| 1 | 
+ | 
#include <cmath> | 
| 2 | 
  | 
#include "Atom.hpp" | 
| 3 | 
  | 
#include "SRI.hpp" | 
| 4 | 
  | 
#include "AbstractClasses.hpp" | 
| 10 | 
  | 
#include "simError.h"  | 
| 11 | 
  | 
 | 
| 12 | 
  | 
 | 
| 13 | 
< | 
// Basic isotropic thermostating and barostating via the Melchionna | 
| 13 | 
> | 
// Basic non-isotropic thermostating and barostating via the Melchionna | 
| 14 | 
  | 
// modification of the Hoover algorithm: | 
| 15 | 
  | 
// | 
| 16 | 
  | 
//    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 20 | 
  | 
//  | 
| 21 | 
  | 
//    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 22 | 
  | 
 | 
| 23 | 
< | 
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 24 | 
< | 
  Integrator( theInfo, the_ff ) | 
| 23 | 
> | 
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 24 | 
> | 
  T( theInfo, the_ff ) | 
| 25 | 
  | 
{ | 
| 26 | 
< | 
  int i; | 
| 26 | 
> | 
  int i, j; | 
| 27 | 
  | 
  chi = 0.0; | 
| 28 | 
< | 
  for(i = 0; i < 9; i++) eta[i] = 0.0; | 
| 28 | 
> | 
 | 
| 29 | 
> | 
  for(i = 0; i < 3; i++)  | 
| 30 | 
> | 
    for (j = 0; j < 3; j++)  | 
| 31 | 
> | 
      eta[i][j] = 0.0; | 
| 32 | 
> | 
 | 
| 33 | 
  | 
  have_tau_thermostat = 0; | 
| 34 | 
  | 
  have_tau_barostat = 0; | 
| 35 | 
  | 
  have_target_temp = 0; | 
| 36 | 
  | 
  have_target_pressure = 0; | 
| 37 | 
  | 
} | 
| 38 | 
  | 
 | 
| 39 | 
< | 
void NPTf::moveA() { | 
| 39 | 
> | 
template<typename T> void NPTf<T>::moveA() { | 
| 40 | 
  | 
   | 
| 41 | 
< | 
  int i,j,k; | 
| 37 | 
< | 
  int atomIndex, aMatIndex; | 
| 41 | 
> | 
  int i, j, k; | 
| 42 | 
  | 
  DirectionalAtom* dAtom; | 
| 43 | 
< | 
  double Tb[3]; | 
| 44 | 
< | 
  double ji[3]; | 
| 43 | 
> | 
  double Tb[3], ji[3]; | 
| 44 | 
> | 
  double A[3][3], I[3][3]; | 
| 45 | 
> | 
  double angle, mass; | 
| 46 | 
> | 
  double vel[3], pos[3], frc[3]; | 
| 47 | 
> | 
 | 
| 48 | 
  | 
  double rj[3]; | 
| 49 | 
  | 
  double instaTemp, instaPress, instaVol; | 
| 50 | 
  | 
  double tt2, tb2; | 
| 51 | 
< | 
  double angle; | 
| 52 | 
< | 
  double press[9]; | 
| 53 | 
< | 
  const double p_convert = 1.63882576e8; | 
| 51 | 
> | 
  double sc[3]; | 
| 52 | 
> | 
  double eta2ij; | 
| 53 | 
> | 
  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; | 
| 54 | 
> | 
  double bigScale, smallScale, offDiagMax; | 
| 55 | 
  | 
 | 
| 56 | 
  | 
  tt2 = tauThermostat * tauThermostat; | 
| 57 | 
  | 
  tb2 = tauBarostat * tauBarostat; | 
| 58 | 
  | 
 | 
| 59 | 
  | 
  instaTemp = tStats->getTemperature(); | 
| 60 | 
  | 
  tStats->getPressureTensor(press); | 
| 53 | 
– | 
 | 
| 54 | 
– | 
  for (i=0; i < 9; i++) press[i] *= p_convert; | 
| 55 | 
– | 
 | 
| 61 | 
  | 
  instaVol = tStats->getVolume(); | 
| 62 | 
  | 
    | 
| 63 | 
  | 
  // first evolve chi a half step | 
| 64 | 
  | 
   | 
| 65 | 
  | 
  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 66 | 
< | 
   | 
| 67 | 
< | 
  eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); | 
| 68 | 
< | 
  eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); | 
| 69 | 
< | 
  eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); | 
| 70 | 
< | 
  eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); | 
| 71 | 
< | 
  eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); | 
| 72 | 
< | 
  eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); | 
| 73 | 
< | 
  eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); | 
| 74 | 
< | 
  eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); | 
| 75 | 
< | 
  eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); | 
| 76 | 
< | 
   | 
| 66 | 
> | 
 | 
| 67 | 
> | 
  for (i = 0; i < 3; i++ ) { | 
| 68 | 
> | 
    for (j = 0; j < 3; j++ ) { | 
| 69 | 
> | 
      if (i == j) { | 
| 70 | 
> | 
         | 
| 71 | 
> | 
        eta[i][j] += dt2 * instaVol *  | 
| 72 | 
> | 
          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 73 | 
> | 
         | 
| 74 | 
> | 
        vScale[i][j] = eta[i][j] + chi; | 
| 75 | 
> | 
         | 
| 76 | 
> | 
      } else { | 
| 77 | 
> | 
         | 
| 78 | 
> | 
        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 79 | 
> | 
 | 
| 80 | 
> | 
        vScale[i][j] = eta[i][j]; | 
| 81 | 
> | 
         | 
| 82 | 
> | 
      } | 
| 83 | 
> | 
    } | 
| 84 | 
> | 
  } | 
| 85 | 
> | 
 | 
| 86 | 
  | 
  for( i=0; i<nAtoms; i++ ){ | 
| 87 | 
< | 
    atomIndex = i * 3; | 
| 88 | 
< | 
    aMatIndex = i * 9; | 
| 87 | 
> | 
 | 
| 88 | 
> | 
    atoms[i]->getVel( vel ); | 
| 89 | 
> | 
    atoms[i]->getPos( pos ); | 
| 90 | 
> | 
    atoms[i]->getFrc( frc ); | 
| 91 | 
> | 
 | 
| 92 | 
> | 
    mass = atoms[i]->getMass(); | 
| 93 | 
  | 
     | 
| 94 | 
  | 
    // velocity half step | 
| 95 | 
+ | 
         | 
| 96 | 
+ | 
    info->matVecMul3( vScale, vel, sc ); | 
| 97 | 
  | 
     | 
| 98 | 
< | 
    vx = vel[atomIndex]; | 
| 99 | 
< | 
    vy = vel[atomIndex+1]; | 
| 100 | 
< | 
    vz = vel[atomIndex+2]; | 
| 101 | 
< | 
     | 
| 82 | 
< | 
    scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; | 
| 83 | 
< | 
    scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; | 
| 84 | 
< | 
    scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; | 
| 85 | 
< | 
     | 
| 86 | 
< | 
    vx += dt2 * ((frc[atomIndex]  /atoms[i]->getMass())*eConvert - scx); | 
| 87 | 
< | 
    vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); | 
| 88 | 
< | 
    vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); | 
| 98 | 
> | 
    for (j = 0; j < 3; j++) { | 
| 99 | 
> | 
      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 100 | 
> | 
      rj[j] = pos[j]; | 
| 101 | 
> | 
    } | 
| 102 | 
  | 
 | 
| 103 | 
< | 
    vel[atomIndex] = vx; | 
| 91 | 
< | 
    vel[atomIndex+1] = vy; | 
| 92 | 
< | 
    vel[atomIndex+2] = vz; | 
| 103 | 
> | 
    atoms[i]->setVel( vel ); | 
| 104 | 
  | 
 | 
| 105 | 
  | 
    // position whole step     | 
| 106 | 
  | 
 | 
| 96 | 
– | 
    rj[0] = pos[atomIndex]; | 
| 97 | 
– | 
    rj[1] = pos[atomIndex+1]; | 
| 98 | 
– | 
    rj[2] = pos[atomIndex+2]; | 
| 99 | 
– | 
 | 
| 107 | 
  | 
    info->wrapVector(rj); | 
| 108 | 
  | 
 | 
| 109 | 
< | 
    scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; | 
| 103 | 
< | 
    scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; | 
| 104 | 
< | 
    scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; | 
| 109 | 
> | 
    info->matVecMul3( eta, rj, sc ); | 
| 110 | 
  | 
 | 
| 111 | 
< | 
    pos[atomIndex] += dt * (vel[atomIndex] + scx); | 
| 112 | 
< | 
    pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); | 
| 113 | 
< | 
    pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); | 
| 111 | 
> | 
    for (j = 0; j < 3; j++ )  | 
| 112 | 
> | 
      pos[j] += dt * (vel[j] + sc[j]); | 
| 113 | 
> | 
 | 
| 114 | 
> | 
    atoms[i]->setPos( pos ); | 
| 115 | 
  | 
    | 
| 116 | 
  | 
    if( atoms[i]->isDirectional() ){ | 
| 117 | 
  | 
 | 
| 119 | 
  | 
           | 
| 120 | 
  | 
      // get and convert the torque to body frame | 
| 121 | 
  | 
       | 
| 122 | 
< | 
      Tb[0] = dAtom->getTx(); | 
| 117 | 
< | 
      Tb[1] = dAtom->getTy(); | 
| 118 | 
< | 
      Tb[2] = dAtom->getTz(); | 
| 119 | 
< | 
       | 
| 122 | 
> | 
      dAtom->getTrq( Tb ); | 
| 123 | 
  | 
      dAtom->lab2Body( Tb ); | 
| 124 | 
  | 
       | 
| 125 | 
  | 
      // get the angular momentum, and propagate a half step | 
| 126 | 
  | 
 | 
| 127 | 
< | 
      ji[0] = dAtom->getJx(); | 
| 128 | 
< | 
      ji[1] = dAtom->getJy(); | 
| 129 | 
< | 
      ji[2] = dAtom->getJz(); | 
| 127 | 
> | 
      dAtom->getJ( ji ); | 
| 128 | 
> | 
 | 
| 129 | 
> | 
      for (j=0; j < 3; j++)  | 
| 130 | 
> | 
        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 131 | 
  | 
       | 
| 128 | 
– | 
      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 129 | 
– | 
      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 130 | 
– | 
      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 131 | 
– | 
       | 
| 132 | 
  | 
      // use the angular velocities to propagate the rotation matrix a | 
| 133 | 
  | 
      // full time step | 
| 134 | 
< | 
       | 
| 134 | 
> | 
 | 
| 135 | 
> | 
      dAtom->getA(A); | 
| 136 | 
> | 
      dAtom->getI(I); | 
| 137 | 
> | 
     | 
| 138 | 
  | 
      // rotate about the x-axis       | 
| 139 | 
< | 
      angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 140 | 
< | 
      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] );  | 
| 141 | 
< | 
       | 
| 139 | 
> | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 140 | 
> | 
      this->rotate( 1, 2, angle, ji, A );  | 
| 141 | 
> | 
 | 
| 142 | 
  | 
      // rotate about the y-axis | 
| 143 | 
< | 
      angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 144 | 
< | 
      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 143 | 
> | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 144 | 
> | 
      this->rotate( 2, 0, angle, ji, A ); | 
| 145 | 
  | 
       | 
| 146 | 
  | 
      // rotate about the z-axis | 
| 147 | 
< | 
      angle = dt * ji[2] / dAtom->getIzz(); | 
| 148 | 
< | 
      this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); | 
| 147 | 
> | 
      angle = dt * ji[2] / I[2][2]; | 
| 148 | 
> | 
      this->rotate( 0, 1, angle, ji, A); | 
| 149 | 
  | 
       | 
| 150 | 
  | 
      // rotate about the y-axis | 
| 151 | 
< | 
      angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 152 | 
< | 
      this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 151 | 
> | 
      angle = dt2 * ji[1] / I[1][1]; | 
| 152 | 
> | 
      this->rotate( 2, 0, angle, ji, A ); | 
| 153 | 
  | 
       | 
| 154 | 
  | 
       // rotate about the x-axis | 
| 155 | 
< | 
      angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 156 | 
< | 
      this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 155 | 
> | 
      angle = dt2 * ji[0] / I[0][0]; | 
| 156 | 
> | 
      this->rotate( 1, 2, angle, ji, A ); | 
| 157 | 
  | 
       | 
| 158 | 
< | 
      dAtom->setJx( ji[0] ); | 
| 159 | 
< | 
      dAtom->setJy( ji[1] ); | 
| 160 | 
< | 
      dAtom->setJz( ji[2] ); | 
| 158 | 
< | 
    } | 
| 159 | 
< | 
     | 
| 158 | 
> | 
      dAtom->setJ( ji ); | 
| 159 | 
> | 
      dAtom->setA( A  );     | 
| 160 | 
> | 
    }                     | 
| 161 | 
  | 
  } | 
| 162 | 
< | 
 | 
| 162 | 
> | 
   | 
| 163 | 
  | 
  // Scale the box after all the positions have been moved: | 
| 164 | 
  | 
   | 
| 165 | 
< | 
 | 
| 166 | 
< | 
 | 
| 166 | 
< | 
  // Use a taylor expansion for eta products | 
| 167 | 
< | 
    | 
| 168 | 
< | 
  info->getBoxM(hm); | 
| 165 | 
> | 
  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 166 | 
> | 
  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 167 | 
  | 
   | 
| 168 | 
< | 
 | 
| 168 | 
> | 
  bigScale = 1.0; | 
| 169 | 
> | 
  smallScale = 1.0; | 
| 170 | 
> | 
  offDiagMax = 0.0; | 
| 171 | 
> | 
   | 
| 172 | 
> | 
  for(i=0; i<3; i++){ | 
| 173 | 
> | 
    for(j=0; j<3; j++){ | 
| 174 | 
> | 
       | 
| 175 | 
> | 
      // Calculate the matrix Product of the eta array (we only need | 
| 176 | 
> | 
      // the ij element right now): | 
| 177 | 
> | 
       | 
| 178 | 
> | 
      eta2ij = 0.0; | 
| 179 | 
> | 
      for(k=0; k<3; k++){ | 
| 180 | 
> | 
        eta2ij += eta[i][k] * eta[k][j]; | 
| 181 | 
> | 
      } | 
| 182 | 
> | 
       | 
| 183 | 
> | 
      scaleMat[i][j] = 0.0; | 
| 184 | 
> | 
      // identity matrix (see above): | 
| 185 | 
> | 
      if (i == j) scaleMat[i][j] = 1.0; | 
| 186 | 
> | 
      // Taylor expansion for the exponential truncated at second order: | 
| 187 | 
> | 
      scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 188 | 
  | 
 | 
| 189 | 
+ | 
      if (i != j) | 
| 190 | 
+ | 
        if (fabs(scaleMat[i][j]) > offDiagMax)  | 
| 191 | 
+ | 
          offDiagMax = fabs(scaleMat[i][j]); | 
| 192 | 
+ | 
       | 
| 193 | 
+ | 
    } | 
| 194 | 
  | 
 | 
| 195 | 
< | 
 | 
| 196 | 
< | 
 | 
| 197 | 
< | 
   info->scaleBox(exp(dt*eta)); | 
| 198 | 
< | 
 | 
| 199 | 
< | 
 | 
| 195 | 
> | 
    if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 196 | 
> | 
    if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 197 | 
> | 
  } | 
| 198 | 
> | 
   | 
| 199 | 
> | 
  if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 200 | 
> | 
    sprintf( painCave.errMsg, | 
| 201 | 
> | 
             "NPTf error: Attempting a Box scaling of more than 10 percent.\n" | 
| 202 | 
> | 
             " Check your tauBarostat, as it is probably too small!\n\n" | 
| 203 | 
> | 
             " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 204 | 
> | 
             "            [%lf\t%lf\t%lf]\n" | 
| 205 | 
> | 
             "            [%lf\t%lf\t%lf]\n", | 
| 206 | 
> | 
             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 207 | 
> | 
             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 208 | 
> | 
             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 209 | 
> | 
    painCave.isFatal = 1; | 
| 210 | 
> | 
    simError(); | 
| 211 | 
> | 
  } else if (offDiagMax > 0.1) { | 
| 212 | 
> | 
    sprintf( painCave.errMsg, | 
| 213 | 
> | 
             "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" | 
| 214 | 
> | 
             " Check your tauBarostat, as it is probably too small!\n\n" | 
| 215 | 
> | 
             " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 216 | 
> | 
             "            [%lf\t%lf\t%lf]\n" | 
| 217 | 
> | 
             "            [%lf\t%lf\t%lf]\n", | 
| 218 | 
> | 
             scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 219 | 
> | 
             scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 220 | 
> | 
             scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 221 | 
> | 
    painCave.isFatal = 1; | 
| 222 | 
> | 
    simError(); | 
| 223 | 
> | 
  } else { | 
| 224 | 
> | 
    info->getBoxM(hm); | 
| 225 | 
> | 
    info->matMul3(hm, scaleMat, hmnew); | 
| 226 | 
> | 
    info->setBoxM(hmnew); | 
| 227 | 
> | 
  } | 
| 228 | 
> | 
   | 
| 229 | 
  | 
} | 
| 230 | 
  | 
 | 
| 231 | 
< | 
void NPTi::moveB( void ){ | 
| 232 | 
< | 
  int i,j,k; | 
| 233 | 
< | 
  int atomIndex; | 
| 231 | 
> | 
template<typename T> void NPTf<T>::moveB( void ){ | 
| 232 | 
> | 
 | 
| 233 | 
> | 
  int i, j; | 
| 234 | 
  | 
  DirectionalAtom* dAtom; | 
| 235 | 
< | 
  double Tb[3]; | 
| 236 | 
< | 
  double ji[3]; | 
| 235 | 
> | 
  double Tb[3], ji[3]; | 
| 236 | 
> | 
  double vel[3], frc[3]; | 
| 237 | 
> | 
  double mass; | 
| 238 | 
> | 
 | 
| 239 | 
  | 
  double instaTemp, instaPress, instaVol; | 
| 240 | 
  | 
  double tt2, tb2; | 
| 241 | 
+ | 
  double sc[3]; | 
| 242 | 
+ | 
  double press[3][3], vScale[3][3]; | 
| 243 | 
  | 
   | 
| 244 | 
  | 
  tt2 = tauThermostat * tauThermostat; | 
| 245 | 
  | 
  tb2 = tauBarostat * tauBarostat; | 
| 246 | 
  | 
 | 
| 247 | 
  | 
  instaTemp = tStats->getTemperature(); | 
| 248 | 
< | 
  instaPress = tStats->getPressure(); | 
| 248 | 
> | 
  tStats->getPressureTensor(press); | 
| 249 | 
  | 
  instaVol = tStats->getVolume(); | 
| 250 | 
< | 
 | 
| 250 | 
> | 
    | 
| 251 | 
> | 
  // first evolve chi a half step | 
| 252 | 
> | 
   | 
| 253 | 
  | 
  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 197 | 
– | 
  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); | 
| 254 | 
  | 
   | 
| 255 | 
+ | 
  for (i = 0; i < 3; i++ ) { | 
| 256 | 
+ | 
    for (j = 0; j < 3; j++ ) { | 
| 257 | 
+ | 
      if (i == j) { | 
| 258 | 
+ | 
 | 
| 259 | 
+ | 
        eta[i][j] += dt2 * instaVol *  | 
| 260 | 
+ | 
          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 261 | 
+ | 
 | 
| 262 | 
+ | 
        vScale[i][j] = eta[i][j] + chi; | 
| 263 | 
+ | 
         | 
| 264 | 
+ | 
      } else { | 
| 265 | 
+ | 
         | 
| 266 | 
+ | 
        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 267 | 
+ | 
 | 
| 268 | 
+ | 
        vScale[i][j] = eta[i][j]; | 
| 269 | 
+ | 
         | 
| 270 | 
+ | 
      } | 
| 271 | 
+ | 
    } | 
| 272 | 
+ | 
  } | 
| 273 | 
+ | 
 | 
| 274 | 
  | 
  for( i=0; i<nAtoms; i++ ){ | 
| 275 | 
< | 
    atomIndex = i * 3; | 
| 275 | 
> | 
 | 
| 276 | 
> | 
    atoms[i]->getVel( vel ); | 
| 277 | 
> | 
    atoms[i]->getFrc( frc ); | 
| 278 | 
> | 
 | 
| 279 | 
> | 
    mass = atoms[i]->getMass(); | 
| 280 | 
  | 
     | 
| 281 | 
  | 
    // velocity half step | 
| 282 | 
< | 
    for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 283 | 
< | 
    for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 205 | 
< | 
      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert  | 
| 206 | 
< | 
                       - vel[j]*(chi+eta)); | 
| 282 | 
> | 
         | 
| 283 | 
> | 
    info->matVecMul3( vScale, vel, sc ); | 
| 284 | 
  | 
     | 
| 285 | 
+ | 
    for (j = 0; j < 3; j++) { | 
| 286 | 
+ | 
      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 287 | 
+ | 
    } | 
| 288 | 
+ | 
 | 
| 289 | 
+ | 
    atoms[i]->setVel( vel ); | 
| 290 | 
+ | 
     | 
| 291 | 
  | 
    if( atoms[i]->isDirectional() ){ | 
| 292 | 
< | 
       | 
| 292 | 
> | 
 | 
| 293 | 
  | 
      dAtom = (DirectionalAtom *)atoms[i]; | 
| 294 | 
< | 
       | 
| 294 | 
> | 
           | 
| 295 | 
  | 
      // get and convert the torque to body frame | 
| 296 | 
  | 
       | 
| 297 | 
< | 
      Tb[0] = dAtom->getTx(); | 
| 215 | 
< | 
      Tb[1] = dAtom->getTy(); | 
| 216 | 
< | 
      Tb[2] = dAtom->getTz(); | 
| 217 | 
< | 
       | 
| 297 | 
> | 
      dAtom->getTrq( Tb ); | 
| 298 | 
  | 
      dAtom->lab2Body( Tb ); | 
| 299 | 
  | 
       | 
| 300 | 
< | 
      // get the angular momentum, and complete the angular momentum | 
| 221 | 
< | 
      // half step | 
| 300 | 
> | 
      // get the angular momentum, and propagate a half step | 
| 301 | 
  | 
       | 
| 302 | 
< | 
      ji[0] = dAtom->getJx(); | 
| 224 | 
< | 
      ji[1] = dAtom->getJy(); | 
| 225 | 
< | 
      ji[2] = dAtom->getJz(); | 
| 302 | 
> | 
      dAtom->getJ( ji ); | 
| 303 | 
  | 
       | 
| 304 | 
< | 
      ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 305 | 
< | 
      ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 229 | 
< | 
      ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 304 | 
> | 
      for (j=0; j < 3; j++)  | 
| 305 | 
> | 
        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 306 | 
  | 
       | 
| 307 | 
< | 
      dAtom->setJx( ji[0] ); | 
| 308 | 
< | 
      dAtom->setJy( ji[1] ); | 
| 309 | 
< | 
      dAtom->setJz( ji[2] ); | 
| 234 | 
< | 
    } | 
| 307 | 
> | 
      dAtom->setJ( ji ); | 
| 308 | 
> | 
 | 
| 309 | 
> | 
    }                     | 
| 310 | 
  | 
  } | 
| 311 | 
  | 
} | 
| 312 | 
  | 
 | 
| 313 | 
< | 
int NPTi::readyCheck() { | 
| 313 | 
> | 
template<typename T> int NPTf<T>::readyCheck() { | 
| 314 | 
> | 
 | 
| 315 | 
> | 
  //check parent's readyCheck() first | 
| 316 | 
> | 
  if (T::readyCheck() == -1) | 
| 317 | 
> | 
    return -1; | 
| 318 | 
  | 
  | 
| 319 | 
  | 
  // First check to see if we have a target temperature.  | 
| 320 | 
  | 
  // Not having one is fatal.  | 
| 321 | 
  | 
   | 
| 322 | 
  | 
  if (!have_target_temp) { | 
| 323 | 
  | 
    sprintf( painCave.errMsg, | 
| 324 | 
< | 
             "NPTi error: You can't use the NPTi integrator\n" | 
| 324 | 
> | 
             "NPTf error: You can't use the NPTf integrator\n" | 
| 325 | 
  | 
             "   without a targetTemp!\n" | 
| 326 | 
  | 
             ); | 
| 327 | 
  | 
    painCave.isFatal = 1; | 
| 331 | 
  | 
 | 
| 332 | 
  | 
  if (!have_target_pressure) { | 
| 333 | 
  | 
    sprintf( painCave.errMsg, | 
| 334 | 
< | 
             "NPTi error: You can't use the NPTi integrator\n" | 
| 334 | 
> | 
             "NPTf error: You can't use the NPTf integrator\n" | 
| 335 | 
  | 
             "   without a targetPressure!\n" | 
| 336 | 
  | 
             ); | 
| 337 | 
  | 
    painCave.isFatal = 1; | 
| 343 | 
  | 
    | 
| 344 | 
  | 
  if (!have_tau_thermostat) { | 
| 345 | 
  | 
    sprintf( painCave.errMsg, | 
| 346 | 
< | 
             "NPTi error: If you use the NPTi\n" | 
| 346 | 
> | 
             "NPTf error: If you use the NPTf\n" | 
| 347 | 
  | 
             "   integrator, you must set tauThermostat.\n"); | 
| 348 | 
  | 
    painCave.isFatal = 1; | 
| 349 | 
  | 
    simError(); | 
| 354 | 
  | 
    | 
| 355 | 
  | 
  if (!have_tau_barostat) { | 
| 356 | 
  | 
    sprintf( painCave.errMsg, | 
| 357 | 
< | 
             "NPTi error: If you use the NPTi\n" | 
| 357 | 
> | 
             "NPTf error: If you use the NPTf\n" | 
| 358 | 
  | 
             "   integrator, you must set tauBarostat.\n"); | 
| 359 | 
  | 
    painCave.isFatal = 1; | 
| 360 | 
  | 
    simError(); |