| 1 | gezelter | 576 | #include "Atom.hpp" | 
| 2 |  |  | #include "SRI.hpp" | 
| 3 |  |  | #include "AbstractClasses.hpp" | 
| 4 |  |  | #include "SimInfo.hpp" | 
| 5 |  |  | #include "ForceFields.hpp" | 
| 6 |  |  | #include "Thermo.hpp" | 
| 7 |  |  | #include "ReadWrite.hpp" | 
| 8 |  |  | #include "Integrator.hpp" | 
| 9 |  |  | #include "simError.h" | 
| 10 |  |  |  | 
| 11 |  |  |  | 
| 12 | gezelter | 578 | // Basic non-isotropic thermostating and barostating via the Melchionna | 
| 13 | gezelter | 576 | // modification of the Hoover algorithm: | 
| 14 |  |  | // | 
| 15 |  |  | //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, | 
| 16 |  |  | //       Molec. Phys., 78, 533. | 
| 17 |  |  | // | 
| 18 |  |  | //           and | 
| 19 |  |  | // | 
| 20 |  |  | //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. | 
| 21 |  |  |  | 
| 22 | gezelter | 577 | NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff): | 
| 23 | gezelter | 576 | Integrator( theInfo, the_ff ) | 
| 24 |  |  | { | 
| 25 |  |  | int i; | 
| 26 |  |  | chi = 0.0; | 
| 27 |  |  | for(i = 0; i < 9; i++) eta[i] = 0.0; | 
| 28 |  |  | have_tau_thermostat = 0; | 
| 29 |  |  | have_tau_barostat = 0; | 
| 30 |  |  | have_target_temp = 0; | 
| 31 |  |  | have_target_pressure = 0; | 
| 32 |  |  | } | 
| 33 |  |  |  | 
| 34 | gezelter | 577 | void NPTf::moveA() { | 
| 35 | gezelter | 576 |  | 
| 36 |  |  | int i,j,k; | 
| 37 |  |  | int atomIndex, aMatIndex; | 
| 38 |  |  | DirectionalAtom* dAtom; | 
| 39 |  |  | double Tb[3]; | 
| 40 |  |  | double ji[3]; | 
| 41 |  |  | double rj[3]; | 
| 42 | gezelter | 578 | double ident[3][3], eta1[3][3], eta2[3][3], hmnew[3][3]; | 
| 43 |  |  | double hm[9]; | 
| 44 |  |  | double vx, vy, vz; | 
| 45 |  |  | double scx, scy, scz; | 
| 46 | gezelter | 576 | double instaTemp, instaPress, instaVol; | 
| 47 |  |  | double tt2, tb2; | 
| 48 |  |  | double angle; | 
| 49 | gezelter | 577 | double press[9]; | 
| 50 |  |  | const double p_convert = 1.63882576e8; | 
| 51 | gezelter | 576 |  | 
| 52 |  |  | tt2 = tauThermostat * tauThermostat; | 
| 53 |  |  | tb2 = tauBarostat * tauBarostat; | 
| 54 |  |  |  | 
| 55 |  |  | instaTemp = tStats->getTemperature(); | 
| 56 | gezelter | 577 | tStats->getPressureTensor(press); | 
| 57 |  |  |  | 
| 58 |  |  | for (i=0; i < 9; i++) press[i] *= p_convert; | 
| 59 |  |  |  | 
| 60 | gezelter | 576 | instaVol = tStats->getVolume(); | 
| 61 |  |  |  | 
| 62 |  |  | // first evolve chi a half step | 
| 63 |  |  |  | 
| 64 |  |  | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 65 |  |  |  | 
| 66 | gezelter | 577 | eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); | 
| 67 |  |  | eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); | 
| 68 |  |  | eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); | 
| 69 |  |  | eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); | 
| 70 |  |  | eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); | 
| 71 |  |  | eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); | 
| 72 |  |  | eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); | 
| 73 |  |  | eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); | 
| 74 |  |  | eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); | 
| 75 |  |  |  | 
| 76 | gezelter | 576 | for( i=0; i<nAtoms; i++ ){ | 
| 77 |  |  | atomIndex = i * 3; | 
| 78 |  |  | aMatIndex = i * 9; | 
| 79 |  |  |  | 
| 80 |  |  | // velocity half step | 
| 81 | gezelter | 577 |  | 
| 82 |  |  | vx = vel[atomIndex]; | 
| 83 |  |  | vy = vel[atomIndex+1]; | 
| 84 |  |  | vz = vel[atomIndex+2]; | 
| 85 |  |  |  | 
| 86 |  |  | scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; | 
| 87 |  |  | scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; | 
| 88 |  |  | scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; | 
| 89 |  |  |  | 
| 90 |  |  | vx += dt2 * ((frc[atomIndex]  /atoms[i]->getMass())*eConvert - scx); | 
| 91 |  |  | vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); | 
| 92 |  |  | vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); | 
| 93 | gezelter | 576 |  | 
| 94 | gezelter | 577 | vel[atomIndex] = vx; | 
| 95 |  |  | vel[atomIndex+1] = vy; | 
| 96 |  |  | vel[atomIndex+2] = vz; | 
| 97 |  |  |  | 
| 98 | gezelter | 576 | // position whole step | 
| 99 |  |  |  | 
| 100 | gezelter | 577 | rj[0] = pos[atomIndex]; | 
| 101 |  |  | rj[1] = pos[atomIndex+1]; | 
| 102 |  |  | rj[2] = pos[atomIndex+2]; | 
| 103 | gezelter | 576 |  | 
| 104 | gezelter | 577 | info->wrapVector(rj); | 
| 105 | gezelter | 576 |  | 
| 106 | gezelter | 577 | scx = eta[0]*rj[0] + eta[1]*rj[1] + eta[2]*rj[2]; | 
| 107 |  |  | scy = eta[3]*rj[0] + eta[4]*rj[1] + eta[5]*rj[2]; | 
| 108 |  |  | scz = eta[6]*rj[0] + eta[7]*rj[1] + eta[8]*rj[2]; | 
| 109 | gezelter | 576 |  | 
| 110 | gezelter | 577 | pos[atomIndex] += dt * (vel[atomIndex] + scx); | 
| 111 |  |  | pos[atomIndex+1] += dt * (vel[atomIndex+1] + scy); | 
| 112 |  |  | pos[atomIndex+2] += dt * (vel[atomIndex+2] + scz); | 
| 113 | gezelter | 576 |  | 
| 114 |  |  | if( atoms[i]->isDirectional() ){ | 
| 115 |  |  |  | 
| 116 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 117 |  |  |  | 
| 118 |  |  | // get and convert the torque to body frame | 
| 119 |  |  |  | 
| 120 |  |  | Tb[0] = dAtom->getTx(); | 
| 121 |  |  | Tb[1] = dAtom->getTy(); | 
| 122 |  |  | Tb[2] = dAtom->getTz(); | 
| 123 |  |  |  | 
| 124 |  |  | dAtom->lab2Body( Tb ); | 
| 125 |  |  |  | 
| 126 |  |  | // get the angular momentum, and propagate a half step | 
| 127 |  |  |  | 
| 128 |  |  | ji[0] = dAtom->getJx(); | 
| 129 |  |  | ji[1] = dAtom->getJy(); | 
| 130 |  |  | ji[2] = dAtom->getJz(); | 
| 131 |  |  |  | 
| 132 |  |  | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 133 |  |  | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 134 |  |  | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 135 |  |  |  | 
| 136 |  |  | // use the angular velocities to propagate the rotation matrix a | 
| 137 |  |  | // full time step | 
| 138 |  |  |  | 
| 139 |  |  | // rotate about the x-axis | 
| 140 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 141 |  |  | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 142 |  |  |  | 
| 143 |  |  | // rotate about the y-axis | 
| 144 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 145 |  |  | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 146 |  |  |  | 
| 147 |  |  | // rotate about the z-axis | 
| 148 |  |  | angle = dt * ji[2] / dAtom->getIzz(); | 
| 149 |  |  | this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); | 
| 150 |  |  |  | 
| 151 |  |  | // rotate about the y-axis | 
| 152 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 153 |  |  | this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); | 
| 154 |  |  |  | 
| 155 |  |  | // rotate about the x-axis | 
| 156 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 157 |  |  | this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); | 
| 158 |  |  |  | 
| 159 |  |  | dAtom->setJx( ji[0] ); | 
| 160 |  |  | dAtom->setJy( ji[1] ); | 
| 161 |  |  | dAtom->setJz( ji[2] ); | 
| 162 |  |  | } | 
| 163 |  |  |  | 
| 164 |  |  | } | 
| 165 | gezelter | 577 |  | 
| 166 |  |  | // Scale the box after all the positions have been moved: | 
| 167 |  |  |  | 
| 168 | gezelter | 578 | // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat) | 
| 169 |  |  | //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2) | 
| 170 | gezelter | 577 |  | 
| 171 | gezelter | 578 |  | 
| 172 |  |  | for(i=0; i<3; i++){ | 
| 173 |  |  | for(j=0; j<3; j++){ | 
| 174 |  |  | ident[i][j] = 0.0; | 
| 175 |  |  | eta1[i][j] = eta[3*i+j]; | 
| 176 |  |  | eta2[i][j] = 0.0; | 
| 177 |  |  | for(k=0; k<3; k++){ | 
| 178 |  |  | eta2[i][j] += eta[3*i+k] * eta[3*k+j]; | 
| 179 |  |  | } | 
| 180 |  |  | } | 
| 181 |  |  | ident[i][i] = 1.0; | 
| 182 |  |  | } | 
| 183 |  |  |  | 
| 184 | gezelter | 577 |  | 
| 185 |  |  | info->getBoxM(hm); | 
| 186 | gezelter | 578 |  | 
| 187 |  |  | for(i=0; i<3; i++){ | 
| 188 |  |  | for(j=0; j<3; j++){ | 
| 189 |  |  | hmnew[i][j] = 0.0; | 
| 190 |  |  | for(k=0; k<3; k++){ | 
| 191 |  |  | // remember that hmat has transpose ordering for Fortran compat: | 
| 192 |  |  | hmnew[i][j] += hm[3*k+i] * (ident[k][j] | 
| 193 |  |  | + dt * eta1[k][j] | 
| 194 |  |  | + 0.5 * dt * dt * eta2[k][j]); | 
| 195 |  |  | } | 
| 196 |  |  | } | 
| 197 |  |  | } | 
| 198 | gezelter | 577 |  | 
| 199 | gezelter | 578 | for (i = 0; i < 3; i++) { | 
| 200 |  |  | for (j = 0; j < 3; j++) { | 
| 201 |  |  | // remember that hmat has transpose ordering for Fortran compat: | 
| 202 |  |  | hm[3*j + 1] = hmnew[i][j]; | 
| 203 |  |  | } | 
| 204 |  |  | } | 
| 205 | gezelter | 577 |  | 
| 206 | gezelter | 578 | info->setBoxM(hm); | 
| 207 |  |  |  | 
| 208 | gezelter | 576 | } | 
| 209 |  |  |  | 
| 210 | gezelter | 578 | void NPTf::moveB( void ){ | 
| 211 | gezelter | 576 | int i,j,k; | 
| 212 |  |  | int atomIndex; | 
| 213 |  |  | DirectionalAtom* dAtom; | 
| 214 |  |  | double Tb[3]; | 
| 215 |  |  | double ji[3]; | 
| 216 | gezelter | 578 | double press[9]; | 
| 217 |  |  | double instaTemp, instaVol; | 
| 218 | gezelter | 576 | double tt2, tb2; | 
| 219 | gezelter | 578 | double vx, vy, vz; | 
| 220 |  |  | double scx, scy, scz; | 
| 221 |  |  | const double p_convert = 1.63882576e8; | 
| 222 | gezelter | 576 |  | 
| 223 |  |  | tt2 = tauThermostat * tauThermostat; | 
| 224 |  |  | tb2 = tauBarostat * tauBarostat; | 
| 225 |  |  |  | 
| 226 |  |  | instaTemp = tStats->getTemperature(); | 
| 227 | gezelter | 578 | tStats->getPressureTensor(press); | 
| 228 |  |  |  | 
| 229 |  |  | for (i=0; i < 9; i++) press[i] *= p_convert; | 
| 230 |  |  |  | 
| 231 | gezelter | 576 | instaVol = tStats->getVolume(); | 
| 232 | gezelter | 578 |  | 
| 233 |  |  | // first evolve chi a half step | 
| 234 |  |  |  | 
| 235 | gezelter | 576 | chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; | 
| 236 |  |  |  | 
| 237 | gezelter | 578 | eta[0] += dt2 * instaVol * (press[0] - targetPressure) / (NkBT*tb2); | 
| 238 |  |  | eta[1] += dt2 * instaVol * press[1] / (NkBT*tb2); | 
| 239 |  |  | eta[2] += dt2 * instaVol * press[2] / (NkBT*tb2); | 
| 240 |  |  | eta[3] += dt2 * instaVol * press[3] / (NkBT*tb2); | 
| 241 |  |  | eta[4] += dt2 * instaVol * (press[4] - targetPressure) / (NkBT*tb2); | 
| 242 |  |  | eta[5] += dt2 * instaVol * press[5] / (NkBT*tb2); | 
| 243 |  |  | eta[6] += dt2 * instaVol * press[6] / (NkBT*tb2); | 
| 244 |  |  | eta[7] += dt2 * instaVol * press[7] / (NkBT*tb2); | 
| 245 |  |  | eta[8] += dt2 * instaVol * (press[8] - targetPressure) / (NkBT*tb2); | 
| 246 |  |  |  | 
| 247 | gezelter | 576 | for( i=0; i<nAtoms; i++ ){ | 
| 248 |  |  | atomIndex = i * 3; | 
| 249 | gezelter | 578 |  | 
| 250 | gezelter | 576 | // velocity half step | 
| 251 |  |  |  | 
| 252 | gezelter | 578 | vx = vel[atomIndex]; | 
| 253 |  |  | vy = vel[atomIndex+1]; | 
| 254 |  |  | vz = vel[atomIndex+2]; | 
| 255 |  |  |  | 
| 256 |  |  | scx = (chi + eta[0])*vx + eta[1]*vy + eta[2]*vz; | 
| 257 |  |  | scy = eta[3]*vx + (chi + eta[4])*vy + eta[5]*vz; | 
| 258 |  |  | scz = eta[6]*vx + eta[7]*vy + (chi + eta[8])*vz; | 
| 259 |  |  |  | 
| 260 |  |  | vx += dt2 * ((frc[atomIndex]  /atoms[i]->getMass())*eConvert - scx); | 
| 261 |  |  | vy += dt2 * ((frc[atomIndex+1]/atoms[i]->getMass())*eConvert - scy); | 
| 262 |  |  | vz += dt2 * ((frc[atomIndex+2]/atoms[i]->getMass())*eConvert - scz); | 
| 263 |  |  |  | 
| 264 |  |  | vel[atomIndex] = vx; | 
| 265 |  |  | vel[atomIndex+1] = vy; | 
| 266 |  |  | vel[atomIndex+2] = vz; | 
| 267 |  |  |  | 
| 268 | gezelter | 576 | if( atoms[i]->isDirectional() ){ | 
| 269 |  |  |  | 
| 270 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 271 |  |  |  | 
| 272 |  |  | // get and convert the torque to body frame | 
| 273 |  |  |  | 
| 274 |  |  | Tb[0] = dAtom->getTx(); | 
| 275 |  |  | Tb[1] = dAtom->getTy(); | 
| 276 |  |  | Tb[2] = dAtom->getTz(); | 
| 277 |  |  |  | 
| 278 |  |  | dAtom->lab2Body( Tb ); | 
| 279 |  |  |  | 
| 280 |  |  | // get the angular momentum, and complete the angular momentum | 
| 281 |  |  | // half step | 
| 282 |  |  |  | 
| 283 |  |  | ji[0] = dAtom->getJx(); | 
| 284 |  |  | ji[1] = dAtom->getJy(); | 
| 285 |  |  | ji[2] = dAtom->getJz(); | 
| 286 |  |  |  | 
| 287 |  |  | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); | 
| 288 |  |  | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); | 
| 289 |  |  | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); | 
| 290 |  |  |  | 
| 291 |  |  | dAtom->setJx( ji[0] ); | 
| 292 |  |  | dAtom->setJy( ji[1] ); | 
| 293 |  |  | dAtom->setJz( ji[2] ); | 
| 294 |  |  | } | 
| 295 |  |  | } | 
| 296 |  |  | } | 
| 297 |  |  |  | 
| 298 |  |  | int NPTi::readyCheck() { | 
| 299 |  |  |  | 
| 300 |  |  | // First check to see if we have a target temperature. | 
| 301 |  |  | // Not having one is fatal. | 
| 302 |  |  |  | 
| 303 |  |  | if (!have_target_temp) { | 
| 304 |  |  | sprintf( painCave.errMsg, | 
| 305 |  |  | "NPTi error: You can't use the NPTi integrator\n" | 
| 306 |  |  | "   without a targetTemp!\n" | 
| 307 |  |  | ); | 
| 308 |  |  | painCave.isFatal = 1; | 
| 309 |  |  | simError(); | 
| 310 |  |  | return -1; | 
| 311 |  |  | } | 
| 312 |  |  |  | 
| 313 |  |  | if (!have_target_pressure) { | 
| 314 |  |  | sprintf( painCave.errMsg, | 
| 315 |  |  | "NPTi error: You can't use the NPTi integrator\n" | 
| 316 |  |  | "   without a targetPressure!\n" | 
| 317 |  |  | ); | 
| 318 |  |  | painCave.isFatal = 1; | 
| 319 |  |  | simError(); | 
| 320 |  |  | return -1; | 
| 321 |  |  | } | 
| 322 |  |  |  | 
| 323 |  |  | // We must set tauThermostat. | 
| 324 |  |  |  | 
| 325 |  |  | if (!have_tau_thermostat) { | 
| 326 |  |  | sprintf( painCave.errMsg, | 
| 327 |  |  | "NPTi error: If you use the NPTi\n" | 
| 328 |  |  | "   integrator, you must set tauThermostat.\n"); | 
| 329 |  |  | painCave.isFatal = 1; | 
| 330 |  |  | simError(); | 
| 331 |  |  | return -1; | 
| 332 |  |  | } | 
| 333 |  |  |  | 
| 334 |  |  | // We must set tauBarostat. | 
| 335 |  |  |  | 
| 336 |  |  | if (!have_tau_barostat) { | 
| 337 |  |  | sprintf( painCave.errMsg, | 
| 338 |  |  | "NPTi error: If you use the NPTi\n" | 
| 339 |  |  | "   integrator, you must set tauBarostat.\n"); | 
| 340 |  |  | painCave.isFatal = 1; | 
| 341 |  |  | simError(); | 
| 342 |  |  | return -1; | 
| 343 |  |  | } | 
| 344 |  |  |  | 
| 345 |  |  | // We need NkBT a lot, so just set it here: | 
| 346 |  |  |  | 
| 347 |  |  | NkBT = (double)info->ndf * kB * targetTemp; | 
| 348 |  |  |  | 
| 349 |  |  | return 1; | 
| 350 |  |  | } |