| 13 |
|
#include "mpiSimulation.hpp" |
| 14 |
|
#endif |
| 15 |
|
|
| 16 |
– |
|
| 16 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
| 17 |
|
// modification of the Hoover algorithm: |
| 18 |
|
// |
| 26 |
|
template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 27 |
|
T( theInfo, the_ff ) |
| 28 |
|
{ |
| 30 |
– |
chi = 0.0; |
| 29 |
|
eta = 0.0; |
| 30 |
< |
integralOfChidt = 0.0; |
| 33 |
< |
have_tau_thermostat = 0; |
| 34 |
< |
have_tau_barostat = 0; |
| 35 |
< |
have_target_temp = 0; |
| 36 |
< |
have_target_pressure = 0; |
| 37 |
< |
have_chi_tolerance = 0; |
| 38 |
< |
have_eta_tolerance = 0; |
| 39 |
< |
have_pos_iter_tolerance = 0; |
| 40 |
< |
|
| 41 |
< |
oldPos = new double[3*nAtoms]; |
| 42 |
< |
oldVel = new double[3*nAtoms]; |
| 43 |
< |
oldJi = new double[3*nAtoms]; |
| 44 |
< |
#ifdef IS_MPI |
| 45 |
< |
Nparticles = mpiSim->getTotAtoms(); |
| 46 |
< |
#else |
| 47 |
< |
Nparticles = theInfo->n_atoms; |
| 48 |
< |
#endif |
| 49 |
< |
|
| 30 |
> |
oldEta = 0.0; |
| 31 |
|
} |
| 32 |
|
|
| 33 |
|
template<typename T> NPTi<T>::~NPTi() { |
| 34 |
< |
delete[] oldPos; |
| 54 |
< |
delete[] oldVel; |
| 55 |
< |
delete[] oldJi; |
| 34 |
> |
//nothing for now |
| 35 |
|
} |
| 36 |
|
|
| 37 |
< |
template<typename T> void NPTi<T>::moveA() { |
| 38 |
< |
|
| 39 |
< |
//new version of NPTi |
| 40 |
< |
int i, j, k; |
| 62 |
< |
DirectionalAtom* dAtom; |
| 63 |
< |
double Tb[3], ji[3]; |
| 64 |
< |
double A[3][3], I[3][3]; |
| 65 |
< |
double angle, mass; |
| 66 |
< |
double vel[3], pos[3], frc[3]; |
| 37 |
> |
template<typename T> void NPTi<T>::resetIntegrator() { |
| 38 |
> |
eta = 0.0; |
| 39 |
> |
T::resetIntegrator(); |
| 40 |
> |
} |
| 41 |
|
|
| 42 |
< |
double rj[3]; |
| 43 |
< |
double instaTemp, instaPress, instaVol; |
| 44 |
< |
double tt2, tb2, scaleFactor; |
| 45 |
< |
double COM[3]; |
| 42 |
> |
template<typename T> void NPTi<T>::evolveEtaA() { |
| 43 |
> |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
| 44 |
> |
(p_convert*NkBT*tb2)); |
| 45 |
> |
oldEta = eta; |
| 46 |
> |
} |
| 47 |
|
|
| 48 |
< |
tt2 = tauThermostat * tauThermostat; |
| 74 |
< |
tb2 = tauBarostat * tauBarostat; |
| 75 |
< |
|
| 76 |
< |
instaTemp = tStats->getTemperature(); |
| 77 |
< |
instaPress = tStats->getPressure(); |
| 78 |
< |
instaVol = tStats->getVolume(); |
| 48 |
> |
template<typename T> void NPTi<T>::evolveEtaB() { |
| 49 |
|
|
| 50 |
< |
tStats->getCOM(COM); |
| 51 |
< |
|
| 52 |
< |
//evolve velocity half step |
| 53 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 50 |
> |
prevEta = eta; |
| 51 |
> |
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
| 52 |
> |
(p_convert*NkBT*tb2)); |
| 53 |
> |
} |
| 54 |
|
|
| 55 |
< |
atoms[i]->getVel( vel ); |
| 56 |
< |
atoms[i]->getFrc( frc ); |
| 55 |
> |
template<typename T> void NPTi<T>::getVelScaleA(double sc[3], double vel[3]) { |
| 56 |
> |
int i; |
| 57 |
|
|
| 58 |
< |
mass = atoms[i]->getMass(); |
| 58 |
> |
for(i=0; i<3; i++) sc[i] = vel[i] * ( chi + eta ); |
| 59 |
> |
} |
| 60 |
|
|
| 61 |
< |
for (j=0; j < 3; j++) { |
| 62 |
< |
// velocity half step (use chi from previous step here): |
| 92 |
< |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi + eta)); |
| 93 |
< |
|
| 94 |
< |
} |
| 61 |
> |
template<typename T> void NPTi<T>::getVelScaleB(double sc[3], int index ){ |
| 62 |
> |
int i; |
| 63 |
|
|
| 64 |
< |
atoms[i]->setVel( vel ); |
| 65 |
< |
|
| 98 |
< |
if( atoms[i]->isDirectional() ){ |
| 64 |
> |
for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * ( chi + eta ); |
| 65 |
> |
} |
| 66 |
|
|
| 100 |
– |
dAtom = (DirectionalAtom *)atoms[i]; |
| 67 |
|
|
| 68 |
< |
// get and convert the torque to body frame |
| 69 |
< |
|
| 70 |
< |
dAtom->getTrq( Tb ); |
| 105 |
< |
dAtom->lab2Body( Tb ); |
| 106 |
< |
|
| 107 |
< |
// get the angular momentum, and propagate a half step |
| 68 |
> |
template<typename T> void NPTi<T>::getPosScale(double pos[3], double COM[3], |
| 69 |
> |
int index, double sc[3]){ |
| 70 |
> |
int j; |
| 71 |
|
|
| 72 |
< |
dAtom->getJ( ji ); |
| 72 |
> |
for(j=0; j<3; j++) |
| 73 |
> |
sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
| 74 |
|
|
| 75 |
< |
for (j=0; j < 3; j++) |
| 76 |
< |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 77 |
< |
|
| 114 |
< |
// use the angular velocities to propagate the rotation matrix a |
| 115 |
< |
// full time step |
| 75 |
> |
for(j=0; j<3; j++) |
| 76 |
> |
sc[j] *= eta; |
| 77 |
> |
} |
| 78 |
|
|
| 79 |
< |
dAtom->getA(A); |
| 118 |
< |
dAtom->getI(I); |
| 119 |
< |
|
| 120 |
< |
// rotate about the x-axis |
| 121 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 122 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 79 |
> |
template<typename T> void NPTi<T>::scaleSimBox( void ){ |
| 80 |
|
|
| 81 |
< |
// rotate about the y-axis |
| 125 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 126 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 127 |
< |
|
| 128 |
< |
// rotate about the z-axis |
| 129 |
< |
angle = dt * ji[2] / I[2][2]; |
| 130 |
< |
this->rotate( 0, 1, angle, ji, A); |
| 131 |
< |
|
| 132 |
< |
// rotate about the y-axis |
| 133 |
< |
angle = dt2 * ji[1] / I[1][1]; |
| 134 |
< |
this->rotate( 2, 0, angle, ji, A ); |
| 135 |
< |
|
| 136 |
< |
// rotate about the x-axis |
| 137 |
< |
angle = dt2 * ji[0] / I[0][0]; |
| 138 |
< |
this->rotate( 1, 2, angle, ji, A ); |
| 139 |
< |
|
| 140 |
< |
dAtom->setJ( ji ); |
| 141 |
< |
dAtom->setA( A ); |
| 142 |
< |
} |
| 143 |
< |
} |
| 81 |
> |
double scaleFactor; |
| 82 |
|
|
| 145 |
– |
// evolve chi and eta half step |
| 146 |
– |
|
| 147 |
– |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 148 |
– |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (p_convert*NkBT*tb2)); |
| 149 |
– |
|
| 150 |
– |
//calculate the integral of chidt |
| 151 |
– |
integralOfChidt += dt2*chi; |
| 152 |
– |
|
| 153 |
– |
//save the old positions |
| 154 |
– |
for(i = 0; i < nAtoms; i++){ |
| 155 |
– |
atoms[i]->getPos(pos); |
| 156 |
– |
for(j = 0; j < 3; j++) |
| 157 |
– |
oldPos[i*3 + j] = pos[j]; |
| 158 |
– |
} |
| 159 |
– |
|
| 160 |
– |
//the first estimation of r(t+dt) is equal to r(t) |
| 161 |
– |
|
| 162 |
– |
for(k = 0; k < 4; k ++){ |
| 163 |
– |
|
| 164 |
– |
for(i =0 ; i < nAtoms; i++){ |
| 165 |
– |
|
| 166 |
– |
atoms[i]->getVel(vel); |
| 167 |
– |
atoms[i]->getPos(pos); |
| 168 |
– |
|
| 169 |
– |
for(j = 0; j < 3; j++) |
| 170 |
– |
rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; |
| 171 |
– |
|
| 172 |
– |
for(j = 0; j < 3; j++) |
| 173 |
– |
pos[j] = oldPos[i*3 + j] + dt*(vel[j] + eta*rj[j]); |
| 174 |
– |
|
| 175 |
– |
atoms[i]->setPos( pos ); |
| 176 |
– |
} |
| 177 |
– |
|
| 178 |
– |
if (nConstrained){ |
| 179 |
– |
constrainA(); |
| 180 |
– |
} |
| 181 |
– |
} |
| 182 |
– |
|
| 183 |
– |
|
| 184 |
– |
// Scale the box after all the positions have been moved: |
| 185 |
– |
|
| 83 |
|
scaleFactor = exp(dt*eta); |
| 84 |
|
|
| 85 |
|
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
| 96 |
|
|
| 97 |
|
} |
| 98 |
|
|
| 99 |
< |
template<typename T> void NPTi<T>::moveB( void ){ |
| 203 |
< |
|
| 204 |
< |
//new version of NPTi |
| 205 |
< |
int i, j, k; |
| 206 |
< |
DirectionalAtom* dAtom; |
| 207 |
< |
double Tb[3], ji[3]; |
| 208 |
< |
double vel[3], frc[3]; |
| 209 |
< |
double mass; |
| 99 |
> |
template<typename T> bool NPTi<T>::etaConverged() { |
| 100 |
|
|
| 101 |
< |
double instTemp, instPress, instVol; |
| 102 |
< |
double tt2, tb2; |
| 213 |
< |
double oldChi, prevChi; |
| 214 |
< |
double oldEta, preEta; |
| 215 |
< |
|
| 216 |
< |
tt2 = tauThermostat * tauThermostat; |
| 217 |
< |
tb2 = tauBarostat * tauBarostat; |
| 101 |
> |
return ( fabs(prevEta - eta) <= etaTolerance ); |
| 102 |
> |
} |
| 103 |
|
|
| 104 |
+ |
template<typename T> double NPTi<T>::getConservedQuantity(void){ |
| 105 |
|
|
| 106 |
< |
// Set things up for the iteration: |
| 106 |
> |
double conservedQuantity; |
| 107 |
> |
double Energy; |
| 108 |
> |
double thermostat_kinetic; |
| 109 |
> |
double thermostat_potential; |
| 110 |
> |
double barostat_kinetic; |
| 111 |
> |
double barostat_potential; |
| 112 |
> |
|
| 113 |
> |
Energy = tStats->getTotalE(); |
| 114 |
|
|
| 115 |
< |
oldChi = chi; |
| 116 |
< |
oldEta = eta; |
| 115 |
> |
thermostat_kinetic = fkBT* tt2 * chi * chi / |
| 116 |
> |
(2.0 * eConvert); |
| 117 |
|
|
| 118 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 118 |
> |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
| 119 |
|
|
| 227 |
– |
atoms[i]->getVel( vel ); |
| 120 |
|
|
| 121 |
< |
for (j=0; j < 3; j++) |
| 122 |
< |
oldVel[3*i + j] = vel[j]; |
| 231 |
< |
|
| 232 |
< |
if( atoms[i]->isDirectional() ){ |
| 233 |
< |
|
| 234 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 235 |
< |
|
| 236 |
< |
dAtom->getJ( ji ); |
| 237 |
< |
|
| 238 |
< |
for (j=0; j < 3; j++) |
| 239 |
< |
oldJi[3*i + j] = ji[j]; |
| 240 |
< |
|
| 241 |
< |
} |
| 242 |
< |
} |
| 243 |
< |
|
| 244 |
< |
// do the iteration: |
| 245 |
< |
|
| 246 |
< |
instVol = tStats->getVolume(); |
| 121 |
> |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta / |
| 122 |
> |
(2.0 * eConvert); |
| 123 |
|
|
| 124 |
< |
for (k=0; k < 4; k++) { |
| 125 |
< |
|
| 250 |
< |
instTemp = tStats->getTemperature(); |
| 251 |
< |
instPress = tStats->getPressure(); |
| 124 |
> |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
| 125 |
> |
eConvert; |
| 126 |
|
|
| 127 |
< |
// evolve chi another half step using the temperature at t + dt/2 |
| 128 |
< |
|
| 255 |
< |
prevChi = chi; |
| 256 |
< |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
| 257 |
< |
(tauThermostat*tauThermostat); |
| 258 |
< |
|
| 259 |
< |
preEta = eta; |
| 260 |
< |
eta = oldEta + dt2 * ( instVol * (instPress - targetPressure) / |
| 261 |
< |
(p_convert*NkBT*tb2)); |
| 262 |
< |
|
| 127 |
> |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
| 128 |
> |
barostat_kinetic + barostat_potential; |
| 129 |
|
|
| 130 |
< |
for( i=0; i<nAtoms; i++ ){ |
| 130 |
> |
// cout.width(8); |
| 131 |
> |
// cout.precision(8); |
| 132 |
|
|
| 133 |
< |
atoms[i]->getFrc( frc ); |
| 134 |
< |
atoms[i]->getVel(vel); |
| 135 |
< |
|
| 269 |
< |
mass = atoms[i]->getMass(); |
| 270 |
< |
|
| 271 |
< |
// velocity half step |
| 272 |
< |
for (j=0; j < 3; j++) |
| 273 |
< |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*(chi + eta)); |
| 274 |
< |
|
| 275 |
< |
atoms[i]->setVel( vel ); |
| 276 |
< |
|
| 277 |
< |
if( atoms[i]->isDirectional() ){ |
| 278 |
< |
|
| 279 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
| 280 |
< |
|
| 281 |
< |
// get and convert the torque to body frame |
| 282 |
< |
|
| 283 |
< |
dAtom->getTrq( Tb ); |
| 284 |
< |
dAtom->lab2Body( Tb ); |
| 285 |
< |
|
| 286 |
< |
for (j=0; j < 3; j++) |
| 287 |
< |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
| 288 |
< |
|
| 289 |
< |
dAtom->setJ( ji ); |
| 290 |
< |
} |
| 291 |
< |
} |
| 292 |
< |
|
| 293 |
< |
if (nConstrained){ |
| 294 |
< |
constrainB(); |
| 295 |
< |
} |
| 296 |
< |
|
| 297 |
< |
if (fabs(prevChi - chi) <= |
| 298 |
< |
chiTolerance && fabs(preEta -eta) <= etaTolerance) |
| 299 |
< |
break; |
| 300 |
< |
} |
| 301 |
< |
|
| 302 |
< |
//calculate integral of chida |
| 303 |
< |
integralOfChidt += dt2*chi; |
| 304 |
< |
|
| 305 |
< |
|
| 306 |
< |
} |
| 307 |
< |
|
| 308 |
< |
template<typename T> void NPTi<T>::resetIntegrator() { |
| 309 |
< |
chi = 0.0; |
| 310 |
< |
eta = 0.0; |
| 311 |
< |
} |
| 312 |
< |
|
| 313 |
< |
template<typename T> int NPTi<T>::readyCheck() { |
| 314 |
< |
|
| 315 |
< |
//check parent's readyCheck() first |
| 316 |
< |
if (T::readyCheck() == -1) |
| 317 |
< |
return -1; |
| 318 |
< |
|
| 319 |
< |
// First check to see if we have a target temperature. |
| 320 |
< |
// Not having one is fatal. |
| 321 |
< |
|
| 322 |
< |
if (!have_target_temp) { |
| 323 |
< |
sprintf( painCave.errMsg, |
| 324 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 325 |
< |
" without a targetTemp!\n" |
| 326 |
< |
); |
| 327 |
< |
painCave.isFatal = 1; |
| 328 |
< |
simError(); |
| 329 |
< |
return -1; |
| 330 |
< |
} |
| 331 |
< |
|
| 332 |
< |
if (!have_target_pressure) { |
| 333 |
< |
sprintf( painCave.errMsg, |
| 334 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 335 |
< |
" without a targetPressure!\n" |
| 336 |
< |
); |
| 337 |
< |
painCave.isFatal = 1; |
| 338 |
< |
simError(); |
| 339 |
< |
return -1; |
| 340 |
< |
} |
| 341 |
< |
|
| 342 |
< |
// We must set tauThermostat. |
| 343 |
< |
|
| 344 |
< |
if (!have_tau_thermostat) { |
| 345 |
< |
sprintf( painCave.errMsg, |
| 346 |
< |
"NPTi error: If you use the NPTi\n" |
| 347 |
< |
" integrator, you must set tauThermostat.\n"); |
| 348 |
< |
painCave.isFatal = 1; |
| 349 |
< |
simError(); |
| 350 |
< |
return -1; |
| 351 |
< |
} |
| 352 |
< |
|
| 353 |
< |
// We must set tauBarostat. |
| 354 |
< |
|
| 355 |
< |
if (!have_tau_barostat) { |
| 356 |
< |
sprintf( painCave.errMsg, |
| 357 |
< |
"NPTi error: If you use the NPTi\n" |
| 358 |
< |
" integrator, you must set tauBarostat.\n"); |
| 359 |
< |
painCave.isFatal = 1; |
| 360 |
< |
simError(); |
| 361 |
< |
return -1; |
| 362 |
< |
} |
| 363 |
< |
|
| 364 |
< |
if (!have_chi_tolerance) { |
| 365 |
< |
sprintf( painCave.errMsg, |
| 366 |
< |
"NPTi warning: setting chi tolerance to 1e-6\n"); |
| 367 |
< |
chiTolerance = 1e-6; |
| 368 |
< |
have_chi_tolerance = 1; |
| 369 |
< |
painCave.isFatal = 0; |
| 370 |
< |
simError(); |
| 371 |
< |
} |
| 372 |
< |
|
| 373 |
< |
if (!have_eta_tolerance) { |
| 374 |
< |
sprintf( painCave.errMsg, |
| 375 |
< |
"NPTi warning: setting eta tolerance to 1e-6\n"); |
| 376 |
< |
etaTolerance = 1e-6; |
| 377 |
< |
have_eta_tolerance = 1; |
| 378 |
< |
painCave.isFatal = 0; |
| 379 |
< |
simError(); |
| 380 |
< |
} |
| 381 |
< |
// We need NkBT a lot, so just set it here: |
| 382 |
< |
|
| 383 |
< |
NkBT = (double)Nparticles * kB * targetTemp; |
| 384 |
< |
fkBT = (double)info->ndf * kB * targetTemp; |
| 385 |
< |
|
| 386 |
< |
return 1; |
| 387 |
< |
} |
| 388 |
< |
|
| 389 |
< |
template<typename T> double NPTi<T>::getConservedQuantity(void){ |
| 390 |
< |
|
| 391 |
< |
double conservedQuantity; |
| 392 |
< |
double tb2; |
| 393 |
< |
double eta2; |
| 394 |
< |
double E_NPT; |
| 395 |
< |
double U; |
| 396 |
< |
double TS; |
| 397 |
< |
double PV; |
| 398 |
< |
double extra; |
| 399 |
< |
|
| 400 |
< |
U = tStats->getTotalE(); |
| 401 |
< |
|
| 402 |
< |
TS = fkBT * |
| 403 |
< |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0) / eConvert; |
| 404 |
< |
|
| 405 |
< |
PV = (targetPressure * tStats->getVolume() / p_convert) / eConvert; |
| 406 |
< |
|
| 407 |
< |
tb2 = tauBarostat * tauBarostat; |
| 408 |
< |
eta2 = eta * eta; |
| 409 |
< |
|
| 410 |
< |
|
| 411 |
< |
extra = ((double)info->ndfTrans * kB * targetTemp * tb2 * eta2 / 2.0) / eConvert; |
| 412 |
< |
|
| 413 |
< |
cout.width(8); |
| 414 |
< |
cout.precision(8); |
| 415 |
< |
|
| 416 |
< |
|
| 417 |
< |
// cout << info->getTime() << "\t" |
| 418 |
< |
// << chi << "\t" |
| 419 |
< |
// << eta << "\t" |
| 420 |
< |
// << U << "\t" |
| 421 |
< |
// << TS << "\t" |
| 422 |
< |
// << PV << "\t" |
| 423 |
< |
// << extra << "\t" |
| 424 |
< |
// << U+TS+PV+extra << endl; |
| 425 |
< |
|
| 426 |
< |
conservedQuantity = U+TS+PV+extra; |
| 133 |
> |
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
| 134 |
> |
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
| 135 |
> |
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
| 136 |
|
return conservedQuantity; |
| 137 |
|
} |