| 9 |
|
#include "simError.h" |
| 10 |
|
|
| 11 |
|
|
| 12 |
< |
// Basic isotropic thermostating and barostating via the Melchionna |
| 12 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 13 |
|
// modification of the Hoover algorithm: |
| 14 |
|
// |
| 15 |
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 19 |
|
// |
| 20 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 21 |
|
|
| 22 |
< |
NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
| 22 |
> |
NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
| 23 |
|
Integrator( theInfo, the_ff ) |
| 24 |
|
{ |
| 25 |
< |
int i; |
| 25 |
> |
int i, j; |
| 26 |
|
chi = 0.0; |
| 27 |
< |
for(i = 0; i < 9; i++) eta[i] = 0.0; |
| 27 |
> |
|
| 28 |
> |
for(i = 0; i < 3; i++) |
| 29 |
> |
for (j = 0; j < 3; j_++) |
| 30 |
> |
eta[i][j] = 0.0; |
| 31 |
> |
|
| 32 |
|
have_tau_thermostat = 0; |
| 33 |
|
have_tau_barostat = 0; |
| 34 |
|
have_target_temp = 0; |
| 35 |
|
have_target_pressure = 0; |
| 36 |
|
} |
| 37 |
|
|
| 38 |
< |
void NPTi::moveA() { |
| 38 |
> |
void NPTf::moveA() { |
| 39 |
|
|
| 40 |
|
int i,j,k; |
| 41 |
|
int atomIndex, aMatIndex; |
| 42 |
|
DirectionalAtom* dAtom; |
| 43 |
|
double Tb[3]; |
| 44 |
|
double ji[3]; |
| 45 |
< |
double rj[3]; |
| 46 |
< |
double instaTemp, instaPress, instaVol; |
| 47 |
< |
double tt2, tb2; |
| 45 |
> |
double ri[3], vi[3], sc[3]; |
| 46 |
> |
double instaTemp, instaVol; |
| 47 |
> |
double tt2, tb2, eta2ij; |
| 48 |
|
double angle; |
| 49 |
+ |
double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 50 |
|
|
| 51 |
|
tt2 = tauThermostat * tauThermostat; |
| 52 |
|
tb2 = tauBarostat * tauBarostat; |
| 53 |
|
|
| 54 |
|
instaTemp = tStats->getTemperature(); |
| 55 |
< |
instaPress = tStats->getPressure(); |
| 55 |
> |
tStats->getPressureTensor(press); |
| 56 |
|
instaVol = tStats->getVolume(); |
| 57 |
|
|
| 58 |
|
// first evolve chi a half step |
| 59 |
|
|
| 60 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 56 |
– |
|
| 57 |
– |
for (i = 0; i < 9; i++) { |
| 58 |
– |
eta[i] += dt2 * ( instaVol * (sigma[i] - targetPressure*identMat[i])) |
| 59 |
– |
/ (NkBT*tb2)); |
| 60 |
– |
} |
| 61 |
|
|
| 62 |
+ |
for (i = 0; i < 3; i++ ) { |
| 63 |
+ |
for (j = 0; j < 3; j++ ) { |
| 64 |
+ |
if (i == j) { |
| 65 |
+ |
|
| 66 |
+ |
eta[i][j] += dt2 * instaVol * |
| 67 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 68 |
+ |
|
| 69 |
+ |
vScale[i][j] = eta[i][j] + chi; |
| 70 |
+ |
|
| 71 |
+ |
} else { |
| 72 |
+ |
|
| 73 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 74 |
+ |
|
| 75 |
+ |
vScale[i][j] = eta[i][j]; |
| 76 |
+ |
|
| 77 |
+ |
} |
| 78 |
+ |
} |
| 79 |
+ |
} |
| 80 |
+ |
|
| 81 |
|
for( i=0; i<nAtoms; i++ ){ |
| 82 |
|
atomIndex = i * 3; |
| 83 |
|
aMatIndex = i * 9; |
| 84 |
|
|
| 85 |
|
// velocity half step |
| 86 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 87 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 88 |
< |
- vel[j]*(chi+eta)); |
| 86 |
> |
|
| 87 |
> |
vi[0] = vel[atomIndex]; |
| 88 |
> |
vi[1] = vel[atomIndex+1]; |
| 89 |
> |
vi[2] = vel[atomIndex+2]; |
| 90 |
> |
|
| 91 |
> |
info->matVecMul3( vScale, vi, sc ); |
| 92 |
> |
|
| 93 |
> |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 94 |
> |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 95 |
> |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 96 |
|
|
| 97 |
+ |
vel[atomIndex] = vi[0] |
| 98 |
+ |
vel[atomIndex+1] = vi[1]; |
| 99 |
+ |
vel[atomIndex+2] = vi[2]; |
| 100 |
+ |
|
| 101 |
|
// position whole step |
| 102 |
|
|
| 103 |
< |
for( j=atomIndex; j<(atomIndex+3); j=j+3 ) { |
| 104 |
< |
rj[0] = pos[j]; |
| 105 |
< |
rj[1] = pos[j+1]; |
| 76 |
< |
rj[2] = pos[j+2]; |
| 103 |
> |
ri[0] = pos[atomIndex]; |
| 104 |
> |
ri[1] = pos[atomIndex+1]; |
| 105 |
> |
ri[2] = pos[atomIndex+2]; |
| 106 |
|
|
| 107 |
< |
info->wrapVector(rj); |
| 107 |
> |
info->wrapVector(ri); |
| 108 |
|
|
| 109 |
< |
pos[j] += dt * (vel[j] + eta*rj[0]); |
| 81 |
< |
pos[j+1] += dt * (vel[j+1] + eta*rj[1]); |
| 82 |
< |
pos[j+2] += dt * (vel[j+2] + eta*rj[2]); |
| 83 |
< |
} |
| 109 |
> |
info->matVecMul3( eta, ri, sc ); |
| 110 |
|
|
| 111 |
< |
// Scale the box after all the positions have been moved: |
| 112 |
< |
|
| 113 |
< |
info->scaleBox(exp(dt*eta)); |
| 111 |
> |
pos[atomIndex] += dt * (vel[atomIndex] + sc[0]); |
| 112 |
> |
pos[atomIndex+1] += dt * (vel[atomIndex+1] + sc[1]); |
| 113 |
> |
pos[atomIndex+2] += dt * (vel[atomIndex+2] + sc[2]); |
| 114 |
|
|
| 115 |
|
if( atoms[i]->isDirectional() ){ |
| 116 |
|
|
| 163 |
|
} |
| 164 |
|
|
| 165 |
|
} |
| 166 |
+ |
|
| 167 |
+ |
// Scale the box after all the positions have been moved: |
| 168 |
+ |
|
| 169 |
+ |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 170 |
+ |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 171 |
+ |
|
| 172 |
+ |
|
| 173 |
+ |
for(i=0; i<3; i++){ |
| 174 |
+ |
for(j=0; j<3; j++){ |
| 175 |
+ |
|
| 176 |
+ |
// Calculate the matrix Product of the eta array (we only need |
| 177 |
+ |
// the ij element right now): |
| 178 |
+ |
|
| 179 |
+ |
eta2ij = 0.0; |
| 180 |
+ |
for(k=0; k<3; k++){ |
| 181 |
+ |
eta2ij += eta[i][k] * eta[k][j]; |
| 182 |
+ |
} |
| 183 |
+ |
|
| 184 |
+ |
scaleMat[i][j] = 0.0; |
| 185 |
+ |
// identity matrix (see above): |
| 186 |
+ |
if (i == j) scaleMat[i][j] = 1.0; |
| 187 |
+ |
// Taylor expansion for the exponential truncated at second order: |
| 188 |
+ |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
| 189 |
+ |
|
| 190 |
+ |
} |
| 191 |
+ |
} |
| 192 |
+ |
|
| 193 |
+ |
info->getBoxM(hm); |
| 194 |
+ |
info->matMul3(hm, scaleMat, hmnew); |
| 195 |
+ |
info->setBoxM(hmnew); |
| 196 |
+ |
|
| 197 |
|
} |
| 198 |
|
|
| 199 |
< |
void NPTi::moveB( void ){ |
| 200 |
< |
int i,j,k; |
| 199 |
> |
void NPTf::moveB( void ){ |
| 200 |
> |
int i,j, k; |
| 201 |
|
int atomIndex; |
| 202 |
|
DirectionalAtom* dAtom; |
| 203 |
|
double Tb[3]; |
| 204 |
|
double ji[3]; |
| 205 |
< |
double instaTemp, instaPress, instaVol; |
| 205 |
> |
double vi[3], sc[3]; |
| 206 |
> |
double instaTemp, instaVol; |
| 207 |
|
double tt2, tb2; |
| 208 |
+ |
double press[3][3], vScale[3][3]; |
| 209 |
|
|
| 210 |
|
tt2 = tauThermostat * tauThermostat; |
| 211 |
|
tb2 = tauBarostat * tauBarostat; |
| 212 |
|
|
| 213 |
|
instaTemp = tStats->getTemperature(); |
| 214 |
< |
instaPress = tStats->getPressure(); |
| 214 |
> |
tStats->getPressureTensor(press); |
| 215 |
|
instaVol = tStats->getVolume(); |
| 216 |
< |
|
| 216 |
> |
|
| 217 |
> |
// first evolve chi a half step |
| 218 |
> |
|
| 219 |
|
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 159 |
– |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / (NkBT*tb2)); |
| 220 |
|
|
| 221 |
+ |
for (i = 0; i < 3; i++ ) { |
| 222 |
+ |
for (j = 0; j < 3; j++ ) { |
| 223 |
+ |
if (i == j) { |
| 224 |
+ |
|
| 225 |
+ |
eta[i][j] += dt2 * instaVol * |
| 226 |
+ |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
| 227 |
+ |
|
| 228 |
+ |
vScale[i][j] = eta[i][j] + chi; |
| 229 |
+ |
|
| 230 |
+ |
} else { |
| 231 |
+ |
|
| 232 |
+ |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
| 233 |
+ |
|
| 234 |
+ |
vScale[i][j] = eta[i][j]; |
| 235 |
+ |
|
| 236 |
+ |
} |
| 237 |
+ |
} |
| 238 |
+ |
} |
| 239 |
+ |
|
| 240 |
|
for( i=0; i<nAtoms; i++ ){ |
| 241 |
|
atomIndex = i * 3; |
| 242 |
< |
|
| 242 |
> |
|
| 243 |
|
// velocity half step |
| 165 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 166 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 167 |
– |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert |
| 168 |
– |
- vel[j]*(chi+eta)); |
| 244 |
|
|
| 245 |
+ |
vi[0] = vel[atomIndex]; |
| 246 |
+ |
vi[1] = vel[atomIndex+1]; |
| 247 |
+ |
vi[2] = vel[atomIndex+2]; |
| 248 |
+ |
|
| 249 |
+ |
info->matVecMul3( vScale, vi, sc ); |
| 250 |
+ |
|
| 251 |
+ |
vi[0] += dt2 * ((frc[atomIndex] /atoms[i]->getMass())*eConvert - sc[0]); |
| 252 |
+ |
vi[1] += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - sc[1]); |
| 253 |
+ |
vi[2] += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - sc[2]); |
| 254 |
+ |
|
| 255 |
+ |
vel[atomIndex] = vi[0] |
| 256 |
+ |
vel[atomIndex+1] = vi[1]; |
| 257 |
+ |
vel[atomIndex+2] = vi[2]; |
| 258 |
+ |
|
| 259 |
|
if( atoms[i]->isDirectional() ){ |
| 260 |
|
|
| 261 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
| 286 |
|
} |
| 287 |
|
} |
| 288 |
|
|
| 289 |
< |
int NPTi::readyCheck() { |
| 289 |
> |
int NPTf::readyCheck() { |
| 290 |
|
|
| 291 |
|
// First check to see if we have a target temperature. |
| 292 |
|
// Not having one is fatal. |
| 293 |
|
|
| 294 |
|
if (!have_target_temp) { |
| 295 |
|
sprintf( painCave.errMsg, |
| 296 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 296 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 297 |
|
" without a targetTemp!\n" |
| 298 |
|
); |
| 299 |
|
painCave.isFatal = 1; |
| 303 |
|
|
| 304 |
|
if (!have_target_pressure) { |
| 305 |
|
sprintf( painCave.errMsg, |
| 306 |
< |
"NPTi error: You can't use the NPTi integrator\n" |
| 306 |
> |
"NPTf error: You can't use the NPTf integrator\n" |
| 307 |
|
" without a targetPressure!\n" |
| 308 |
|
); |
| 309 |
|
painCave.isFatal = 1; |
| 315 |
|
|
| 316 |
|
if (!have_tau_thermostat) { |
| 317 |
|
sprintf( painCave.errMsg, |
| 318 |
< |
"NPTi error: If you use the NPTi\n" |
| 318 |
> |
"NPTf error: If you use the NPTf\n" |
| 319 |
|
" integrator, you must set tauThermostat.\n"); |
| 320 |
|
painCave.isFatal = 1; |
| 321 |
|
simError(); |
| 326 |
|
|
| 327 |
|
if (!have_tau_barostat) { |
| 328 |
|
sprintf( painCave.errMsg, |
| 329 |
< |
"NPTi error: If you use the NPTi\n" |
| 329 |
> |
"NPTf error: If you use the NPTf\n" |
| 330 |
|
" integrator, you must set tauBarostat.\n"); |
| 331 |
|
painCave.isFatal = 1; |
| 332 |
|
simError(); |