1 |
< |
#include <cstdlib> |
2 |
< |
#include <cstring> |
3 |
< |
#include <cmath> |
1 |
> |
#include <stdlib.h> |
2 |
> |
#include <string.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#include <iostream> |
6 |
|
using namespace std; |
26 |
|
SimInfo::SimInfo(){ |
27 |
|
excludes = NULL; |
28 |
|
n_constraints = 0; |
29 |
+ |
nZconstraints = 0; |
30 |
|
n_oriented = 0; |
31 |
|
n_dipoles = 0; |
32 |
|
ndf = 0; |
33 |
|
ndfRaw = 0; |
34 |
+ |
nZconstraints = 0; |
35 |
|
the_integrator = NULL; |
36 |
|
setTemp = 0; |
37 |
|
thermalTime = 0.0; |
38 |
+ |
currentTime = 0.0; |
39 |
|
rCut = 0.0; |
40 |
+ |
origRcut = -1.0; |
41 |
+ |
ecr = 0.0; |
42 |
+ |
origEcr = -1.0; |
43 |
+ |
est = 0.0; |
44 |
+ |
oldEcr = 0.0; |
45 |
+ |
oldRcut = 0.0; |
46 |
|
|
47 |
+ |
haveOrigRcut = 0; |
48 |
+ |
haveOrigEcr = 0; |
49 |
+ |
boxIsInit = 0; |
50 |
+ |
|
51 |
+ |
resetTime = 1e99; |
52 |
+ |
|
53 |
+ |
|
54 |
|
usePBC = 0; |
55 |
|
useLJ = 0; |
56 |
|
useSticky = 0; |
59 |
|
useGB = 0; |
60 |
|
useEAM = 0; |
61 |
|
|
62 |
+ |
myConfiguration = new SimState(); |
63 |
+ |
|
64 |
+ |
properties = new GenericData(); |
65 |
+ |
|
66 |
|
wrapMeSimInfo( this ); |
67 |
|
} |
68 |
|
|
69 |
+ |
|
70 |
+ |
SimInfo::~SimInfo(){ |
71 |
+ |
|
72 |
+ |
delete myConfiguration; |
73 |
+ |
delete properties; |
74 |
+ |
} |
75 |
+ |
|
76 |
|
void SimInfo::setBox(double newBox[3]) { |
77 |
+ |
|
78 |
+ |
int i, j; |
79 |
+ |
double tempMat[3][3]; |
80 |
|
|
81 |
< |
double smallestBoxL, maxCutoff; |
82 |
< |
int status; |
53 |
< |
int i; |
81 |
> |
for(i=0; i<3; i++) |
82 |
> |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
83 |
|
|
84 |
< |
for(i=0; i<9; i++) Hmat[i] = 0.0;; |
84 |
> |
tempMat[0][0] = newBox[0]; |
85 |
> |
tempMat[1][1] = newBox[1]; |
86 |
> |
tempMat[2][2] = newBox[2]; |
87 |
|
|
88 |
< |
Hmat[0] = newBox[0]; |
58 |
< |
Hmat[4] = newBox[1]; |
59 |
< |
Hmat[8] = newBox[2]; |
88 |
> |
setBoxM( tempMat ); |
89 |
|
|
90 |
< |
calcHmatI(); |
90 |
> |
} |
91 |
> |
|
92 |
> |
void SimInfo::setBoxM( double theBox[3][3] ){ |
93 |
> |
|
94 |
> |
int i, j; |
95 |
> |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
96 |
> |
// ordering in the array is as follows: |
97 |
> |
// [ 0 3 6 ] |
98 |
> |
// [ 1 4 7 ] |
99 |
> |
// [ 2 5 8 ] |
100 |
> |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
101 |
> |
|
102 |
> |
|
103 |
> |
if( !boxIsInit ) boxIsInit = 1; |
104 |
> |
|
105 |
> |
for(i=0; i < 3; i++) |
106 |
> |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
107 |
> |
|
108 |
|
calcBoxL(); |
109 |
+ |
calcHmatInv(); |
110 |
|
|
111 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
111 |
> |
for(i=0; i < 3; i++) { |
112 |
> |
for (j=0; j < 3; j++) { |
113 |
> |
FortranHmat[3*j + i] = Hmat[i][j]; |
114 |
> |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
115 |
> |
} |
116 |
> |
} |
117 |
|
|
118 |
< |
smallestBoxL = boxLx; |
119 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
120 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
118 |
> |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
119 |
> |
|
120 |
> |
} |
121 |
> |
|
122 |
|
|
123 |
< |
maxCutoff = smallestBoxL / 2.0; |
123 |
> |
void SimInfo::getBoxM (double theBox[3][3]) { |
124 |
|
|
125 |
< |
if (rList > maxCutoff) { |
126 |
< |
sprintf( painCave.errMsg, |
127 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
128 |
< |
maxCutoff ); |
76 |
< |
painCave.isFatal = 0; |
77 |
< |
simError(); |
125 |
> |
int i, j; |
126 |
> |
for(i=0; i<3; i++) |
127 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
128 |
> |
} |
129 |
|
|
79 |
– |
rList = maxCutoff; |
130 |
|
|
131 |
< |
sprintf( painCave.errMsg, |
132 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
133 |
< |
maxCutoff - 1.0 ); |
84 |
< |
painCave.isFatal = 0; |
85 |
< |
simError(); |
131 |
> |
void SimInfo::scaleBox(double scale) { |
132 |
> |
double theBox[3][3]; |
133 |
> |
int i, j; |
134 |
|
|
135 |
< |
rCut = rList - 1.0; |
135 |
> |
// cerr << "Scaling box by " << scale << "\n"; |
136 |
|
|
137 |
< |
// list radius changed so we have to refresh the simulation structure. |
138 |
< |
refreshSim(); |
91 |
< |
} |
137 |
> |
for(i=0; i<3; i++) |
138 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
139 |
|
|
140 |
< |
if (rCut > maxCutoff) { |
94 |
< |
sprintf( painCave.errMsg, |
95 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
96 |
< |
maxCutoff ); |
97 |
< |
painCave.isFatal = 0; |
98 |
< |
simError(); |
140 |
> |
setBoxM(theBox); |
141 |
|
|
100 |
– |
status = 0; |
101 |
– |
LJ_new_rcut(&rCut, &status); |
102 |
– |
if (status != 0) { |
103 |
– |
sprintf( painCave.errMsg, |
104 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
105 |
– |
painCave.isFatal = 1; |
106 |
– |
simError(); |
107 |
– |
} |
108 |
– |
} |
142 |
|
} |
143 |
|
|
144 |
< |
void SimInfo::setBoxM( double theBox[9] ){ |
144 |
> |
void SimInfo::calcHmatInv( void ) { |
145 |
|
|
146 |
< |
int i, status; |
147 |
< |
double smallestBoxL, maxCutoff; |
146 |
> |
int i,j; |
147 |
> |
double smallDiag; |
148 |
> |
double tol; |
149 |
> |
double sanity[3][3]; |
150 |
|
|
151 |
< |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
117 |
< |
calcHmatI(); |
118 |
< |
calcBoxL(); |
151 |
> |
invertMat3( Hmat, HmatInv ); |
152 |
|
|
153 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
121 |
< |
|
122 |
< |
smallestBoxL = boxLx; |
123 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
124 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
153 |
> |
// Check the inverse to make sure it is sane: |
154 |
|
|
155 |
< |
maxCutoff = smallestBoxL / 2.0; |
155 |
> |
matMul3( Hmat, HmatInv, sanity ); |
156 |
> |
|
157 |
> |
// check to see if Hmat is orthorhombic |
158 |
> |
|
159 |
> |
smallDiag = Hmat[0][0]; |
160 |
> |
if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
161 |
> |
if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
162 |
> |
tol = smallDiag * 1E-6; |
163 |
|
|
164 |
< |
if (rList > maxCutoff) { |
165 |
< |
sprintf( painCave.errMsg, |
166 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
167 |
< |
maxCutoff ); |
168 |
< |
painCave.isFatal = 0; |
169 |
< |
simError(); |
164 |
> |
orthoRhombic = 1; |
165 |
> |
|
166 |
> |
for (i = 0; i < 3; i++ ) { |
167 |
> |
for (j = 0 ; j < 3; j++) { |
168 |
> |
if (i != j) { |
169 |
> |
if (orthoRhombic) { |
170 |
> |
if (Hmat[i][j] >= tol) orthoRhombic = 0; |
171 |
> |
} |
172 |
> |
} |
173 |
> |
} |
174 |
> |
} |
175 |
> |
} |
176 |
|
|
177 |
< |
rList = maxCutoff; |
177 |
> |
double SimInfo::matDet3(double a[3][3]) { |
178 |
> |
int i, j, k; |
179 |
> |
double determinant; |
180 |
|
|
181 |
< |
sprintf( painCave.errMsg, |
138 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
139 |
< |
maxCutoff - 1.0 ); |
140 |
< |
painCave.isFatal = 0; |
141 |
< |
simError(); |
181 |
> |
determinant = 0.0; |
182 |
|
|
183 |
< |
rCut = rList - 1.0; |
183 |
> |
for(i = 0; i < 3; i++) { |
184 |
> |
j = (i+1)%3; |
185 |
> |
k = (i+2)%3; |
186 |
|
|
187 |
< |
// list radius changed so we have to refresh the simulation structure. |
146 |
< |
refreshSim(); |
187 |
> |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
188 |
|
} |
189 |
|
|
190 |
< |
if (rCut > maxCutoff) { |
190 |
> |
return determinant; |
191 |
> |
} |
192 |
> |
|
193 |
> |
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
194 |
> |
|
195 |
> |
int i, j, k, l, m, n; |
196 |
> |
double determinant; |
197 |
> |
|
198 |
> |
determinant = matDet3( a ); |
199 |
> |
|
200 |
> |
if (determinant == 0.0) { |
201 |
|
sprintf( painCave.errMsg, |
202 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
203 |
< |
maxCutoff ); |
153 |
< |
painCave.isFatal = 0; |
202 |
> |
"Can't invert a matrix with a zero determinant!\n"); |
203 |
> |
painCave.isFatal = 1; |
204 |
|
simError(); |
205 |
+ |
} |
206 |
|
|
207 |
< |
status = 0; |
208 |
< |
LJ_new_rcut(&rCut, &status); |
209 |
< |
if (status != 0) { |
210 |
< |
sprintf( painCave.errMsg, |
211 |
< |
"Error in recomputing LJ shifts based on new rcut\n"); |
212 |
< |
painCave.isFatal = 1; |
213 |
< |
simError(); |
207 |
> |
for (i=0; i < 3; i++) { |
208 |
> |
j = (i+1)%3; |
209 |
> |
k = (i+2)%3; |
210 |
> |
for(l = 0; l < 3; l++) { |
211 |
> |
m = (l+1)%3; |
212 |
> |
n = (l+2)%3; |
213 |
> |
|
214 |
> |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
215 |
|
} |
216 |
|
} |
217 |
|
} |
166 |
– |
|
218 |
|
|
219 |
< |
void SimInfo::getBoxM (double theBox[9]) { |
219 |
> |
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
220 |
> |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
221 |
|
|
222 |
< |
int i; |
223 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
222 |
> |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
223 |
> |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
224 |
> |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
225 |
> |
|
226 |
> |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
227 |
> |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
228 |
> |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
229 |
> |
|
230 |
> |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
231 |
> |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
232 |
> |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
233 |
> |
|
234 |
> |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
235 |
> |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
236 |
> |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
237 |
|
} |
238 |
|
|
239 |
+ |
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
240 |
+ |
double a0, a1, a2; |
241 |
|
|
242 |
< |
void SimInfo::scaleBox(double scale) { |
176 |
< |
double theBox[9]; |
177 |
< |
int i; |
242 |
> |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
243 |
|
|
244 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
244 |
> |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
245 |
> |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
246 |
> |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
247 |
> |
} |
248 |
|
|
249 |
< |
setBoxM(theBox); |
249 |
> |
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
250 |
> |
double temp[3][3]; |
251 |
> |
int i, j; |
252 |
|
|
253 |
+ |
for (i = 0; i < 3; i++) { |
254 |
+ |
for (j = 0; j < 3; j++) { |
255 |
+ |
temp[j][i] = in[i][j]; |
256 |
+ |
} |
257 |
+ |
} |
258 |
+ |
for (i = 0; i < 3; i++) { |
259 |
+ |
for (j = 0; j < 3; j++) { |
260 |
+ |
out[i][j] = temp[i][j]; |
261 |
+ |
} |
262 |
+ |
} |
263 |
|
} |
264 |
+ |
|
265 |
+ |
void SimInfo::printMat3(double A[3][3] ){ |
266 |
|
|
267 |
< |
void SimInfo::calcHmatI( void ) { |
267 |
> |
std::cerr |
268 |
> |
<< "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
269 |
> |
<< "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
270 |
> |
<< "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
271 |
> |
} |
272 |
|
|
273 |
< |
double C[3][3]; |
188 |
< |
double detHmat; |
189 |
< |
int i, j, k; |
190 |
< |
double smallDiag; |
191 |
< |
double tol; |
192 |
< |
double sanity[3][3]; |
273 |
> |
void SimInfo::printMat9(double A[9] ){ |
274 |
|
|
275 |
< |
// calculate the adjunct of Hmat; |
275 |
> |
std::cerr |
276 |
> |
<< "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
277 |
> |
<< "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
278 |
> |
<< "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
279 |
> |
} |
280 |
|
|
196 |
– |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
197 |
– |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
198 |
– |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
281 |
|
|
282 |
< |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
201 |
< |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
202 |
< |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
282 |
> |
void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){ |
283 |
|
|
284 |
< |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
285 |
< |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
286 |
< |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
284 |
> |
out[0] = a[1] * b[2] - a[2] * b[1]; |
285 |
> |
out[1] = a[2] * b[0] - a[0] * b[2] ; |
286 |
> |
out[2] = a[0] * b[1] - a[1] * b[0]; |
287 |
> |
|
288 |
> |
} |
289 |
|
|
290 |
< |
// calcutlate the determinant of Hmat |
291 |
< |
|
292 |
< |
detHmat = 0.0; |
211 |
< |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
212 |
< |
|
213 |
< |
|
214 |
< |
// H^-1 = C^T / det(H) |
215 |
< |
|
216 |
< |
i=0; |
217 |
< |
for(j=0; j<3; j++){ |
218 |
< |
for(k=0; k<3; k++){ |
290 |
> |
double SimInfo::dotProduct3(double a[3], double b[3]){ |
291 |
> |
return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2]; |
292 |
> |
} |
293 |
|
|
294 |
< |
HmatI[i] = C[j][k] / detHmat; |
295 |
< |
i++; |
222 |
< |
} |
223 |
< |
} |
224 |
< |
|
225 |
< |
// sanity check |
226 |
< |
|
227 |
< |
for(i=0; i<3; i++){ |
228 |
< |
for(j=0; j<3; j++){ |
229 |
< |
|
230 |
< |
sanity[i][j] = 0.0; |
231 |
< |
for(k=0; k<3; k++){ |
232 |
< |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
233 |
< |
} |
234 |
< |
} |
235 |
< |
} |
236 |
< |
|
237 |
< |
cerr << "sanity => \n" |
238 |
< |
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
239 |
< |
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
240 |
< |
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
241 |
< |
<< "\n"; |
242 |
< |
|
243 |
< |
|
244 |
< |
// check to see if Hmat is orthorhombic |
245 |
< |
|
246 |
< |
smallDiag = Hmat[0]; |
247 |
< |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
248 |
< |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
249 |
< |
tol = smallDiag * 1E-6; |
250 |
< |
|
251 |
< |
orthoRhombic = 1; |
252 |
< |
for(i=0; (i<9) && orthoRhombic; i++){ |
253 |
< |
|
254 |
< |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
255 |
< |
orthoRhombic = (Hmat[i] <= tol); |
256 |
< |
} |
257 |
< |
} |
258 |
< |
|
294 |
> |
double SimInfo::length3(double a[3]){ |
295 |
> |
return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]); |
296 |
|
} |
297 |
|
|
298 |
|
void SimInfo::calcBoxL( void ){ |
299 |
|
|
300 |
|
double dx, dy, dz, dsq; |
264 |
– |
int i; |
301 |
|
|
302 |
< |
// boxVol = h1 (dot) h2 (cross) h3 |
302 |
> |
// boxVol = Determinant of Hmat |
303 |
|
|
304 |
< |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
269 |
< |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
270 |
< |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
304 |
> |
boxVol = matDet3( Hmat ); |
305 |
|
|
272 |
– |
|
306 |
|
// boxLx |
307 |
|
|
308 |
< |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
308 |
> |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
309 |
|
dsq = dx*dx + dy*dy + dz*dz; |
310 |
< |
boxLx = sqrt( dsq ); |
310 |
> |
boxL[0] = sqrt( dsq ); |
311 |
> |
//maxCutoff = 0.5 * boxL[0]; |
312 |
|
|
313 |
|
// boxLy |
314 |
|
|
315 |
< |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
315 |
> |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
316 |
|
dsq = dx*dx + dy*dy + dz*dz; |
317 |
< |
boxLy = sqrt( dsq ); |
317 |
> |
boxL[1] = sqrt( dsq ); |
318 |
> |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
319 |
|
|
320 |
+ |
|
321 |
|
// boxLz |
322 |
|
|
323 |
< |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
323 |
> |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
324 |
|
dsq = dx*dx + dy*dy + dz*dz; |
325 |
< |
boxLz = sqrt( dsq ); |
325 |
> |
boxL[2] = sqrt( dsq ); |
326 |
> |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
327 |
> |
|
328 |
> |
//calculate the max cutoff |
329 |
> |
maxCutoff = calcMaxCutOff(); |
330 |
|
|
331 |
+ |
checkCutOffs(); |
332 |
+ |
|
333 |
|
} |
334 |
|
|
335 |
|
|
336 |
+ |
double SimInfo::calcMaxCutOff(){ |
337 |
+ |
|
338 |
+ |
double ri[3], rj[3], rk[3]; |
339 |
+ |
double rij[3], rjk[3], rki[3]; |
340 |
+ |
double minDist; |
341 |
+ |
|
342 |
+ |
ri[0] = Hmat[0][0]; |
343 |
+ |
ri[1] = Hmat[1][0]; |
344 |
+ |
ri[2] = Hmat[2][0]; |
345 |
+ |
|
346 |
+ |
rj[0] = Hmat[0][1]; |
347 |
+ |
rj[1] = Hmat[1][1]; |
348 |
+ |
rj[2] = Hmat[2][1]; |
349 |
+ |
|
350 |
+ |
rk[0] = Hmat[0][2]; |
351 |
+ |
rk[1] = Hmat[1][2]; |
352 |
+ |
rk[2] = Hmat[2][2]; |
353 |
+ |
|
354 |
+ |
crossProduct3(ri,rj, rij); |
355 |
+ |
distXY = dotProduct3(rk,rij) / length3(rij); |
356 |
+ |
|
357 |
+ |
crossProduct3(rj,rk, rjk); |
358 |
+ |
distYZ = dotProduct3(ri,rjk) / length3(rjk); |
359 |
+ |
|
360 |
+ |
crossProduct3(rk,ri, rki); |
361 |
+ |
distZX = dotProduct3(rj,rki) / length3(rki); |
362 |
+ |
|
363 |
+ |
minDist = min(min(distXY, distYZ), distZX); |
364 |
+ |
return minDist/2; |
365 |
+ |
|
366 |
+ |
} |
367 |
+ |
|
368 |
|
void SimInfo::wrapVector( double thePos[3] ){ |
369 |
|
|
370 |
< |
int i, j, k; |
370 |
> |
int i; |
371 |
|
double scaled[3]; |
372 |
|
|
373 |
|
if( !orthoRhombic ){ |
374 |
|
// calc the scaled coordinates. |
375 |
+ |
|
376 |
+ |
|
377 |
+ |
matVecMul3(HmatInv, thePos, scaled); |
378 |
|
|
379 |
|
for(i=0; i<3; i++) |
303 |
– |
scaled[i] = |
304 |
– |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
305 |
– |
|
306 |
– |
// wrap the scaled coordinates |
307 |
– |
|
308 |
– |
for(i=0; i<3; i++) |
380 |
|
scaled[i] -= roundMe(scaled[i]); |
381 |
|
|
382 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
383 |
|
|
384 |
< |
for(i=0; i<3; i++) |
385 |
< |
thePos[i] = |
315 |
< |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
384 |
> |
matVecMul3(Hmat, scaled, thePos); |
385 |
> |
|
386 |
|
} |
387 |
|
else{ |
388 |
|
// calc the scaled coordinates. |
389 |
|
|
390 |
|
for(i=0; i<3; i++) |
391 |
< |
scaled[i] = thePos[i]*HmatI[i*4]; |
391 |
> |
scaled[i] = thePos[i]*HmatInv[i][i]; |
392 |
|
|
393 |
|
// wrap the scaled coordinates |
394 |
|
|
398 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
399 |
|
|
400 |
|
for(i=0; i<3; i++) |
401 |
< |
thePos[i] = scaled[i]*Hmat[i*4]; |
401 |
> |
thePos[i] = scaled[i]*Hmat[i][i]; |
402 |
|
} |
403 |
|
|
334 |
– |
|
404 |
|
} |
405 |
|
|
406 |
|
|
407 |
|
int SimInfo::getNDF(){ |
408 |
< |
int ndf_local, ndf; |
408 |
> |
int ndf_local; |
409 |
|
|
410 |
|
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
411 |
|
|
415 |
|
ndf = ndf_local; |
416 |
|
#endif |
417 |
|
|
418 |
< |
ndf = ndf - 3; |
418 |
> |
ndf = ndf - 3 - nZconstraints; |
419 |
|
|
420 |
|
return ndf; |
421 |
|
} |
422 |
|
|
423 |
|
int SimInfo::getNDFraw() { |
424 |
< |
int ndfRaw_local, ndfRaw; |
424 |
> |
int ndfRaw_local; |
425 |
|
|
426 |
|
// Raw degrees of freedom that we have to set |
427 |
|
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
434 |
|
|
435 |
|
return ndfRaw; |
436 |
|
} |
437 |
< |
|
437 |
> |
|
438 |
> |
int SimInfo::getNDFtranslational() { |
439 |
> |
int ndfTrans_local; |
440 |
> |
|
441 |
> |
ndfTrans_local = 3 * n_atoms - n_constraints; |
442 |
> |
|
443 |
> |
#ifdef IS_MPI |
444 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
445 |
> |
#else |
446 |
> |
ndfTrans = ndfTrans_local; |
447 |
> |
#endif |
448 |
> |
|
449 |
> |
ndfTrans = ndfTrans - 3 - nZconstraints; |
450 |
> |
|
451 |
> |
return ndfTrans; |
452 |
> |
} |
453 |
> |
|
454 |
|
void SimInfo::refreshSim(){ |
455 |
|
|
456 |
|
simtype fInfo; |
457 |
|
int isError; |
458 |
|
int n_global; |
459 |
|
int* excl; |
460 |
< |
|
376 |
< |
fInfo.rrf = 0.0; |
377 |
< |
fInfo.rt = 0.0; |
460 |
> |
|
461 |
|
fInfo.dielect = 0.0; |
462 |
|
|
380 |
– |
fInfo.rlist = rList; |
381 |
– |
fInfo.rcut = rCut; |
382 |
– |
|
463 |
|
if( useDipole ){ |
384 |
– |
fInfo.rrf = ecr; |
385 |
– |
fInfo.rt = ecr - est; |
464 |
|
if( useReactionField )fInfo.dielect = dielectric; |
465 |
|
} |
466 |
|
|
506 |
|
|
507 |
|
this->ndf = this->getNDF(); |
508 |
|
this->ndfRaw = this->getNDFraw(); |
509 |
+ |
this->ndfTrans = this->getNDFtranslational(); |
510 |
+ |
} |
511 |
|
|
512 |
+ |
|
513 |
+ |
void SimInfo::setRcut( double theRcut ){ |
514 |
+ |
|
515 |
+ |
rCut = theRcut; |
516 |
+ |
checkCutOffs(); |
517 |
|
} |
518 |
|
|
519 |
+ |
void SimInfo::setDefaultRcut( double theRcut ){ |
520 |
+ |
|
521 |
+ |
haveOrigRcut = 1; |
522 |
+ |
origRcut = theRcut; |
523 |
+ |
rCut = theRcut; |
524 |
+ |
|
525 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
526 |
+ |
|
527 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
528 |
+ |
} |
529 |
+ |
|
530 |
+ |
void SimInfo::setEcr( double theEcr ){ |
531 |
+ |
|
532 |
+ |
ecr = theEcr; |
533 |
+ |
checkCutOffs(); |
534 |
+ |
} |
535 |
+ |
|
536 |
+ |
void SimInfo::setDefaultEcr( double theEcr ){ |
537 |
+ |
|
538 |
+ |
haveOrigEcr = 1; |
539 |
+ |
origEcr = theEcr; |
540 |
+ |
|
541 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
542 |
+ |
|
543 |
+ |
ecr = theEcr; |
544 |
+ |
|
545 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
546 |
+ |
} |
547 |
+ |
|
548 |
+ |
void SimInfo::setEcr( double theEcr, double theEst ){ |
549 |
+ |
|
550 |
+ |
est = theEst; |
551 |
+ |
setEcr( theEcr ); |
552 |
+ |
} |
553 |
+ |
|
554 |
+ |
void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
555 |
+ |
|
556 |
+ |
est = theEst; |
557 |
+ |
setDefaultEcr( theEcr ); |
558 |
+ |
} |
559 |
+ |
|
560 |
+ |
|
561 |
+ |
void SimInfo::checkCutOffs( void ){ |
562 |
+ |
|
563 |
+ |
int cutChanged = 0; |
564 |
+ |
|
565 |
+ |
if( boxIsInit ){ |
566 |
+ |
|
567 |
+ |
//we need to check cutOffs against the box |
568 |
+ |
|
569 |
+ |
//detect the change of rCut |
570 |
+ |
if(( maxCutoff > rCut )&&(usePBC)){ |
571 |
+ |
if( rCut < origRcut ){ |
572 |
+ |
rCut = origRcut; |
573 |
+ |
|
574 |
+ |
if (rCut > maxCutoff) |
575 |
+ |
rCut = maxCutoff; |
576 |
+ |
|
577 |
+ |
sprintf( painCave.errMsg, |
578 |
+ |
"New Box size is setting the long range cutoff radius " |
579 |
+ |
"to %lf at time %lf\n", |
580 |
+ |
rCut, currentTime ); |
581 |
+ |
painCave.isFatal = 0; |
582 |
+ |
simError(); |
583 |
+ |
} |
584 |
+ |
} |
585 |
+ |
else if ((rCut > maxCutoff)&&(usePBC)) { |
586 |
+ |
sprintf( painCave.errMsg, |
587 |
+ |
"New Box size is setting the long range cutoff radius " |
588 |
+ |
"to %lf at time %lf\n", |
589 |
+ |
maxCutoff, currentTime ); |
590 |
+ |
painCave.isFatal = 0; |
591 |
+ |
simError(); |
592 |
+ |
rCut = maxCutoff; |
593 |
+ |
} |
594 |
+ |
|
595 |
+ |
|
596 |
+ |
//detect the change of ecr |
597 |
+ |
if( maxCutoff > ecr ){ |
598 |
+ |
if( ecr < origEcr ){ |
599 |
+ |
ecr = origEcr; |
600 |
+ |
if (ecr > maxCutoff) ecr = maxCutoff; |
601 |
+ |
|
602 |
+ |
sprintf( painCave.errMsg, |
603 |
+ |
"New Box size is setting the electrostaticCutoffRadius " |
604 |
+ |
"to %lf at time %lf\n", |
605 |
+ |
ecr, currentTime ); |
606 |
+ |
painCave.isFatal = 0; |
607 |
+ |
simError(); |
608 |
+ |
} |
609 |
+ |
} |
610 |
+ |
else if( ecr > maxCutoff){ |
611 |
+ |
sprintf( painCave.errMsg, |
612 |
+ |
"New Box size is setting the electrostaticCutoffRadius " |
613 |
+ |
"to %lf at time %lf\n", |
614 |
+ |
maxCutoff, currentTime ); |
615 |
+ |
painCave.isFatal = 0; |
616 |
+ |
simError(); |
617 |
+ |
ecr = maxCutoff; |
618 |
+ |
} |
619 |
+ |
|
620 |
+ |
if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1; |
621 |
+ |
|
622 |
+ |
// rlist is the 1.0 plus max( rcut, ecr ) |
623 |
+ |
|
624 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
625 |
+ |
|
626 |
+ |
if( cutChanged ){ |
627 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
628 |
+ |
} |
629 |
+ |
|
630 |
+ |
oldEcr = ecr; |
631 |
+ |
oldRcut = rCut; |
632 |
+ |
|
633 |
+ |
} else { |
634 |
+ |
// initialize this stuff before using it, OK? |
635 |
+ |
sprintf( painCave.errMsg, |
636 |
+ |
"Trying to check cutoffs without a box. Be smarter.\n" ); |
637 |
+ |
painCave.isFatal = 1; |
638 |
+ |
simError(); |
639 |
+ |
} |
640 |
+ |
|
641 |
+ |
} |
642 |
+ |
|
643 |
+ |
GenericData* SimInfo::getProperty(char* propName){ |
644 |
+ |
|
645 |
+ |
return properties->find( propName ); |
646 |
+ |
} |
647 |
+ |
|
648 |
+ |
double SimInfo::matTrace3(double m[3][3]){ |
649 |
+ |
double trace; |
650 |
+ |
trace = m[0][0] + m[1][1] + m[2][2]; |
651 |
+ |
|
652 |
+ |
return trace; |
653 |
+ |
} |