| 1 | #include <cmath> | 
| 2 | #include "Atom.hpp" | 
| 3 | #include "SRI.hpp" | 
| 4 | #include "AbstractClasses.hpp" | 
| 5 | #include "SimInfo.hpp" | 
| 6 | #include "ForceFields.hpp" | 
| 7 | #include "Thermo.hpp" | 
| 8 | #include "ReadWrite.hpp" | 
| 9 | #include "Integrator.hpp" | 
| 10 | #include "simError.h" | 
| 11 |  | 
| 12 |  | 
| 13 | // Basic isotropic thermostating and barostating via the Melchionna | 
| 14 | // modification of the Hoover algorithm: | 
| 15 | // | 
| 16 | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 17 | //       Molec. Phys., 78, 533. | 
| 18 | // | 
| 19 | //           and | 
| 20 | // | 
| 21 | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 22 |  | 
| 23 | NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): | 
| 24 | Integrator( theInfo, the_ff ) | 
| 25 | { | 
| 26 | chi = 0.0; | 
| 27 | eta = 0.0; | 
| 28 | have_tau_thermostat = 0; | 
| 29 | have_tau_barostat = 0; | 
| 30 | have_target_temp = 0; | 
| 31 | have_target_pressure = 0; | 
| 32 | } | 
| 33 |  | 
| 34 | void NPTi::moveA() { | 
| 35 |  | 
| 36 | int i, j; | 
| 37 | DirectionalAtom* dAtom; | 
| 38 | double Tb[3], ji[3]; | 
| 39 | double A[3][3], I[3][3]; | 
| 40 | double angle, mass; | 
| 41 | double vel[3], pos[3], frc[3]; | 
| 42 |  | 
| 43 | double rj[3]; | 
| 44 | double instaTemp, instaPress, instaVol; | 
| 45 | double tt2, tb2, scaleFactor; | 
| 46 |  | 
| 47 | tt2 = tauThermostat * tauThermostat; | 
| 48 | tb2 = tauBarostat * tauBarostat; | 
| 49 |  | 
| 50 | instaTemp = tStats->getTemperature(); | 
| 51 | instaPress = tStats->getPressure(); | 
| 52 | instaVol = tStats->getVolume(); | 
| 53 |  | 
| 54 | // first evolve chi a half step | 
| 55 |  | 
| 56 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 57 | eta += dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 58 | (p_convert*NkBT*tb2)); | 
| 59 |  | 
| 60 | for( i=0; i<nAtoms; i++ ){ | 
| 61 | atoms[i]->getVel( vel ); | 
| 62 | atoms[i]->getPos( pos ); | 
| 63 | atoms[i]->getFrc( frc ); | 
| 64 |  | 
| 65 | mass = atoms[i]->getMass(); | 
| 66 |  | 
| 67 | for (j=0; j < 3; j++) { | 
| 68 | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta)); | 
| 69 | rj[j] = pos[j]; | 
| 70 | } | 
| 71 |  | 
| 72 | atoms[i]->setVel( vel ); | 
| 73 |  | 
| 74 | info->wrapVector(rj); | 
| 75 |  | 
| 76 | for (j = 0; j < 3; j++) | 
| 77 | pos[j] += dt * (vel[j] + eta*rj[j]); | 
| 78 |  | 
| 79 | atoms[i]->setPos( pos ); | 
| 80 |  | 
| 81 | if( atoms[i]->isDirectional() ){ | 
| 82 |  | 
| 83 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 84 |  | 
| 85 | // get and convert the torque to body frame | 
| 86 |  | 
| 87 | dAtom->getTrq( Tb ); | 
| 88 | dAtom->lab2Body( Tb ); | 
| 89 |  | 
| 90 | // get the angular momentum, and propagate a half step | 
| 91 |  | 
| 92 | dAtom->getJ( ji ); | 
| 93 |  | 
| 94 | for (j=0; j < 3; j++) | 
| 95 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 96 |  | 
| 97 | // use the angular velocities to propagate the rotation matrix a | 
| 98 | // full time step | 
| 99 |  | 
| 100 | dAtom->getA(A); | 
| 101 | dAtom->getI(I); | 
| 102 |  | 
| 103 | // rotate about the x-axis | 
| 104 | angle = dt2 * ji[0] / I[0][0]; | 
| 105 | this->rotate( 1, 2, angle, ji, A ); | 
| 106 |  | 
| 107 | // rotate about the y-axis | 
| 108 | angle = dt2 * ji[1] / I[1][1]; | 
| 109 | this->rotate( 2, 0, angle, ji, A ); | 
| 110 |  | 
| 111 | // rotate about the z-axis | 
| 112 | angle = dt * ji[2] / I[2][2]; | 
| 113 | this->rotate( 0, 1, angle, ji, A); | 
| 114 |  | 
| 115 | // rotate about the y-axis | 
| 116 | angle = dt2 * ji[1] / I[1][1]; | 
| 117 | this->rotate( 2, 0, angle, ji, A ); | 
| 118 |  | 
| 119 | // rotate about the x-axis | 
| 120 | angle = dt2 * ji[0] / I[0][0]; | 
| 121 | this->rotate( 1, 2, angle, ji, A ); | 
| 122 |  | 
| 123 | dAtom->setJ( ji ); | 
| 124 | dAtom->setA( A  ); | 
| 125 | } | 
| 126 |  | 
| 127 | } | 
| 128 |  | 
| 129 | // Scale the box after all the positions have been moved: | 
| 130 |  | 
| 131 | scaleFactor = exp(dt*eta); | 
| 132 |  | 
| 133 | if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { | 
| 134 | sprintf( painCave.errMsg, | 
| 135 | "NPTi error: Attempting a Box scaling of more than 10 percent" | 
| 136 | " check your tauBarostat, as it is probably too small!\n" | 
| 137 | " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor | 
| 138 | ); | 
| 139 | painCave.isFatal = 1; | 
| 140 | simError(); | 
| 141 | } else { | 
| 142 | info->scaleBox(exp(dt*eta)); | 
| 143 | } | 
| 144 |  | 
| 145 | } | 
| 146 |  | 
| 147 | void NPTi::moveB( void ){ | 
| 148 |  | 
| 149 | int i, j; | 
| 150 | DirectionalAtom* dAtom; | 
| 151 | double Tb[3], ji[3]; | 
| 152 | double vel[3], frc[3]; | 
| 153 | double mass; | 
| 154 |  | 
| 155 | double instaTemp, instaPress, instaVol; | 
| 156 | double tt2, tb2; | 
| 157 |  | 
| 158 | tt2 = tauThermostat * tauThermostat; | 
| 159 | tb2 = tauBarostat * tauBarostat; | 
| 160 |  | 
| 161 | instaTemp = tStats->getTemperature(); | 
| 162 | instaPress = tStats->getPressure(); | 
| 163 | instaVol = tStats->getVolume(); | 
| 164 |  | 
| 165 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 166 | eta += dt2 * ( instaVol * (instaPress - targetPressure) / | 
| 167 | (p_convert*NkBT*tb2)); | 
| 168 |  | 
| 169 | for( i=0; i<nAtoms; i++ ){ | 
| 170 |  | 
| 171 | atoms[i]->getVel( vel ); | 
| 172 | atoms[i]->getFrc( frc ); | 
| 173 |  | 
| 174 | mass = atoms[i]->getMass(); | 
| 175 |  | 
| 176 | // velocity half step | 
| 177 | for (j=0; j < 3; j++) | 
| 178 | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta)); | 
| 179 |  | 
| 180 | atoms[i]->setVel( vel ); | 
| 181 |  | 
| 182 | if( atoms[i]->isDirectional() ){ | 
| 183 |  | 
| 184 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 185 |  | 
| 186 | // get and convert the torque to body frame | 
| 187 |  | 
| 188 | dAtom->getTrq( Tb ); | 
| 189 | dAtom->lab2Body( Tb ); | 
| 190 |  | 
| 191 | // get the angular momentum, and propagate a half step | 
| 192 |  | 
| 193 | dAtom->getJ( ji ); | 
| 194 |  | 
| 195 | for (j=0; j < 3; j++) | 
| 196 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 197 |  | 
| 198 | dAtom->setJ( ji ); | 
| 199 | } | 
| 200 | } | 
| 201 | } | 
| 202 |  | 
| 203 | int NPTi::readyCheck() { | 
| 204 |  | 
| 205 | // First check to see if we have a target temperature. | 
| 206 | // Not having one is fatal. | 
| 207 |  | 
| 208 | if (!have_target_temp) { | 
| 209 | sprintf( painCave.errMsg, | 
| 210 | "NPTi error: You can't use the NPTi integrator\n" | 
| 211 | "   without a targetTemp!\n" | 
| 212 | ); | 
| 213 | painCave.isFatal = 1; | 
| 214 | simError(); | 
| 215 | return -1; | 
| 216 | } | 
| 217 |  | 
| 218 | if (!have_target_pressure) { | 
| 219 | sprintf( painCave.errMsg, | 
| 220 | "NPTi error: You can't use the NPTi integrator\n" | 
| 221 | "   without a targetPressure!\n" | 
| 222 | ); | 
| 223 | painCave.isFatal = 1; | 
| 224 | simError(); | 
| 225 | return -1; | 
| 226 | } | 
| 227 |  | 
| 228 | // We must set tauThermostat. | 
| 229 |  | 
| 230 | if (!have_tau_thermostat) { | 
| 231 | sprintf( painCave.errMsg, | 
| 232 | "NPTi error: If you use the NPTi\n" | 
| 233 | "   integrator, you must set tauThermostat.\n"); | 
| 234 | painCave.isFatal = 1; | 
| 235 | simError(); | 
| 236 | return -1; | 
| 237 | } | 
| 238 |  | 
| 239 | // We must set tauBarostat. | 
| 240 |  | 
| 241 | if (!have_tau_barostat) { | 
| 242 | sprintf( painCave.errMsg, | 
| 243 | "NPTi error: If you use the NPTi\n" | 
| 244 | "   integrator, you must set tauBarostat.\n"); | 
| 245 | painCave.isFatal = 1; | 
| 246 | simError(); | 
| 247 | return -1; | 
| 248 | } | 
| 249 |  | 
| 250 | // We need NkBT a lot, so just set it here: | 
| 251 |  | 
| 252 | NkBT = (double)info->ndf * kB * targetTemp; | 
| 253 |  | 
| 254 | return 1; | 
| 255 | } |