| 37 |
|
|
| 38 |
|
void NPTf::moveA() { |
| 39 |
|
|
| 40 |
< |
int i,j,k; |
| 41 |
< |
int atomIndex, aMatIndex; |
| 40 |
> |
int i, j, k; |
| 41 |
|
DirectionalAtom* dAtom; |
| 42 |
< |
double Tb[3]; |
| 43 |
< |
double ji[3]; |
| 44 |
< |
double ri[3], vi[3], sc[3]; |
| 45 |
< |
double instaTemp, instaVol; |
| 46 |
< |
double tt2, tb2, eta2ij; |
| 47 |
< |
double angle; |
| 42 |
> |
double Tb[3], ji[3]; |
| 43 |
> |
double A[3][3], I[3][3]; |
| 44 |
> |
double angle, mass; |
| 45 |
> |
double vel[3], pos[3], frc[3]; |
| 46 |
> |
|
| 47 |
> |
double rj[3]; |
| 48 |
> |
double instaTemp, instaPress, instaVol; |
| 49 |
> |
double tt2, tb2; |
| 50 |
> |
double sc[3]; |
| 51 |
> |
double eta2ij; |
| 52 |
|
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 53 |
|
|
| 54 |
|
tt2 = tauThermostat * tauThermostat; |
| 65 |
|
for (i = 0; i < 3; i++ ) { |
| 66 |
|
for (j = 0; j < 3; j++ ) { |
| 67 |
|
if (i == j) { |
| 68 |
< |
|
| 68 |
> |
|
| 69 |
|
eta[i][j] += dt2 * instaVol * |
| 70 |
|
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 71 |
< |
|
| 71 |
> |
|
| 72 |
|
vScale[i][j] = eta[i][j] + chi; |
| 73 |
|
|
| 74 |
|
} else { |
| 82 |
|
} |
| 83 |
|
|
| 84 |
|
for( i=0; i<nAtoms; i++ ){ |
| 85 |
< |
atomIndex = i * 3; |
| 86 |
< |
aMatIndex = i * 9; |
| 85 |
> |
|
| 86 |
> |
atoms[i]->getVel( vel ); |
| 87 |
> |
atoms[i]->getPos( pos ); |
| 88 |
> |
atoms[i]->getFrc( frc ); |
| 89 |
> |
|
| 90 |
> |
mass = atoms[i]->getMass(); |
| 91 |
|
|
| 92 |
|
// velocity half step |
| 93 |
+ |
|
| 94 |
+ |
info->matVecMul3( vScale, vel, sc ); |
| 95 |
|
|
| 96 |
< |
vi[0] = vel[atomIndex]; |
| 97 |
< |
vi[1] = vel[atomIndex+1]; |
| 98 |
< |
vi[2] = vel[atomIndex+2]; |
| 99 |
< |
|
| 91 |
< |
info->matVecMul3( vScale, vi, sc ); |
| 92 |
< |
|
| 93 |
< |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 94 |
< |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 95 |
< |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 96 |
> |
for (j = 0; j < 3; j++) { |
| 97 |
> |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 98 |
> |
rj[j] = pos[j]; |
| 99 |
> |
} |
| 100 |
|
|
| 101 |
< |
vel[atomIndex] = vi[0]; |
| 98 |
< |
vel[atomIndex+1] = vi[1]; |
| 99 |
< |
vel[atomIndex+2] = vi[2]; |
| 101 |
> |
atoms[i]->setVel( vel ); |
| 102 |
|
|
| 103 |
|
// position whole step |
| 104 |
|
|
| 105 |
< |
ri[0] = pos[atomIndex]; |
| 104 |
< |
ri[1] = pos[atomIndex+1]; |
| 105 |
< |
ri[2] = pos[atomIndex+2]; |
| 105 |
> |
info->wrapVector(rj); |
| 106 |
|
|
| 107 |
< |
info->wrapVector(ri); |
| 107 |
> |
info->matVecMul3( eta, rj, sc ); |
| 108 |
|
|
| 109 |
< |
info->matVecMul3( eta, ri, sc ); |
| 110 |
< |
|
| 111 |
< |
pos[atomIndex] += dt * (vel[atomIndex] + sc[0]); |
| 112 |
< |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + sc[1]); |
| 113 |
< |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + sc[2]); |
| 109 |
> |
for (j = 0; j < 3; j++ ) |
| 110 |
> |
pos[j] += dt * (vel[j] + sc[j]); |
| 111 |
|
|
| 112 |
|
if( atoms[i]->isDirectional() ){ |
| 113 |
|
|
| 115 |
|
|
| 116 |
|
// get and convert the torque to body frame |
| 117 |
|
|
| 118 |
< |
Tb[0] = dAtom->getTx(); |
| 122 |
< |
Tb[1] = dAtom->getTy(); |
| 123 |
< |
Tb[2] = dAtom->getTz(); |
| 124 |
< |
|
| 118 |
> |
dAtom->getTrq( Tb ); |
| 119 |
|
dAtom->lab2Body( Tb ); |
| 120 |
|
|
| 121 |
|
// get the angular momentum, and propagate a half step |
| 122 |
|
|
| 123 |
< |
ji[0] = dAtom->getJx(); |
| 124 |
< |
ji[1] = dAtom->getJy(); |
| 125 |
< |
ji[2] = dAtom->getJz(); |
| 123 |
> |
dAtom->getJ( ji ); |
| 124 |
> |
|
| 125 |
> |
for (j=0; j < 3; j++) |
| 126 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 127 |
|
|
| 133 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 134 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 135 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 136 |
– |
|
| 128 |
|
// use the angular velocities to propagate the rotation matrix a |
| 129 |
|
// full time step |
| 130 |
< |
|
| 130 |
> |
|
| 131 |
> |
dAtom->getA(A); |
| 132 |
> |
dAtom->getI(I); |
| 133 |
> |
|
| 134 |
|
// rotate about the x-axis |
| 135 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 136 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 137 |
< |
|
| 135 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 136 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 137 |
> |
|
| 138 |
|
// rotate about the y-axis |
| 139 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 140 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 139 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 140 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 141 |
|
|
| 142 |
|
// rotate about the z-axis |
| 143 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
| 144 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
| 143 |
> |
angle = dt * ji[2] / I[2][2]; |
| 144 |
> |
this->rotate( 0, 1, angle, ji, A); |
| 145 |
|
|
| 146 |
|
// rotate about the y-axis |
| 147 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 148 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
| 147 |
> |
angle = dt2 * ji[1] / I[1][1]; |
| 148 |
> |
this->rotate( 2, 0, angle, ji, A ); |
| 149 |
|
|
| 150 |
|
// rotate about the x-axis |
| 151 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 152 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
| 151 |
> |
angle = dt2 * ji[0] / I[0][0]; |
| 152 |
> |
this->rotate( 1, 2, angle, ji, A ); |
| 153 |
|
|
| 154 |
< |
dAtom->setJx( ji[0] ); |
| 155 |
< |
dAtom->setJy( ji[1] ); |
| 156 |
< |
dAtom->setJz( ji[2] ); |
| 163 |
< |
} |
| 164 |
< |
|
| 154 |
> |
dAtom->setJ( ji ); |
| 155 |
> |
dAtom->setA( A ); |
| 156 |
> |
} |
| 157 |
|
} |
| 158 |
< |
|
| 158 |
> |
|
| 159 |
|
// Scale the box after all the positions have been moved: |
| 160 |
< |
|
| 160 |
> |
|
| 161 |
|
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 162 |
|
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 163 |
< |
|
| 164 |
< |
|
| 163 |
> |
|
| 164 |
> |
|
| 165 |
|
for(i=0; i<3; i++){ |
| 166 |
|
for(j=0; j<3; j++){ |
| 167 |
< |
|
| 167 |
> |
|
| 168 |
|
// Calculate the matrix Product of the eta array (we only need |
| 169 |
|
// the ij element right now): |
| 170 |
< |
|
| 170 |
> |
|
| 171 |
|
eta2ij = 0.0; |
| 172 |
|
for(k=0; k<3; k++){ |
| 173 |
|
eta2ij += eta[i][k] * eta[k][j]; |
| 178 |
|
if (i == j) scaleMat[i][j] = 1.0; |
| 179 |
|
// Taylor expansion for the exponential truncated at second order: |
| 180 |
|
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 181 |
< |
|
| 181 |
> |
|
| 182 |
|
} |
| 183 |
|
} |
| 184 |
< |
|
| 184 |
> |
|
| 185 |
|
info->getBoxM(hm); |
| 186 |
|
info->matMul3(hm, scaleMat, hmnew); |
| 187 |
|
info->setBoxM(hmnew); |
| 189 |
|
} |
| 190 |
|
|
| 191 |
|
void NPTf::moveB( void ){ |
| 192 |
< |
int i,j, k; |
| 193 |
< |
int atomIndex; |
| 192 |
> |
|
| 193 |
> |
int i, j; |
| 194 |
|
DirectionalAtom* dAtom; |
| 195 |
< |
double Tb[3]; |
| 196 |
< |
double ji[3]; |
| 197 |
< |
double vi[3], sc[3]; |
| 198 |
< |
double instaTemp, instaVol; |
| 195 |
> |
double Tb[3], ji[3]; |
| 196 |
> |
double vel[3], frc[3]; |
| 197 |
> |
double mass; |
| 198 |
> |
|
| 199 |
> |
double instaTemp, instaPress, instaVol; |
| 200 |
|
double tt2, tb2; |
| 201 |
+ |
double sc[3]; |
| 202 |
|
double press[3][3], vScale[3][3]; |
| 203 |
|
|
| 204 |
|
tt2 = tauThermostat * tauThermostat; |
| 232 |
|
} |
| 233 |
|
|
| 234 |
|
for( i=0; i<nAtoms; i++ ){ |
| 241 |
– |
atomIndex = i * 3; |
| 235 |
|
|
| 236 |
+ |
atoms[i]->getVel( vel ); |
| 237 |
+ |
atoms[i]->getFrc( frc ); |
| 238 |
+ |
|
| 239 |
+ |
mass = atoms[i]->getMass(); |
| 240 |
+ |
|
| 241 |
|
// velocity half step |
| 242 |
+ |
|
| 243 |
+ |
info->matVecMul3( vScale, vel, sc ); |
| 244 |
|
|
| 245 |
< |
vi[0] = vel[atomIndex]; |
| 246 |
< |
vi[1] = vel[atomIndex+1]; |
| 247 |
< |
vi[2] = vel[atomIndex+2]; |
| 248 |
< |
|
| 249 |
< |
info->matVecMul3( vScale, vi, sc ); |
| 250 |
< |
|
| 251 |
< |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 252 |
< |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 253 |
< |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 245 |
> |
for (j = 0; j < 3; j++) { |
| 246 |
> |
vel[j] += dt2 * ((frc[j] / mass) * eConvert - sc[j]); |
| 247 |
> |
} |
| 248 |
|
|
| 249 |
< |
vel[atomIndex] = vi[0]; |
| 256 |
< |
vel[atomIndex+1] = vi[1]; |
| 257 |
< |
vel[atomIndex+2] = vi[2]; |
| 249 |
> |
atoms[i]->setVel( vel ); |
| 250 |
|
|
| 251 |
|
if( atoms[i]->isDirectional() ){ |
| 252 |
< |
|
| 252 |
> |
|
| 253 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 254 |
< |
|
| 254 |
> |
|
| 255 |
|
// get and convert the torque to body frame |
| 256 |
|
|
| 257 |
< |
Tb[0] = dAtom->getTx(); |
| 266 |
< |
Tb[1] = dAtom->getTy(); |
| 267 |
< |
Tb[2] = dAtom->getTz(); |
| 268 |
< |
|
| 257 |
> |
dAtom->getTrq( Tb ); |
| 258 |
|
dAtom->lab2Body( Tb ); |
| 259 |
|
|
| 260 |
< |
// get the angular momentum, and complete the angular momentum |
| 272 |
< |
// half step |
| 260 |
> |
// get the angular momentum, and propagate a half step |
| 261 |
|
|
| 262 |
< |
ji[0] = dAtom->getJx(); |
| 275 |
< |
ji[1] = dAtom->getJy(); |
| 276 |
< |
ji[2] = dAtom->getJz(); |
| 262 |
> |
dAtom->getJ( ji ); |
| 263 |
|
|
| 264 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 265 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 280 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 264 |
> |
for (j=0; j < 3; j++) |
| 265 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 266 |
|
|
| 267 |
< |
dAtom->setJx( ji[0] ); |
| 268 |
< |
dAtom->setJy( ji[1] ); |
| 269 |
< |
dAtom->setJz( ji[2] ); |
| 285 |
< |
} |
| 267 |
> |
dAtom->setJ( ji ); |
| 268 |
> |
|
| 269 |
> |
} |
| 270 |
|
} |
| 271 |
|
} |
| 272 |
|
|