| 1 | gezelter | 617 | #include <cmath> | 
| 2 | gezelter | 576 | #include "Atom.hpp" | 
| 3 |  |  | #include "SRI.hpp" | 
| 4 |  |  | #include "AbstractClasses.hpp" | 
| 5 |  |  | #include "SimInfo.hpp" | 
| 6 |  |  | #include "ForceFields.hpp" | 
| 7 |  |  | #include "Thermo.hpp" | 
| 8 |  |  | #include "ReadWrite.hpp" | 
| 9 |  |  | #include "Integrator.hpp" | 
| 10 |  |  | #include "simError.h" | 
| 11 |  |  |  | 
| 12 | gezelter | 772 | #ifdef IS_MPI | 
| 13 |  |  | #include "mpiSimulation.hpp" | 
| 14 |  |  | #endif | 
| 15 | gezelter | 576 |  | 
| 16 | gezelter | 578 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 17 | gezelter | 576 | // modification of the Hoover algorithm: | 
| 18 |  |  | // | 
| 19 |  |  | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 20 |  |  | //       Molec. Phys., 78, 533. | 
| 21 |  |  | // | 
| 22 |  |  | //           and | 
| 23 |  |  | // | 
| 24 |  |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 25 |  |  |  | 
| 26 | tim | 645 | template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 27 |  |  | T( theInfo, the_ff ) | 
| 28 | gezelter | 576 | { | 
| 29 | gezelter | 588 | int i, j; | 
| 30 | gezelter | 576 | chi = 0.0; | 
| 31 | tim | 763 | integralOfChidt = 0.0; | 
| 32 | gezelter | 588 |  | 
| 33 |  |  | for(i = 0; i < 3; i++) | 
| 34 | mmeineke | 590 | for (j = 0; j < 3; j++) | 
| 35 | gezelter | 588 | eta[i][j] = 0.0; | 
| 36 |  |  |  | 
| 37 | gezelter | 576 | have_tau_thermostat = 0; | 
| 38 |  |  | have_tau_barostat = 0; | 
| 39 |  |  | have_target_temp = 0; | 
| 40 |  |  | have_target_pressure = 0; | 
| 41 | tim | 767 |  | 
| 42 |  |  | have_chi_tolerance = 0; | 
| 43 |  |  | have_eta_tolerance = 0; | 
| 44 |  |  | have_pos_iter_tolerance = 0; | 
| 45 |  |  |  | 
| 46 |  |  | oldPos = new double[3*nAtoms]; | 
| 47 |  |  | oldVel = new double[3*nAtoms]; | 
| 48 |  |  | oldJi = new double[3*nAtoms]; | 
| 49 |  |  | #ifdef IS_MPI | 
| 50 |  |  | Nparticles = mpiSim->getTotAtoms(); | 
| 51 |  |  | #else | 
| 52 |  |  | Nparticles = theInfo->n_atoms; | 
| 53 |  |  | #endif | 
| 54 | gezelter | 772 |  | 
| 55 | gezelter | 576 | } | 
| 56 |  |  |  | 
| 57 | tim | 767 | template<typename T> NPTf<T>::~NPTf() { | 
| 58 |  |  | delete[] oldPos; | 
| 59 |  |  | delete[] oldVel; | 
| 60 |  |  | delete[] oldJi; | 
| 61 |  |  | } | 
| 62 |  |  |  | 
| 63 | tim | 645 | template<typename T> void NPTf<T>::moveA() { | 
| 64 | gezelter | 772 |  | 
| 65 |  |  | // new version of NPTf | 
| 66 | gezelter | 600 | int i, j, k; | 
| 67 | gezelter | 576 | DirectionalAtom* dAtom; | 
| 68 | gezelter | 600 | double Tb[3], ji[3]; | 
| 69 |  |  | double A[3][3], I[3][3]; | 
| 70 |  |  | double angle, mass; | 
| 71 |  |  | double vel[3], pos[3], frc[3]; | 
| 72 |  |  |  | 
| 73 |  |  | double rj[3]; | 
| 74 |  |  | double instaTemp, instaPress, instaVol; | 
| 75 |  |  | double tt2, tb2; | 
| 76 |  |  | double sc[3]; | 
| 77 |  |  | double eta2ij; | 
| 78 | gezelter | 588 | double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3]; | 
| 79 | gezelter | 617 | double bigScale, smallScale, offDiagMax; | 
| 80 | tim | 767 | double COM[3]; | 
| 81 | gezelter | 576 |  | 
| 82 |  |  | tt2 = tauThermostat * tauThermostat; | 
| 83 |  |  | tb2 = tauBarostat * tauBarostat; | 
| 84 |  |  |  | 
| 85 |  |  | instaTemp = tStats->getTemperature(); | 
| 86 | gezelter | 577 | tStats->getPressureTensor(press); | 
| 87 | gezelter | 576 | instaVol = tStats->getVolume(); | 
| 88 |  |  |  | 
| 89 | tim | 767 | tStats->getCOM(COM); | 
| 90 | gezelter | 588 |  | 
| 91 | tim | 767 | //calculate scale factor of veloity | 
| 92 | gezelter | 588 | for (i = 0; i < 3; i++ ) { | 
| 93 |  |  | for (j = 0; j < 3; j++ ) { | 
| 94 | tim | 767 | vScale[i][j] = eta[i][j]; | 
| 95 |  |  |  | 
| 96 | gezelter | 588 | if (i == j) { | 
| 97 | tim | 767 | vScale[i][j] += chi; | 
| 98 |  |  | } | 
| 99 | gezelter | 588 | } | 
| 100 |  |  | } | 
| 101 | tim | 767 |  | 
| 102 |  |  | //evolve velocity half step | 
| 103 | gezelter | 576 | for( i=0; i<nAtoms; i++ ){ | 
| 104 | gezelter | 600 |  | 
| 105 |  |  | atoms[i]->getVel( vel ); | 
| 106 |  |  | atoms[i]->getFrc( frc ); | 
| 107 |  |  |  | 
| 108 |  |  | mass = atoms[i]->getMass(); | 
| 109 | gezelter | 576 |  | 
| 110 | gezelter | 600 | info->matVecMul3( vScale, vel, sc ); | 
| 111 | tim | 767 |  | 
| 112 |  |  | for (j=0; j < 3; j++) { | 
| 113 | gezelter | 772 | // velocity half step | 
| 114 | gezelter | 600 | vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 115 |  |  | } | 
| 116 | gezelter | 576 |  | 
| 117 | gezelter | 600 | atoms[i]->setVel( vel ); | 
| 118 | gezelter | 576 |  | 
| 119 |  |  | if( atoms[i]->isDirectional() ){ | 
| 120 |  |  |  | 
| 121 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 122 | tim | 767 |  | 
| 123 | gezelter | 576 | // get and convert the torque to body frame | 
| 124 |  |  |  | 
| 125 | gezelter | 600 | dAtom->getTrq( Tb ); | 
| 126 | gezelter | 576 | dAtom->lab2Body( Tb ); | 
| 127 |  |  |  | 
| 128 |  |  | // get the angular momentum, and propagate a half step | 
| 129 |  |  |  | 
| 130 | gezelter | 600 | dAtom->getJ( ji ); | 
| 131 |  |  |  | 
| 132 |  |  | for (j=0; j < 3; j++) | 
| 133 |  |  | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 134 | gezelter | 576 |  | 
| 135 |  |  | // use the angular velocities to propagate the rotation matrix a | 
| 136 |  |  | // full time step | 
| 137 | gezelter | 600 |  | 
| 138 |  |  | dAtom->getA(A); | 
| 139 |  |  | dAtom->getI(I); | 
| 140 |  |  |  | 
| 141 | gezelter | 576 | // rotate about the x-axis | 
| 142 | gezelter | 600 | angle = dt2 * ji[0] / I[0][0]; | 
| 143 |  |  | this->rotate( 1, 2, angle, ji, A ); | 
| 144 |  |  |  | 
| 145 | gezelter | 576 | // rotate about the y-axis | 
| 146 | gezelter | 600 | angle = dt2 * ji[1] / I[1][1]; | 
| 147 |  |  | this->rotate( 2, 0, angle, ji, A ); | 
| 148 | gezelter | 576 |  | 
| 149 |  |  | // rotate about the z-axis | 
| 150 | gezelter | 600 | angle = dt * ji[2] / I[2][2]; | 
| 151 |  |  | this->rotate( 0, 1, angle, ji, A); | 
| 152 | gezelter | 576 |  | 
| 153 |  |  | // rotate about the y-axis | 
| 154 | gezelter | 600 | angle = dt2 * ji[1] / I[1][1]; | 
| 155 |  |  | this->rotate( 2, 0, angle, ji, A ); | 
| 156 | gezelter | 576 |  | 
| 157 |  |  | // rotate about the x-axis | 
| 158 | gezelter | 600 | angle = dt2 * ji[0] / I[0][0]; | 
| 159 |  |  | this->rotate( 1, 2, angle, ji, A ); | 
| 160 | gezelter | 576 |  | 
| 161 | gezelter | 600 | dAtom->setJ( ji ); | 
| 162 |  |  | dAtom->setA( A  ); | 
| 163 | tim | 767 | } | 
| 164 | gezelter | 576 | } | 
| 165 | tim | 767 |  | 
| 166 |  |  | // advance chi half step | 
| 167 |  |  | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 168 |  |  |  | 
| 169 | gezelter | 772 | // calculate the integral of chidt | 
| 170 | tim | 767 | integralOfChidt += dt2*chi; | 
| 171 |  |  |  | 
| 172 | gezelter | 772 | // advance eta half step | 
| 173 |  |  |  | 
| 174 | tim | 767 | for(i = 0; i < 3; i ++) | 
| 175 |  |  | for(j = 0; j < 3; j++){ | 
| 176 |  |  | if( i == j) | 
| 177 |  |  | eta[i][j] += dt2 *  instaVol * | 
| 178 |  |  | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 179 |  |  | else | 
| 180 | gezelter | 772 | eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 181 | tim | 767 | } | 
| 182 |  |  |  | 
| 183 |  |  | //save the old positions | 
| 184 |  |  | for(i = 0; i < nAtoms; i++){ | 
| 185 |  |  | atoms[i]->getPos(pos); | 
| 186 |  |  | for(j = 0; j < 3; j++) | 
| 187 |  |  | oldPos[i*3 + j] = pos[j]; | 
| 188 |  |  | } | 
| 189 | gezelter | 600 |  | 
| 190 | tim | 767 | //the first estimation of r(t+dt) is equal to  r(t) | 
| 191 |  |  |  | 
| 192 |  |  | for(k = 0; k < 4; k ++){ | 
| 193 |  |  |  | 
| 194 |  |  | for(i =0 ; i < nAtoms; i++){ | 
| 195 |  |  |  | 
| 196 |  |  | atoms[i]->getVel(vel); | 
| 197 |  |  | atoms[i]->getPos(pos); | 
| 198 |  |  |  | 
| 199 |  |  | for(j = 0; j < 3; j++) | 
| 200 |  |  | rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j]; | 
| 201 |  |  |  | 
| 202 |  |  | info->matVecMul3( eta, rj, sc ); | 
| 203 |  |  |  | 
| 204 |  |  | for(j = 0; j < 3; j++) | 
| 205 |  |  | pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]); | 
| 206 |  |  |  | 
| 207 |  |  | atoms[i]->setPos( pos ); | 
| 208 |  |  |  | 
| 209 |  |  | } | 
| 210 |  |  |  | 
| 211 | gezelter | 772 | if (nConstrained) { | 
| 212 |  |  | constrainA(); | 
| 213 |  |  | } | 
| 214 | tim | 767 | } | 
| 215 |  |  |  | 
| 216 |  |  |  | 
| 217 | gezelter | 577 | // Scale the box after all the positions have been moved: | 
| 218 | gezelter | 600 |  | 
| 219 | gezelter | 578 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 220 |  |  | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 221 | gezelter | 600 |  | 
| 222 | gezelter | 617 | bigScale = 1.0; | 
| 223 |  |  | smallScale = 1.0; | 
| 224 |  |  | offDiagMax = 0.0; | 
| 225 | gezelter | 600 |  | 
| 226 | gezelter | 578 | for(i=0; i<3; i++){ | 
| 227 |  |  | for(j=0; j<3; j++){ | 
| 228 | gezelter | 600 |  | 
| 229 | gezelter | 588 | // Calculate the matrix Product of the eta array (we only need | 
| 230 |  |  | // the ij element right now): | 
| 231 | gezelter | 600 |  | 
| 232 | gezelter | 588 | eta2ij = 0.0; | 
| 233 | gezelter | 578 | for(k=0; k<3; k++){ | 
| 234 | gezelter | 588 | eta2ij += eta[i][k] * eta[k][j]; | 
| 235 | gezelter | 578 | } | 
| 236 | gezelter | 588 |  | 
| 237 |  |  | scaleMat[i][j] = 0.0; | 
| 238 |  |  | // identity matrix (see above): | 
| 239 |  |  | if (i == j) scaleMat[i][j] = 1.0; | 
| 240 |  |  | // Taylor expansion for the exponential truncated at second order: | 
| 241 |  |  | scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij; | 
| 242 | gezelter | 617 |  | 
| 243 |  |  | if (i != j) | 
| 244 |  |  | if (fabs(scaleMat[i][j]) > offDiagMax) | 
| 245 |  |  | offDiagMax = fabs(scaleMat[i][j]); | 
| 246 | gezelter | 578 | } | 
| 247 | gezelter | 617 |  | 
| 248 |  |  | if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; | 
| 249 |  |  | if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; | 
| 250 | gezelter | 578 | } | 
| 251 | gezelter | 600 |  | 
| 252 | gezelter | 617 | if ((bigScale > 1.1) || (smallScale < 0.9)) { | 
| 253 |  |  | sprintf( painCave.errMsg, | 
| 254 |  |  | "NPTf error: Attempting a Box scaling of more than 10 percent.\n" | 
| 255 |  |  | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 256 |  |  | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 257 |  |  | "            [%lf\t%lf\t%lf]\n" | 
| 258 |  |  | "            [%lf\t%lf\t%lf]\n", | 
| 259 |  |  | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 260 |  |  | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 261 |  |  | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 262 |  |  | painCave.isFatal = 1; | 
| 263 |  |  | simError(); | 
| 264 |  |  | } else if (offDiagMax > 0.1) { | 
| 265 |  |  | sprintf( painCave.errMsg, | 
| 266 |  |  | "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n" | 
| 267 |  |  | " Check your tauBarostat, as it is probably too small!\n\n" | 
| 268 |  |  | " scaleMat = [%lf\t%lf\t%lf]\n" | 
| 269 |  |  | "            [%lf\t%lf\t%lf]\n" | 
| 270 |  |  | "            [%lf\t%lf\t%lf]\n", | 
| 271 |  |  | scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], | 
| 272 |  |  | scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], | 
| 273 |  |  | scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]); | 
| 274 |  |  | painCave.isFatal = 1; | 
| 275 |  |  | simError(); | 
| 276 |  |  | } else { | 
| 277 |  |  | info->getBoxM(hm); | 
| 278 |  |  | info->matMul3(hm, scaleMat, hmnew); | 
| 279 |  |  | info->setBoxM(hmnew); | 
| 280 |  |  | } | 
| 281 | gezelter | 577 |  | 
| 282 | gezelter | 576 | } | 
| 283 |  |  |  | 
| 284 | tim | 645 | template<typename T> void NPTf<T>::moveB( void ){ | 
| 285 | gezelter | 600 |  | 
| 286 | gezelter | 772 | //new version of NPTf | 
| 287 | tim | 767 | int i, j, k; | 
| 288 | gezelter | 576 | DirectionalAtom* dAtom; | 
| 289 | gezelter | 600 | double Tb[3], ji[3]; | 
| 290 | gezelter | 772 | double vel[3], myVel[3], frc[3]; | 
| 291 | gezelter | 600 | double mass; | 
| 292 |  |  |  | 
| 293 |  |  | double instaTemp, instaPress, instaVol; | 
| 294 | gezelter | 576 | double tt2, tb2; | 
| 295 | gezelter | 600 | double sc[3]; | 
| 296 | gezelter | 588 | double press[3][3], vScale[3][3]; | 
| 297 | tim | 767 | double oldChi, prevChi; | 
| 298 | gezelter | 772 | double oldEta[3][3], prevEta[3][3], diffEta; | 
| 299 | gezelter | 576 |  | 
| 300 |  |  | tt2 = tauThermostat * tauThermostat; | 
| 301 |  |  | tb2 = tauBarostat * tauBarostat; | 
| 302 |  |  |  | 
| 303 | tim | 767 | // Set things up for the iteration: | 
| 304 |  |  |  | 
| 305 |  |  | oldChi = chi; | 
| 306 | gezelter | 578 |  | 
| 307 | tim | 767 | for(i = 0; i < 3; i++) | 
| 308 |  |  | for(j = 0; j < 3; j++) | 
| 309 |  |  | oldEta[i][j] = eta[i][j]; | 
| 310 | gezelter | 578 |  | 
| 311 | tim | 767 | for( i=0; i<nAtoms; i++ ){ | 
| 312 | gezelter | 588 |  | 
| 313 | tim | 767 | atoms[i]->getVel( vel ); | 
| 314 | gezelter | 588 |  | 
| 315 | tim | 767 | for (j=0; j < 3; j++) | 
| 316 |  |  | oldVel[3*i + j]  = vel[j]; | 
| 317 |  |  |  | 
| 318 |  |  | if( atoms[i]->isDirectional() ){ | 
| 319 |  |  |  | 
| 320 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 321 |  |  |  | 
| 322 |  |  | dAtom->getJ( ji ); | 
| 323 |  |  |  | 
| 324 |  |  | for (j=0; j < 3; j++) | 
| 325 |  |  | oldJi[3*i + j] = ji[j]; | 
| 326 |  |  |  | 
| 327 | gezelter | 588 | } | 
| 328 |  |  | } | 
| 329 |  |  |  | 
| 330 | tim | 767 | // do the iteration: | 
| 331 | gezelter | 578 |  | 
| 332 | tim | 767 | instaVol = tStats->getVolume(); | 
| 333 |  |  |  | 
| 334 |  |  | for (k=0; k < 4; k++) { | 
| 335 | gezelter | 600 |  | 
| 336 | tim | 767 | instaTemp = tStats->getTemperature(); | 
| 337 |  |  | tStats->getPressureTensor(press); | 
| 338 | gezelter | 578 |  | 
| 339 | tim | 767 | // evolve chi another half step using the temperature at t + dt/2 | 
| 340 |  |  |  | 
| 341 |  |  | prevChi = chi; | 
| 342 |  |  | chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 343 | gezelter | 578 |  | 
| 344 | tim | 767 | for(i = 0; i < 3; i++) | 
| 345 |  |  | for(j = 0; j < 3; j++) | 
| 346 | gezelter | 772 | prevEta[i][j] = eta[i][j]; | 
| 347 | gezelter | 600 |  | 
| 348 | tim | 767 | //advance eta half step and calculate scale factor for velocity | 
| 349 | gezelter | 772 |  | 
| 350 | tim | 767 | for(i = 0; i < 3; i ++) | 
| 351 |  |  | for(j = 0; j < 3; j++){ | 
| 352 | gezelter | 772 | if( i == j) { | 
| 353 | tim | 767 | eta[i][j] = oldEta[i][j] + dt2 *  instaVol * | 
| 354 | gezelter | 772 | (press[i][j] - targetPressure/p_convert) / (NkBT*tb2); | 
| 355 | tim | 767 | vScale[i][j] = eta[i][j] + chi; | 
| 356 | gezelter | 772 | } else { | 
| 357 | tim | 767 | eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); | 
| 358 |  |  | vScale[i][j] = eta[i][j]; | 
| 359 |  |  | } | 
| 360 | gezelter | 772 | } | 
| 361 |  |  |  | 
| 362 | tim | 767 | for( i=0; i<nAtoms; i++ ){ | 
| 363 |  |  |  | 
| 364 |  |  | atoms[i]->getFrc( frc ); | 
| 365 |  |  | atoms[i]->getVel(vel); | 
| 366 | gezelter | 576 |  | 
| 367 | tim | 767 | mass = atoms[i]->getMass(); | 
| 368 | gezelter | 772 |  | 
| 369 |  |  | for (j = 0; j < 3; j++) | 
| 370 |  |  | myVel[j] = oldVel[3*i + j]; | 
| 371 | gezelter | 576 |  | 
| 372 | gezelter | 772 | info->matVecMul3( vScale, myVel, sc ); | 
| 373 |  |  |  | 
| 374 |  |  | // velocity half step | 
| 375 | tim | 767 | for (j=0; j < 3; j++) { | 
| 376 |  |  | // velocity half step  (use chi from previous step here): | 
| 377 |  |  | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]); | 
| 378 |  |  | } | 
| 379 | gezelter | 576 |  | 
| 380 | tim | 767 | atoms[i]->setVel( vel ); | 
| 381 | gezelter | 576 |  | 
| 382 | tim | 767 | if( atoms[i]->isDirectional() ){ | 
| 383 |  |  |  | 
| 384 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 385 |  |  |  | 
| 386 |  |  | // get and convert the torque to body frame | 
| 387 |  |  |  | 
| 388 |  |  | dAtom->getTrq( Tb ); | 
| 389 |  |  | dAtom->lab2Body( Tb ); | 
| 390 |  |  |  | 
| 391 |  |  | for (j=0; j < 3; j++) | 
| 392 |  |  | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); | 
| 393 | gezelter | 576 |  | 
| 394 | tim | 767 | dAtom->setJ( ji ); | 
| 395 |  |  | } | 
| 396 |  |  | } | 
| 397 | gezelter | 600 |  | 
| 398 | gezelter | 772 | if (nConstrained) { | 
| 399 |  |  | constrainB(); | 
| 400 |  |  | } | 
| 401 | tim | 767 |  | 
| 402 |  |  | diffEta = 0; | 
| 403 |  |  | for(i = 0; i < 3; i++) | 
| 404 | gezelter | 772 | diffEta += pow(prevEta[i][i] - eta[i][i], 2); | 
| 405 | tim | 767 |  | 
| 406 |  |  | if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance) | 
| 407 |  |  | break; | 
| 408 | gezelter | 576 | } | 
| 409 | tim | 767 |  | 
| 410 | gezelter | 772 | //calculate integral of chidt | 
| 411 | tim | 767 | integralOfChidt += dt2*chi; | 
| 412 |  |  |  | 
| 413 | gezelter | 576 | } | 
| 414 |  |  |  | 
| 415 | mmeineke | 746 | template<typename T> void NPTf<T>::resetIntegrator() { | 
| 416 |  |  | int i,j; | 
| 417 |  |  |  | 
| 418 |  |  | chi = 0.0; | 
| 419 |  |  |  | 
| 420 |  |  | for(i = 0; i < 3; i++) | 
| 421 |  |  | for (j = 0; j < 3; j++) | 
| 422 |  |  | eta[i][j] = 0.0; | 
| 423 |  |  |  | 
| 424 |  |  | } | 
| 425 |  |  |  | 
| 426 | tim | 645 | template<typename T> int NPTf<T>::readyCheck() { | 
| 427 | tim | 658 |  | 
| 428 |  |  | //check parent's readyCheck() first | 
| 429 |  |  | if (T::readyCheck() == -1) | 
| 430 |  |  | return -1; | 
| 431 | gezelter | 576 |  | 
| 432 |  |  | // First check to see if we have a target temperature. | 
| 433 |  |  | // Not having one is fatal. | 
| 434 |  |  |  | 
| 435 |  |  | if (!have_target_temp) { | 
| 436 |  |  | sprintf( painCave.errMsg, | 
| 437 | gezelter | 580 | "NPTf error: You can't use the NPTf integrator\n" | 
| 438 | gezelter | 576 | "   without a targetTemp!\n" | 
| 439 |  |  | ); | 
| 440 |  |  | painCave.isFatal = 1; | 
| 441 |  |  | simError(); | 
| 442 |  |  | return -1; | 
| 443 |  |  | } | 
| 444 |  |  |  | 
| 445 |  |  | if (!have_target_pressure) { | 
| 446 |  |  | sprintf( painCave.errMsg, | 
| 447 | gezelter | 580 | "NPTf error: You can't use the NPTf integrator\n" | 
| 448 | gezelter | 576 | "   without a targetPressure!\n" | 
| 449 |  |  | ); | 
| 450 |  |  | painCave.isFatal = 1; | 
| 451 |  |  | simError(); | 
| 452 |  |  | return -1; | 
| 453 |  |  | } | 
| 454 |  |  |  | 
| 455 |  |  | // We must set tauThermostat. | 
| 456 |  |  |  | 
| 457 |  |  | if (!have_tau_thermostat) { | 
| 458 |  |  | sprintf( painCave.errMsg, | 
| 459 | gezelter | 580 | "NPTf error: If you use the NPTf\n" | 
| 460 | gezelter | 576 | "   integrator, you must set tauThermostat.\n"); | 
| 461 |  |  | painCave.isFatal = 1; | 
| 462 |  |  | simError(); | 
| 463 |  |  | return -1; | 
| 464 |  |  | } | 
| 465 |  |  |  | 
| 466 |  |  | // We must set tauBarostat. | 
| 467 |  |  |  | 
| 468 |  |  | if (!have_tau_barostat) { | 
| 469 |  |  | sprintf( painCave.errMsg, | 
| 470 | gezelter | 580 | "NPTf error: If you use the NPTf\n" | 
| 471 | gezelter | 576 | "   integrator, you must set tauBarostat.\n"); | 
| 472 |  |  | painCave.isFatal = 1; | 
| 473 |  |  | simError(); | 
| 474 |  |  | return -1; | 
| 475 |  |  | } | 
| 476 |  |  |  | 
| 477 | gezelter | 772 |  | 
| 478 |  |  | // We need NkBT a lot, so just set it here: This is the RAW number | 
| 479 |  |  | // of particles, so no subtraction or addition of constraints or | 
| 480 |  |  | // orientational degrees of freedom: | 
| 481 |  |  |  | 
| 482 | tim | 767 | NkBT = (double)Nparticles * kB * targetTemp; | 
| 483 | gezelter | 772 |  | 
| 484 |  |  | // fkBT is used because the thermostat operates on more degrees of freedom | 
| 485 |  |  | // than the barostat (when there are particles with orientational degrees | 
| 486 |  |  | // of freedom).  ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons | 
| 487 |  |  |  | 
| 488 | tim | 767 | fkBT = (double)info->ndf * kB * targetTemp; | 
| 489 | gezelter | 576 |  | 
| 490 |  |  | return 1; | 
| 491 |  |  | } | 
| 492 | tim | 763 |  | 
| 493 |  |  | template<typename T> double NPTf<T>::getConservedQuantity(void){ | 
| 494 |  |  |  | 
| 495 |  |  | double conservedQuantity; | 
| 496 | gezelter | 772 | double Energy; | 
| 497 |  |  | double thermostat_kinetic; | 
| 498 |  |  | double thermostat_potential; | 
| 499 |  |  | double barostat_kinetic; | 
| 500 |  |  | double barostat_potential; | 
| 501 |  |  | double trEta; | 
| 502 |  |  | double a[3][3], b[3][3]; | 
| 503 | tim | 763 |  | 
| 504 | gezelter | 772 | Energy = tStats->getTotalE(); | 
| 505 | tim | 763 |  | 
| 506 | gezelter | 772 | thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / | 
| 507 |  |  | (2.0 * eConvert); | 
| 508 | tim | 763 |  | 
| 509 | gezelter | 772 | thermostat_potential = fkBT* integralOfChidt / eConvert; | 
| 510 | tim | 763 |  | 
| 511 | gezelter | 772 | info->transposeMat3(eta, a); | 
| 512 |  |  | info->matMul3(a, eta, b); | 
| 513 |  |  | trEta = info->matTrace3(b); | 
| 514 | tim | 767 |  | 
| 515 | gezelter | 772 | barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta / | 
| 516 |  |  | (2.0 * eConvert); | 
| 517 |  |  |  | 
| 518 |  |  | barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / | 
| 519 |  |  | eConvert; | 
| 520 | tim | 767 |  | 
| 521 | gezelter | 772 | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + | 
| 522 |  |  | barostat_kinetic + barostat_potential; | 
| 523 |  |  |  | 
| 524 | tim | 767 | cout.width(8); | 
| 525 |  |  | cout.precision(8); | 
| 526 |  |  |  | 
| 527 | gezelter | 772 | cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << | 
| 528 |  |  | "\t" << thermostat_potential << "\t" << barostat_kinetic << | 
| 529 |  |  | "\t" << barostat_potential << "\t" << conservedQuantity << endl; | 
| 530 |  |  |  | 
| 531 |  |  | return conservedQuantity; | 
| 532 | tim | 763 | } |