| 9 | 
  | 
#include "simError.h"  | 
| 10 | 
  | 
 | 
| 11 | 
  | 
 | 
| 12 | 
< | 
// Basic isotropic thermostating and barostating via the Melchionna | 
| 12 | 
> | 
// Basic non-isotropic thermostating and barostating via the Melchionna | 
| 13 | 
  | 
// modification of the Hoover algorithm: | 
| 14 | 
  | 
// | 
| 15 | 
  | 
//    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 39 | 
  | 
  double Tb[3]; | 
| 40 | 
  | 
  double ji[3]; | 
| 41 | 
  | 
  double rj[3]; | 
| 42 | 
+ | 
  double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; | 
| 43 | 
+ | 
  double hm[9]; | 
| 44 | 
+ | 
  double vx, vy, vz; | 
| 45 | 
+ | 
  double scx, scy, scz; | 
| 46 | 
  | 
  double instaTemp, instaPress, instaVol; | 
| 47 | 
  | 
  double tt2, tb2; | 
| 48 | 
  | 
  double angle; | 
| 164 | 
  | 
  } | 
| 165 | 
  | 
 | 
| 166 | 
  | 
  // Scale the box after all the positions have been moved: | 
| 163 | 
– | 
   | 
| 167 | 
  | 
 | 
| 168 | 
+ | 
  // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 169 | 
+ | 
  //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 170 | 
  | 
 | 
| 171 | 
< | 
  // Use a taylor expansion for eta products | 
| 171 | 
> | 
 | 
| 172 | 
> | 
  for(i=0; i<3; i++){ | 
| 173 | 
> | 
    for(j=0; j<3; j++){ | 
| 174 | 
> | 
      ident[i][j] = 0.0; | 
| 175 | 
> | 
      eta1[i][j] = eta[3*i+j]; | 
| 176 | 
> | 
      eta2[i][j] = 0.0; | 
| 177 | 
> | 
      for(k=0; k<3; k++){ | 
| 178 | 
> | 
        eta2[i][j] += eta[3*i+k] * eta[3*k+j]; | 
| 179 | 
> | 
      } | 
| 180 | 
> | 
    } | 
| 181 | 
> | 
    ident[i][i] = 1.0; | 
| 182 | 
> | 
  } | 
| 183 | 
> | 
 | 
| 184 | 
  | 
    | 
| 185 | 
  | 
  info->getBoxM(hm); | 
| 186 | 
+ | 
  | 
| 187 | 
+ | 
  for(i=0; i<3; i++){ | 
| 188 | 
+ | 
    for(j=0; j<3; j++){       | 
| 189 | 
+ | 
      hmnew[i][j] = 0.0; | 
| 190 | 
+ | 
      for(k=0; k<3; k++){ | 
| 191 | 
+ | 
        // remember that hmat has transpose ordering for Fortran compat: | 
| 192 | 
+ | 
        hmnew[i][j] += hm[3*k+i] * (ident[k][j]  | 
| 193 | 
+ | 
                                    + dt * eta1[k][j]  | 
| 194 | 
+ | 
                                    + 0.5 * dt * dt * eta2[k][j]); | 
| 195 | 
+ | 
      } | 
| 196 | 
+ | 
    } | 
| 197 | 
+ | 
  } | 
| 198 | 
  | 
   | 
| 199 | 
+ | 
  for (i = 0; i < 3; i++) { | 
| 200 | 
+ | 
    for (j = 0; j < 3; j++) { | 
| 201 | 
+ | 
      // remember that hmat has transpose ordering for Fortran compat: | 
| 202 | 
+ | 
      hm[3*j + 1] = hmnew[i][j]; | 
| 203 | 
+ | 
    } | 
| 204 | 
+ | 
  } | 
| 205 | 
  | 
 | 
| 206 | 
< | 
 | 
| 207 | 
< | 
 | 
| 173 | 
< | 
 | 
| 174 | 
< | 
 | 
| 175 | 
< | 
   info->scaleBox(exp(dt*eta)); | 
| 176 | 
< | 
 | 
| 177 | 
< | 
 | 
| 206 | 
> | 
  info->setBoxM(hm); | 
| 207 | 
> | 
   | 
| 208 | 
  | 
} | 
| 209 | 
  | 
 | 
| 210 | 
< | 
void NPTi::moveB( void ){ | 
| 210 | 
> | 
void NPTf::moveB( void ){ | 
| 211 | 
  | 
  int i,j,k; | 
| 212 | 
  | 
  int atomIndex; | 
| 213 | 
  | 
  DirectionalAtom* dAtom; | 
| 214 | 
  | 
  double Tb[3]; | 
| 215 | 
  | 
  double ji[3]; | 
| 216 | 
< | 
  double instaTemp, instaPress, instaVol; | 
| 216 | 
> | 
  double press[9]; | 
| 217 | 
> | 
  double instaTemp, instaVol; | 
| 218 | 
  | 
  double tt2, tb2; | 
| 219 | 
+ | 
  double vx, vy, vz; | 
| 220 | 
+ | 
  double scx, scy, scz; | 
| 221 | 
+ | 
  const double p_convert = 1.63882576e8; | 
| 222 | 
  | 
   | 
| 223 | 
  | 
  tt2 = tauThermostat * tauThermostat; | 
| 224 | 
  | 
  tb2 = tauBarostat * tauBarostat; | 
| 225 | 
  | 
 | 
| 226 | 
  | 
  instaTemp = tStats->getTemperature(); | 
| 227 | 
< | 
  instaPress = tStats->getPressure(); | 
| 194 | 
< | 
  instaVol = tStats->getVolume(); | 
| 227 | 
> | 
  tStats->getPressureTensor(press); | 
| 228 | 
  | 
 | 
| 229 | 
+ | 
  for (i=0; i < 9; i++) press[i] *= p_convert; | 
| 230 | 
+ | 
 | 
| 231 | 
+ | 
  instaVol = tStats->getVolume(); | 
| 232 | 
+ | 
    | 
| 233 | 
+ | 
  // first evolve chi a half step | 
| 234 | 
+ | 
   | 
| 235 | 
  | 
  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 197 | 
– | 
  eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); | 
| 236 | 
  | 
   | 
| 237 | 
+ | 
  eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); | 
| 238 | 
+ | 
  eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); | 
| 239 | 
+ | 
  eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); | 
| 240 | 
+ | 
  eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); | 
| 241 | 
+ | 
  eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); | 
| 242 | 
+ | 
  eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); | 
| 243 | 
+ | 
  eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); | 
| 244 | 
+ | 
  eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); | 
| 245 | 
+ | 
  eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); | 
| 246 | 
+ | 
 | 
| 247 | 
  | 
  for( i=0; i<nAtoms; i++ ){ | 
| 248 | 
  | 
    atomIndex = i * 3; | 
| 249 | 
< | 
     | 
| 249 | 
> | 
 | 
| 250 | 
  | 
    // velocity half step | 
| 203 | 
– | 
    for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 204 | 
– | 
    for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 205 | 
– | 
      vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert  | 
| 206 | 
– | 
                       - vel[j]*(chi+eta)); | 
| 251 | 
  | 
     | 
| 252 | 
+ | 
    vx = vel[atomIndex]; | 
| 253 | 
+ | 
    vy = vel[atomIndex+1]; | 
| 254 | 
+ | 
    vz = vel[atomIndex+2]; | 
| 255 | 
+ | 
     | 
| 256 | 
+ | 
    scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; | 
| 257 | 
+ | 
    scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; | 
| 258 | 
+ | 
    scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; | 
| 259 | 
+ | 
     | 
| 260 | 
+ | 
    vx += dt2 * ((frc[atomIndex]  /atoms[i]->getMass())*eConvert - scx); | 
| 261 | 
+ | 
    vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); | 
| 262 | 
+ | 
    vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); | 
| 263 | 
+ | 
 | 
| 264 | 
+ | 
    vel[atomIndex] = vx; | 
| 265 | 
+ | 
    vel[atomIndex+1] = vy; | 
| 266 | 
+ | 
    vel[atomIndex+2] = vz; | 
| 267 | 
+ | 
     | 
| 268 | 
  | 
    if( atoms[i]->isDirectional() ){ | 
| 269 | 
  | 
       | 
| 270 | 
  | 
      dAtom = (DirectionalAtom *)atoms[i]; | 
| 295 | 
  | 
  } | 
| 296 | 
  | 
} | 
| 297 | 
  | 
 | 
| 298 | 
< | 
int NPTi::readyCheck() { | 
| 298 | 
> | 
int NPTf::readyCheck() { | 
| 299 | 
  | 
  | 
| 300 | 
  | 
  // First check to see if we have a target temperature.  | 
| 301 | 
  | 
  // Not having one is fatal.  | 
| 302 | 
  | 
   | 
| 303 | 
  | 
  if (!have_target_temp) { | 
| 304 | 
  | 
    sprintf( painCave.errMsg, | 
| 305 | 
< | 
             "NPTi error: You can't use the NPTi integrator\n" | 
| 305 | 
> | 
             "NPTf error: You can't use the NPTf integrator\n" | 
| 306 | 
  | 
             "   without a targetTemp!\n" | 
| 307 | 
  | 
             ); | 
| 308 | 
  | 
    painCave.isFatal = 1; | 
| 312 | 
  | 
 | 
| 313 | 
  | 
  if (!have_target_pressure) { | 
| 314 | 
  | 
    sprintf( painCave.errMsg, | 
| 315 | 
< | 
             "NPTi error: You can't use the NPTi integrator\n" | 
| 315 | 
> | 
             "NPTf error: You can't use the NPTf integrator\n" | 
| 316 | 
  | 
             "   without a targetPressure!\n" | 
| 317 | 
  | 
             ); | 
| 318 | 
  | 
    painCave.isFatal = 1; | 
| 324 | 
  | 
    | 
| 325 | 
  | 
  if (!have_tau_thermostat) { | 
| 326 | 
  | 
    sprintf( painCave.errMsg, | 
| 327 | 
< | 
             "NPTi error: If you use the NPTi\n" | 
| 327 | 
> | 
             "NPTf error: If you use the NPTf\n" | 
| 328 | 
  | 
             "   integrator, you must set tauThermostat.\n"); | 
| 329 | 
  | 
    painCave.isFatal = 1; | 
| 330 | 
  | 
    simError(); | 
| 335 | 
  | 
    | 
| 336 | 
  | 
  if (!have_tau_barostat) { | 
| 337 | 
  | 
    sprintf( painCave.errMsg, | 
| 338 | 
< | 
             "NPTi error: If you use the NPTi\n" | 
| 338 | 
> | 
             "NPTf error: If you use the NPTf\n" | 
| 339 | 
  | 
             "   integrator, you must set tauBarostat.\n"); | 
| 340 | 
  | 
    painCave.isFatal = 1; | 
| 341 | 
  | 
    simError(); |