| 9 |
|
#include "simError.h" |
| 10 |
|
|
| 11 |
|
|
| 12 |
< |
// Basic isotropic thermostating and barostating via the Melchionna |
| 12 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 13 |
|
// modification of the Hoover algorithm: |
| 14 |
|
// |
| 15 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 19 |
|
// |
| 20 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 21 |
|
|
| 22 |
< |
NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 22 |
> |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 23 |
|
Integrator( theInfo, the_ff ) |
| 24 |
|
{ |
| 25 |
|
int i; |
| 31 |
|
have_target_pressure = 0; |
| 32 |
|
} |
| 33 |
|
|
| 34 |
< |
void NPTi::moveA() { |
| 34 |
> |
void NPTf::moveA() { |
| 35 |
|
|
| 36 |
|
int i,j,k; |
| 37 |
|
int atomIndex, aMatIndex; |
| 39 |
|
double Tb[3]; |
| 40 |
|
double ji[3]; |
| 41 |
|
double rj[3]; |
| 42 |
+ |
double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; |
| 43 |
+ |
double hm[9]; |
| 44 |
+ |
double vx, vy, vz; |
| 45 |
+ |
double scx, scy, scz; |
| 46 |
|
double instaTemp, instaPress, instaVol; |
| 47 |
|
double tt2, tb2; |
| 48 |
|
double angle; |
| 49 |
+ |
double press[9]; |
| 50 |
|
|
| 51 |
|
tt2 = tauThermostat * tauThermostat; |
| 52 |
|
tb2 = tauBarostat * tauBarostat; |
| 53 |
|
|
| 54 |
|
instaTemp = tStats->getTemperature(); |
| 55 |
< |
instaPress = tStats->getPressure(); |
| 55 |
> |
tStats->getPressureTensor(press); |
| 56 |
|
instaVol = tStats->getVolume(); |
| 57 |
|
|
| 58 |
|
// first evolve chi a half step |
| 59 |
|
|
| 60 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 61 |
|
|
| 62 |
< |
for (i = 0; i < 9; i++) { |
| 63 |
< |
eta[i] += dt2 * ( instaVol * (sigma[i] - targetPressure*identMat[i])) |
| 64 |
< |
/ (NkBT*tb2)); |
| 65 |
< |
} |
| 66 |
< |
|
| 62 |
> |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 63 |
> |
(NkBT*tb2); |
| 64 |
> |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 65 |
> |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 66 |
> |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 67 |
> |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 68 |
> |
(NkBT*tb2); |
| 69 |
> |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 70 |
> |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 71 |
> |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 72 |
> |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 73 |
> |
(NkBT*tb2); |
| 74 |
> |
|
| 75 |
|
for( i=0; i<nAtoms; i++ ){ |
| 76 |
|
atomIndex = i * 3; |
| 77 |
|
aMatIndex = i * 9; |
| 78 |
|
|
| 79 |
|
// velocity half step |
| 80 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 81 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 82 |
< |
- vel[j]*(chi+eta)); |
| 80 |
> |
|
| 81 |
> |
vx = vel[atomIndex]; |
| 82 |
> |
vy = vel[atomIndex+1]; |
| 83 |
> |
vz = vel[atomIndex+2]; |
| 84 |
> |
|
| 85 |
> |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 86 |
> |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 87 |
> |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 88 |
> |
|
| 89 |
> |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 90 |
> |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 91 |
> |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 92 |
|
|
| 93 |
+ |
vel[atomIndex] = vx; |
| 94 |
+ |
vel[atomIndex+1] = vy; |
| 95 |
+ |
vel[atomIndex+2] = vz; |
| 96 |
+ |
|
| 97 |
|
// position whole step |
| 98 |
|
|
| 99 |
< |
for( j=atomIndex; j<(atomIndex+3); j=j+3 ) { |
| 100 |
< |
rj[0] = pos[j]; |
| 101 |
< |
rj[1] = pos[j+1]; |
| 76 |
< |
rj[2] = pos[j+2]; |
| 99 |
> |
rj[0] = pos[atomIndex]; |
| 100 |
> |
rj[1] = pos[atomIndex+1]; |
| 101 |
> |
rj[2] = pos[atomIndex+2]; |
| 102 |
|
|
| 103 |
< |
info->wrapVector(rj); |
| 103 |
> |
info->wrapVector(rj); |
| 104 |
|
|
| 105 |
< |
pos[j] += dt * (vel[j] + eta*rj[0]); |
| 106 |
< |
pos[j+1] += dt * (vel[j+1] + eta*rj[1]); |
| 107 |
< |
pos[j+2] += dt * (vel[j+2] + eta*rj[2]); |
| 83 |
< |
} |
| 105 |
> |
scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; |
| 106 |
> |
scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; |
| 107 |
> |
scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; |
| 108 |
|
|
| 109 |
< |
// Scale the box after all the positions have been moved: |
| 110 |
< |
|
| 111 |
< |
info->scaleBox(exp(dt*eta)); |
| 109 |
> |
pos[atomIndex] += dt * (vel[atomIndex] + scx); |
| 110 |
> |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); |
| 111 |
> |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); |
| 112 |
|
|
| 113 |
|
if( atoms[i]->isDirectional() ){ |
| 114 |
|
|
| 161 |
|
} |
| 162 |
|
|
| 163 |
|
} |
| 164 |
+ |
|
| 165 |
+ |
// Scale the box after all the positions have been moved: |
| 166 |
+ |
|
| 167 |
+ |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 168 |
+ |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 169 |
+ |
|
| 170 |
+ |
|
| 171 |
+ |
for(i=0; i<3; i++){ |
| 172 |
+ |
for(j=0; j<3; j++){ |
| 173 |
+ |
ident[i][j] = 0.0; |
| 174 |
+ |
eta1[i][j] = eta[3*i+j]; |
| 175 |
+ |
eta2[i][j] = 0.0; |
| 176 |
+ |
for(k=0; k<3; k++){ |
| 177 |
+ |
eta2[i][j] += eta[3*i+k] * eta[3*k+j]; |
| 178 |
+ |
} |
| 179 |
+ |
} |
| 180 |
+ |
ident[i][i] = 1.0; |
| 181 |
+ |
} |
| 182 |
+ |
|
| 183 |
+ |
|
| 184 |
+ |
info->getBoxM(hm); |
| 185 |
+ |
|
| 186 |
+ |
for(i=0; i<3; i++){ |
| 187 |
+ |
for(j=0; j<3; j++){ |
| 188 |
+ |
hmnew[i][j] = 0.0; |
| 189 |
+ |
for(k=0; k<3; k++){ |
| 190 |
+ |
// remember that hmat has transpose ordering for Fortran compat: |
| 191 |
+ |
hmnew[i][j] += hm[3*k+i] * (ident[k][j] |
| 192 |
+ |
+ dt * eta1[k][j] |
| 193 |
+ |
+ 0.5 * dt * dt * eta2[k][j]); |
| 194 |
+ |
} |
| 195 |
+ |
} |
| 196 |
+ |
} |
| 197 |
+ |
|
| 198 |
+ |
for (i = 0; i < 3; i++) { |
| 199 |
+ |
for (j = 0; j < 3; j++) { |
| 200 |
+ |
// remember that hmat has transpose ordering for Fortran compat: |
| 201 |
+ |
hm[3*j + i] = hmnew[i][j]; |
| 202 |
+ |
} |
| 203 |
+ |
} |
| 204 |
+ |
|
| 205 |
+ |
info->setBoxM(hm); |
| 206 |
+ |
|
| 207 |
|
} |
| 208 |
|
|
| 209 |
< |
void NPTi::moveB( void ){ |
| 209 |
> |
void NPTf::moveB( void ){ |
| 210 |
|
int i,j,k; |
| 211 |
|
int atomIndex; |
| 212 |
|
DirectionalAtom* dAtom; |
| 213 |
|
double Tb[3]; |
| 214 |
|
double ji[3]; |
| 215 |
< |
double instaTemp, instaPress, instaVol; |
| 215 |
> |
double press[9]; |
| 216 |
> |
double instaTemp, instaVol; |
| 217 |
|
double tt2, tb2; |
| 218 |
+ |
double vx, vy, vz; |
| 219 |
+ |
double scx, scy, scz; |
| 220 |
+ |
const double p_convert = 1.63882576e8; |
| 221 |
|
|
| 222 |
|
tt2 = tauThermostat * tauThermostat; |
| 223 |
|
tb2 = tauBarostat * tauBarostat; |
| 224 |
|
|
| 225 |
|
instaTemp = tStats->getTemperature(); |
| 226 |
< |
instaPress = tStats->getPressure(); |
| 226 |
> |
tStats->getPressureTensor(press); |
| 227 |
|
instaVol = tStats->getVolume(); |
| 228 |
< |
|
| 228 |
> |
|
| 229 |
> |
// first evolve chi a half step |
| 230 |
> |
|
| 231 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 159 |
– |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
| 232 |
|
|
| 233 |
+ |
eta[0] += dt2 * instaVol * (press[0] - targetPressure/p_convert) / |
| 234 |
+ |
(NkBT*tb2); |
| 235 |
+ |
eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); |
| 236 |
+ |
eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); |
| 237 |
+ |
eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); |
| 238 |
+ |
eta[4] += dt2 * instaVol * (press[4] - targetPressure/p_convert) / |
| 239 |
+ |
(NkBT*tb2); |
| 240 |
+ |
eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); |
| 241 |
+ |
eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); |
| 242 |
+ |
eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); |
| 243 |
+ |
eta[8] += dt2 * instaVol * (press[8] - targetPressure/p_convert) / |
| 244 |
+ |
(NkBT*tb2); |
| 245 |
+ |
|
| 246 |
|
for( i=0; i<nAtoms; i++ ){ |
| 247 |
|
atomIndex = i * 3; |
| 248 |
< |
|
| 248 |
> |
|
| 249 |
|
// velocity half step |
| 165 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 166 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 167 |
– |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 168 |
– |
- vel[j]*(chi+eta)); |
| 250 |
|
|
| 251 |
+ |
vx = vel[atomIndex]; |
| 252 |
+ |
vy = vel[atomIndex+1]; |
| 253 |
+ |
vz = vel[atomIndex+2]; |
| 254 |
+ |
|
| 255 |
+ |
scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; |
| 256 |
+ |
scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; |
| 257 |
+ |
scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; |
| 258 |
+ |
|
| 259 |
+ |
vx += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - scx); |
| 260 |
+ |
vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); |
| 261 |
+ |
vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); |
| 262 |
+ |
|
| 263 |
+ |
vel[atomIndex] = vx; |
| 264 |
+ |
vel[atomIndex+1] = vy; |
| 265 |
+ |
vel[atomIndex+2] = vz; |
| 266 |
+ |
|
| 267 |
|
if( atoms[i]->isDirectional() ){ |
| 268 |
|
|
| 269 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 294 |
|
} |
| 295 |
|
} |
| 296 |
|
|
| 297 |
< |
int NPTi::readyCheck() { |
| 297 |
> |
int NPTf::readyCheck() { |
| 298 |
|
|
| 299 |
|
// First check to see if we have a target temperature. |
| 300 |
|
// Not having one is fatal. |
| 301 |
|
|
| 302 |
|
if (!have_target_temp) { |
| 303 |
|
sprintf( painCave.errMsg, |
| 304 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 304 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 305 |
|
" without a targetTemp!\n" |
| 306 |
|
); |
| 307 |
|
painCave.isFatal = 1; |
| 311 |
|
|
| 312 |
|
if (!have_target_pressure) { |
| 313 |
|
sprintf( painCave.errMsg, |
| 314 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 314 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 315 |
|
" without a targetPressure!\n" |
| 316 |
|
); |
| 317 |
|
painCave.isFatal = 1; |
| 323 |
|
|
| 324 |
|
if (!have_tau_thermostat) { |
| 325 |
|
sprintf( painCave.errMsg, |
| 326 |
< |
"NPTi error: If you use the NPTi\n" |
| 326 |
> |
"NPTf error: If you use the NPTf\n" |
| 327 |
|
" integrator, you must set tauThermostat.\n"); |
| 328 |
|
painCave.isFatal = 1; |
| 329 |
|
simError(); |
| 334 |
|
|
| 335 |
|
if (!have_tau_barostat) { |
| 336 |
|
sprintf( painCave.errMsg, |
| 337 |
< |
"NPTi error: If you use the NPTi\n" |
| 337 |
> |
"NPTf error: If you use the NPTf\n" |
| 338 |
|
" integrator, you must set tauBarostat.\n"); |
| 339 |
|
painCave.isFatal = 1; |
| 340 |
|
simError(); |