |
atoms[i]->getVel(vel); |
| 169 |
> |
atoms[i]->getPos(pos); |
| 170 |
> |
|
| 171 |
> |
for(j = 0; j < 3; j++) |
| 172 |
> |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
| 173 |
> |
|
| 174 |
> |
for(j = 0; j < 3; j++) |
| 175 |
> |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); |
| 176 |
> |
|
| 177 |
> |
atoms[i]->setPos( pos ); |
| 178 |
|
} |
| 179 |
|
|
| 180 |
+ |
if (nConstrained){ |
| 181 |
+ |
constrainA(); |
| 182 |
+ |
} |
| 183 |
|
} |
| 184 |
+ |
|
| 185 |
+ |
|
| 186 |
+ |
// Scale the box after all the positions have been moved: |
| 187 |
+ |
|
| 188 |
+ |
scaleFactor = exp(dt*eta); |
| 189 |
+ |
|
| 190 |
+ |
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
| 191 |
+ |
sprintf( painCave.errMsg, |
| 192 |
+ |
"NPTi error: Attempting a Box scaling of more than 10 percent" |
| 193 |
+ |
" check your tauBarostat, as it is probably too small!\n" |
| 194 |
+ |
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
| 195 |
+ |
); |
| 196 |
+ |
painCave.isFatal = 1; |
| 197 |
+ |
simError(); |
| 198 |
+ |
} else { |
| 199 |
+ |
info->scaleBox(scaleFactor); |
| 200 |
+ |
} |
| 201 |
+ |
|
| 202 |
|
} |
| 203 |
|
|
| 204 |
< |
void NPTi::moveB( void ){ |
| 205 |
< |
int i,j,k; |
| 206 |
< |
int atomIndex; |
| 204 |
> |
template<typename T> void NPTi<T>::moveB( void ){ |
| 205 |
> |
|
| 206 |
> |
//new version of NPTi |
| 207 |
> |
int i, j, k; |
| 208 |
|
DirectionalAtom* dAtom; |
| 209 |
< |
double Tb[3]; |
| 210 |
< |
double ji[3]; |
| 209 |
> |
double Tb[3], ji[3]; |
| 210 |
> |
double vel[3], frc[3]; |
| 211 |
> |
double mass; |
| 212 |
> |
|
| 213 |
|
double instaTemp, instaPress, instaVol; |
| 214 |
|
double tt2, tb2; |
| 215 |
+ |
double oldChi, prevChi; |
| 216 |
+ |
double oldEta, prevEta; |
| 217 |
|
|
| 218 |
|
tt2 = tauThermostat * tauThermostat; |
| 219 |
|
tb2 = tauBarostat * tauBarostat; |
| 220 |
|
|
| 221 |
< |
instaTemp = tStats->getTemperature(); |
| 150 |
< |
instaPress = tStats->getPressure(); |
| 151 |
< |
instaVol = tStats->getVolume(); |
| 221 |
> |
// Set things up for the iteration: |
| 222 |
|
|
| 223 |
< |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 224 |
< |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
| 225 |
< |
|
| 223 |
> |
oldChi = chi; |
| 224 |
> |
oldEta = eta; |
| 225 |
> |
|
| 226 |
|
for( i=0; i<nAtoms; i++ ){ |
| 227 |
< |
atomIndex = i * 3; |
| 228 |
< |
|
| 229 |
< |
// velocity half step |
| 230 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 231 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 232 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 163 |
< |
- vel[j]*(chi+eta)); |
| 164 |
< |
|
| 227 |
> |
|
| 228 |
> |
atoms[i]->getVel( vel ); |
| 229 |
> |
|
| 230 |
> |
for (j=0; j < 3; j++) |
| 231 |
> |
oldVel[3*i + j] = vel[j]; |
| 232 |
> |
|
| 233 |
|
if( atoms[i]->isDirectional() ){ |
| 234 |
< |
|
| 234 |
> |
|
| 235 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 236 |
+ |
|
| 237 |
+ |
dAtom->getJ( ji ); |
| 238 |
+ |
|
| 239 |
+ |
for (j=0; j < 3; j++) |
| 240 |
+ |
oldJi[3*i + j] = ji[j]; |
| 241 |
+ |
|
| 242 |
+ |
} |
| 243 |
+ |
} |
| 244 |
+ |
|
| 245 |
+ |
// do the iteration: |
| 246 |
+ |
|
| 247 |
+ |
instaVol = tStats->getVolume(); |
| 248 |
+ |
|
| 249 |
+ |
for (k=0; k < 4; k++) { |
| 250 |
+ |
|
| 251 |
+ |
instaTemp = tStats->getTemperature(); |
| 252 |
+ |
instaPress = tStats->getPressure(); |
| 253 |
+ |
|
| 254 |
+ |
// evolve chi another half step using the temperature at t + dt/2 |
| 255 |
+ |
|
| 256 |
+ |
prevChi = chi; |
| 257 |
+ |
chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 258 |
+ |
|
| 259 |
+ |
prevEta = eta; |
| 260 |
+ |
|
| 261 |
+ |
// advance eta half step and calculate scale factor for velocity |
| 262 |
+ |
|
| 263 |
+ |
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
| 264 |
+ |
(p_convert*NkBT*tb2)); |
| 265 |
+ |
|
| 266 |
+ |
|
| 267 |
+ |
for( i=0; i<nAtoms; i++ ){ |
| 268 |
+ |
|
| 269 |
+ |
atoms[i]->getFrc( frc ); |
| 270 |
+ |
atoms[i]->getVel(vel); |
| 271 |
|
|
| 272 |
< |
// get and convert the torque to body frame |
| 272 |
> |
mass = atoms[i]->getMass(); |
| 273 |
|
|
| 274 |
< |
Tb[0] = dAtom->getTx(); |
| 275 |
< |
Tb[1] = dAtom->getTy(); |
| 276 |
< |
Tb[2] = dAtom->getTz(); |
| 274 |
> |
// velocity half step |
| 275 |
> |
for (j=0; j < 3; j++) |
| 276 |
> |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); |
| 277 |
|
|
| 278 |
< |
dAtom->lab2Body( Tb ); |
| 278 |
> |
atoms[i]->setVel( vel ); |
| 279 |
|
|
| 280 |
< |
// get the angular momentum, and complete the angular momentum |
| 281 |
< |
// half step |
| 280 |
> |
if( atoms[i]->isDirectional() ){ |
| 281 |
> |
|
| 282 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
| 283 |
> |
|
| 284 |
> |
// get and convert the torque to body frame |
| 285 |
> |
|
| 286 |
> |
dAtom->getTrq( Tb ); |
| 287 |
> |
dAtom->lab2Body( Tb ); |
| 288 |
> |
|
| 289 |
> |
for (j=0; j < 3; j++) |
| 290 |
> |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 291 |
|
|
| 292 |
< |
ji[0] = dAtom->getJx(); |
| 293 |
< |
ji[1] = dAtom->getJy(); |
| 182 |
< |
ji[2] = dAtom->getJz(); |
| 183 |
< |
|
| 184 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 185 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 186 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 187 |
< |
|
| 188 |
< |
dAtom->setJx( ji[0] ); |
| 189 |
< |
dAtom->setJy( ji[1] ); |
| 190 |
< |
dAtom->setJz( ji[2] ); |
| 292 |
> |
dAtom->setJ( ji ); |
| 293 |
> |
} |
| 294 |
|
} |
| 295 |
+ |
|
| 296 |
+ |
if (nConstrained){ |
| 297 |
+ |
constrainB(); |
| 298 |
+ |
} |
| 299 |
+ |
|
| 300 |
+ |
if (fabs(prevChi - chi) <= |
| 301 |
+ |
chiTolerance && fabs(prevEta -eta) <= etaTolerance) |
| 302 |
+ |
break; |
| 303 |
|
} |
| 304 |
+ |
|
| 305 |
+ |
//calculate integral of chidt |
| 306 |
+ |
integralOfChidt += dt2*chi; |
| 307 |
+ |
|
| 308 |
|
} |
| 309 |
|
|
| 310 |
< |
int NPTi::readyCheck() { |
| 310 |
> |
template<typename T> void NPTi<T>::resetIntegrator() { |
| 311 |
> |
chi = 0.0; |
| 312 |
> |
eta = 0.0; |
| 313 |
> |
} |
| 314 |
> |
|
| 315 |
> |
template<typename T> int NPTi<T>::readyCheck() { |
| 316 |
> |
|
| 317 |
> |
//check parent's readyCheck() first |
| 318 |
> |
if (T::readyCheck() == -1) |
| 319 |
> |
return -1; |
| 320 |
|
|
| 321 |
|
// First check to see if we have a target temperature. |
| 322 |
|
// Not having one is fatal. |
| 363 |
|
return -1; |
| 364 |
|
} |
| 365 |
|
|
| 366 |
< |
// We need NkBT a lot, so just set it here: |
| 366 |
> |
if (!have_chi_tolerance) { |
| 367 |
> |
sprintf( painCave.errMsg, |
| 368 |
> |
"NPTi warning: setting chi tolerance to 1e-6\n"); |
| 369 |
> |
chiTolerance = 1e-6; |
| 370 |
> |
have_chi_tolerance = 1; |
| 371 |
> |
painCave.isFatal = 0; |
| 372 |
> |
simError(); |
| 373 |
> |
} |
| 374 |
|
|
| 375 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
| 375 |
> |
if (!have_eta_tolerance) { |
| 376 |
> |
sprintf( painCave.errMsg, |
| 377 |
> |
"NPTi warning: setting eta tolerance to 1e-6\n"); |
| 378 |
> |
etaTolerance = 1e-6; |
| 379 |
> |
have_eta_tolerance = 1; |
| 380 |
> |
painCave.isFatal = 0; |
| 381 |
> |
simError(); |
| 382 |
> |
} |
| 383 |
> |
|
| 384 |
> |
|
| 385 |
> |
// We need NkBT a lot, so just set it here: This is the RAW number |
| 386 |
> |
// of particles, so no subtraction or addition of constraints or |
| 387 |
> |
// orientational degrees of freedom: |
| 388 |
> |
|
| 389 |
> |
NkBT = (double)Nparticles * kB * targetTemp; |
| 390 |
> |
|
| 391 |
> |
// fkBT is used because the thermostat operates on more degrees of freedom |
| 392 |
> |
// than the barostat (when there are particles with orientational degrees |
| 393 |
> |
// of freedom). ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons |
| 394 |
> |
|
| 395 |
> |
fkBT = (double)info->ndf * kB * targetTemp; |
| 396 |
|
|
| 397 |
|
return 1; |
| 398 |
|
} |
| 399 |
+ |
|
| 400 |
+ |
template<typename T> double NPTi<T>::getConservedQuantity(void){ |
| 401 |
+ |
|
| 402 |
+ |
double conservedQuantity; |
| 403 |
+ |
double Three_NkBT; |
| 404 |
+ |
double Energy; |
| 405 |
+ |
double thermostat_kinetic; |
| 406 |
+ |
double thermostat_potential; |
| 407 |
+ |
double barostat_kinetic; |
| 408 |
+ |
double barostat_potential; |
| 409 |
+ |
double tb2; |
| 410 |
+ |
double eta2; |
| 411 |
+ |
|
| 412 |
+ |
Energy = tStats->getTotalE(); |
| 413 |
+ |
|
| 414 |
+ |
thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |
| 415 |
+ |
(2.0 * eConvert); |
| 416 |
+ |
|
| 417 |
+ |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
| 418 |
+ |
|
| 419 |
+ |
|
| 420 |
+ |
barostat_kinetic = 3.0 * NkBT * tauBarostat * tauBarostat * eta * eta / |
| 421 |
+ |
(2.0 * eConvert); |
| 422 |
+ |
|
| 423 |
+ |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
| 424 |
+ |
eConvert; |
| 425 |
+ |
|
| 426 |
+ |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
| 427 |
+ |
barostat_kinetic + barostat_potential; |
| 428 |
+ |
|
| 429 |
+ |
cout.width(8); |
| 430 |
+ |
cout.precision(8); |
| 431 |
+ |
|
| 432 |
+ |
cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
| 433 |
+ |
"\t" << thermostat_potential << "\t" << barostat_kinetic << |
| 434 |
+ |
"\t" << barostat_potential << "\t" << conservedQuantity << endl; |
| 435 |
+ |
|
| 436 |
+ |
return conservedQuantity; |
| 437 |
+ |
} |