1 |
gezelter |
1490 |
#ifdef IS_MPI |
2 |
|
|
#include <iostream> |
3 |
|
|
#include <stdlib.h> |
4 |
|
|
#include <string.h> |
5 |
|
|
#include <math.h> |
6 |
|
|
#include <mpi.h> |
7 |
|
|
|
8 |
tim |
1492 |
#include "brains/mpiSimulation.hpp" |
9 |
|
|
#include "utils/simError.h" |
10 |
chuckv |
1619 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
11 |
tim |
1492 |
#include "math/randomSPRNG.hpp" |
12 |
gezelter |
1490 |
|
13 |
|
|
mpiSimulation* mpiSim; |
14 |
|
|
|
15 |
|
|
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
16 |
|
|
{ |
17 |
|
|
parallelData = new mpiSimData; |
18 |
|
|
|
19 |
|
|
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors) ); |
20 |
|
|
parallelData->myNode = worldRank; |
21 |
|
|
|
22 |
|
|
MolToProcMap = new int[entryPlug->n_mol]; |
23 |
|
|
|
24 |
|
|
} |
25 |
|
|
|
26 |
|
|
|
27 |
|
|
mpiSimulation::~mpiSimulation(){ |
28 |
|
|
|
29 |
|
|
delete[] MolToProcMap; |
30 |
|
|
|
31 |
|
|
delete parallelData; |
32 |
|
|
// perhaps we should let fortran know the party is over. |
33 |
|
|
|
34 |
|
|
} |
35 |
|
|
|
36 |
|
|
void mpiSimulation::divideLabor( ){ |
37 |
|
|
|
38 |
|
|
int nComponents; |
39 |
|
|
MoleculeStamp** compStamps; |
40 |
|
|
randomSPRNG *myRandom; |
41 |
|
|
int* componentsNmol; |
42 |
|
|
int* AtomsPerProc; |
43 |
|
|
int* GroupsPerProc; |
44 |
|
|
|
45 |
|
|
double numerator; |
46 |
|
|
double denominator; |
47 |
|
|
double precast; |
48 |
|
|
double x, y, a; |
49 |
|
|
int old_atoms, add_atoms, new_atoms; |
50 |
|
|
int old_groups, add_groups, new_groups; |
51 |
|
|
|
52 |
|
|
int nTarget; |
53 |
|
|
int molIndex, atomIndex, groupIndex; |
54 |
|
|
int done; |
55 |
|
|
int i, j, loops, which_proc; |
56 |
|
|
int nmol_global, nmol_local; |
57 |
|
|
int ngroups_global, ngroups_local; |
58 |
|
|
int natoms_global, natoms_local; |
59 |
|
|
int ncutoff_groups, nAtomsInGroups; |
60 |
|
|
int local_index; |
61 |
|
|
int baseSeed = entryPlug->getSeed(); |
62 |
|
|
CutoffGroupStamp* cg; |
63 |
|
|
|
64 |
|
|
nComponents = entryPlug->nComponents; |
65 |
|
|
compStamps = entryPlug->compStamps; |
66 |
|
|
componentsNmol = entryPlug->componentsNmol; |
67 |
|
|
AtomsPerProc = new int[parallelData->nProcessors]; |
68 |
|
|
GroupsPerProc = new int[parallelData->nProcessors]; |
69 |
|
|
|
70 |
|
|
parallelData->nAtomsGlobal = entryPlug->n_atoms; |
71 |
|
|
parallelData->nGroupsGlobal = entryPlug->ngroup; |
72 |
|
|
parallelData->nMolGlobal = entryPlug->n_mol; |
73 |
|
|
|
74 |
|
|
if (parallelData->nProcessors > parallelData->nMolGlobal) { |
75 |
|
|
sprintf( painCave.errMsg, |
76 |
|
|
"nProcessors (%d) > nMol (%d)\n" |
77 |
|
|
"\tThe number of processors is larger than\n" |
78 |
|
|
"\tthe number of molecules. This will not result in a \n" |
79 |
|
|
"\tusable division of atoms for force decomposition.\n" |
80 |
|
|
"\tEither try a smaller number of processors, or run the\n" |
81 |
|
|
"\tsingle-processor version of OOPSE.\n", |
82 |
|
|
parallelData->nProcessors, parallelData->nMolGlobal ); |
83 |
|
|
painCave.isFatal = 1; |
84 |
|
|
simError(); |
85 |
|
|
} |
86 |
|
|
|
87 |
|
|
myRandom = new randomSPRNG( baseSeed ); |
88 |
|
|
|
89 |
|
|
|
90 |
|
|
a = 3.0 * (double)parallelData->nMolGlobal / (double)parallelData->nAtomsGlobal; |
91 |
|
|
|
92 |
|
|
// Initialize things that we'll send out later: |
93 |
|
|
for (i = 0; i < parallelData->nProcessors; i++ ) { |
94 |
|
|
AtomsPerProc[i] = 0; |
95 |
|
|
GroupsPerProc[i] = 0; |
96 |
|
|
} |
97 |
|
|
for (i = 0; i < parallelData->nMolGlobal; i++ ) { |
98 |
|
|
// default to an error condition: |
99 |
|
|
MolToProcMap[i] = -1; |
100 |
|
|
} |
101 |
tim |
1722 |
|
102 |
gezelter |
1490 |
if (parallelData->myNode == 0) { |
103 |
|
|
numerator = (double) entryPlug->n_atoms; |
104 |
|
|
denominator = (double) parallelData->nProcessors; |
105 |
|
|
precast = numerator / denominator; |
106 |
|
|
nTarget = (int)( precast + 0.5 ); |
107 |
|
|
|
108 |
|
|
// Build the array of molecule component types first |
109 |
|
|
molIndex = 0; |
110 |
|
|
for (i=0; i < nComponents; i++) { |
111 |
|
|
for (j=0; j < componentsNmol[i]; j++) { |
112 |
|
|
molIndex++; |
113 |
|
|
} |
114 |
|
|
} |
115 |
|
|
|
116 |
|
|
atomIndex = 0; |
117 |
|
|
|
118 |
|
|
for (i = 0; i < molIndex; i++ ) { |
119 |
|
|
|
120 |
|
|
done = 0; |
121 |
|
|
loops = 0; |
122 |
|
|
|
123 |
|
|
while( !done ){ |
124 |
|
|
loops++; |
125 |
|
|
|
126 |
|
|
// Pick a processor at random |
127 |
|
|
|
128 |
|
|
which_proc = (int) (myRandom->getRandom() * parallelData->nProcessors); |
129 |
|
|
|
130 |
|
|
// How many atoms does this processor have? |
131 |
|
|
|
132 |
|
|
old_atoms = AtomsPerProc[which_proc]; |
133 |
|
|
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
134 |
|
|
new_atoms = old_atoms + add_atoms; |
135 |
tim |
1722 |
|
136 |
gezelter |
1490 |
// If we've been through this loop too many times, we need |
137 |
|
|
// to just give up and assign the molecule to this processor |
138 |
|
|
// and be done with it. |
139 |
|
|
|
140 |
|
|
if (loops > 100) { |
141 |
|
|
sprintf( painCave.errMsg, |
142 |
|
|
"I've tried 100 times to assign molecule %d to a " |
143 |
|
|
" processor, but can't find a good spot.\n" |
144 |
|
|
"I'm assigning it at random to processor %d.\n", |
145 |
|
|
i, which_proc); |
146 |
|
|
painCave.isFatal = 0; |
147 |
|
|
simError(); |
148 |
|
|
|
149 |
|
|
MolToProcMap[i] = which_proc; |
150 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
151 |
tim |
1722 |
|
152 |
gezelter |
1490 |
done = 1; |
153 |
|
|
continue; |
154 |
|
|
} |
155 |
|
|
|
156 |
|
|
// If we can add this molecule to this processor without sending |
157 |
|
|
// it above nTarget, then go ahead and do it: |
158 |
|
|
|
159 |
|
|
if (new_atoms <= nTarget) { |
160 |
|
|
MolToProcMap[i] = which_proc; |
161 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
162 |
tim |
1722 |
|
163 |
gezelter |
1490 |
done = 1; |
164 |
|
|
continue; |
165 |
|
|
} |
166 |
|
|
|
167 |
|
|
|
168 |
|
|
// The only situation left is when new_atoms > nTarget. We |
169 |
|
|
// want to accept this with some probability that dies off the |
170 |
|
|
// farther we are from nTarget |
171 |
|
|
|
172 |
|
|
// roughly: x = new_atoms - nTarget |
173 |
|
|
// Pacc(x) = exp(- a * x) |
174 |
|
|
// where a = penalty / (average atoms per molecule) |
175 |
|
|
|
176 |
|
|
x = (double) (new_atoms - nTarget); |
177 |
|
|
y = myRandom->getRandom(); |
178 |
|
|
|
179 |
|
|
if (y < exp(- a * x)) { |
180 |
|
|
MolToProcMap[i] = which_proc; |
181 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
182 |
tim |
1722 |
|
183 |
gezelter |
1490 |
done = 1; |
184 |
|
|
continue; |
185 |
|
|
} else { |
186 |
|
|
continue; |
187 |
|
|
} |
188 |
|
|
|
189 |
|
|
} |
190 |
|
|
} |
191 |
|
|
|
192 |
|
|
|
193 |
|
|
// Spray out this nonsense to all other processors: |
194 |
|
|
|
195 |
|
|
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
196 |
tim |
1722 |
MPI_INT, 0, MPI_COMM_WORLD); |
197 |
|
|
|
198 |
gezelter |
1490 |
} else { |
199 |
|
|
|
200 |
|
|
// Listen to your marching orders from processor 0: |
201 |
|
|
|
202 |
|
|
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
203 |
tim |
1722 |
MPI_INT, 0, MPI_COMM_WORLD); |
204 |
|
|
|
205 |
gezelter |
1490 |
} |
206 |
|
|
|
207 |
|
|
// Let's all check for sanity: |
208 |
|
|
|
209 |
|
|
nmol_local = 0; |
210 |
|
|
for (i = 0 ; i < parallelData->nMolGlobal; i++ ) { |
211 |
|
|
if (MolToProcMap[i] == parallelData->myNode) { |
212 |
|
|
nmol_local++; |
213 |
|
|
} |
214 |
|
|
} |
215 |
|
|
|
216 |
|
|
|
217 |
|
|
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
218 |
tim |
1722 |
MPI_COMM_WORLD); |
219 |
gezelter |
1490 |
|
220 |
|
|
if( nmol_global != entryPlug->n_mol ){ |
221 |
|
|
sprintf( painCave.errMsg, |
222 |
|
|
"The sum of all nmol_local, %d, did not equal the " |
223 |
|
|
"total number of molecules, %d.\n", |
224 |
|
|
nmol_global, entryPlug->n_mol ); |
225 |
|
|
painCave.isFatal = 1; |
226 |
|
|
simError(); |
227 |
|
|
} |
228 |
|
|
|
229 |
|
|
sprintf( checkPointMsg, |
230 |
tim |
1722 |
"Successfully divided the molecules among the processors.\n" ); |
231 |
gezelter |
1490 |
MPIcheckPoint(); |
232 |
|
|
|
233 |
|
|
parallelData->nMolLocal = nmol_local; |
234 |
|
|
parallelData->nAtomsLocal = natoms_local; |
235 |
|
|
parallelData->nGroupsLocal = ngroups_local; |
236 |
|
|
|
237 |
|
|
globalMolIndex.resize(parallelData->nMolLocal); |
238 |
|
|
local_index = 0; |
239 |
|
|
for (i = 0; i < parallelData->nMolGlobal; i++) { |
240 |
|
|
if (MolToProcMap[i] == parallelData->myNode) { |
241 |
|
|
globalMolIndex[local_index] = i; |
242 |
|
|
local_index++; |
243 |
|
|
} |
244 |
tim |
1722 |
|
245 |
gezelter |
1490 |
} |
246 |
|
|
|
247 |
|
|
} |
248 |
|
|
|
249 |
|
|
|
250 |
|
|
void mpiSimulation::mpiRefresh( void ){ |
251 |
|
|
|
252 |
|
|
int isError, i; |
253 |
|
|
int *localToGlobalAtomIndex = new int[parallelData->nAtomsLocal]; |
254 |
|
|
int *localToGlobalGroupIndex = new int[parallelData->nGroupsLocal]; |
255 |
|
|
|
256 |
|
|
// Fortran indexing needs to be increased by 1 in order to get the 2 |
257 |
|
|
// languages to not barf |
258 |
|
|
|
259 |
|
|
for(i = 0; i < parallelData->nAtomsLocal; i++) |
260 |
|
|
localToGlobalAtomIndex[i] = globalAtomIndex[i] + 1; |
261 |
|
|
|
262 |
|
|
for(i = 0; i < parallelData->nGroupsLocal; i++) |
263 |
|
|
localToGlobalGroupIndex[i] = globalGroupIndex[i] + 1; |
264 |
|
|
|
265 |
|
|
isError = 0; |
266 |
|
|
|
267 |
|
|
setFsimParallel( parallelData, |
268 |
|
|
&(parallelData->nAtomsLocal), localToGlobalAtomIndex, |
269 |
|
|
&(parallelData->nGroupsLocal), localToGlobalGroupIndex, |
270 |
|
|
&isError ); |
271 |
|
|
|
272 |
|
|
if( isError ){ |
273 |
|
|
|
274 |
|
|
sprintf( painCave.errMsg, |
275 |
tim |
1722 |
"mpiRefresh errror: fortran didn't like something we gave it.\n" ); |
276 |
gezelter |
1490 |
painCave.isFatal = 1; |
277 |
|
|
simError(); |
278 |
|
|
} |
279 |
|
|
|
280 |
|
|
delete[] localToGlobalGroupIndex; |
281 |
|
|
delete[] localToGlobalAtomIndex; |
282 |
|
|
|
283 |
|
|
|
284 |
|
|
sprintf( checkPointMsg, |
285 |
tim |
1722 |
" mpiRefresh successful.\n" ); |
286 |
gezelter |
1490 |
MPIcheckPoint(); |
287 |
|
|
} |
288 |
|
|
|
289 |
|
|
|
290 |
|
|
#endif // is_mpi |