ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new-templateless/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing:
trunk/OOPSE/libmdtools/SimInfo.cpp (file contents), Revision 574 by gezelter, Tue Jul 8 20:56:10 2003 UTC vs.
branches/new-templateless/OOPSE/libmdtools/SimInfo.cpp (file contents), Revision 850 by mmeineke, Mon Nov 3 22:07:17 2003 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
3 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5   #include <iostream>
6   using namespace std;
# Line 26 | Line 26 | SimInfo::SimInfo(){
26   SimInfo::SimInfo(){
27    excludes = NULL;
28    n_constraints = 0;
29 +  nZconstraints = 0;
30    n_oriented = 0;
31    n_dipoles = 0;
32    ndf = 0;
33    ndfRaw = 0;
34 +  nZconstraints = 0;
35    the_integrator = NULL;
36    setTemp = 0;
37    thermalTime = 0.0;
38 +  currentTime = 0.0;
39    rCut = 0.0;
40 +  origRcut = -1.0;
41 +  ecr = 0.0;
42 +  origEcr = -1.0;
43 +  est = 0.0;
44 +  oldEcr = 0.0;
45 +  oldRcut = 0.0;
46  
47 +  haveOrigRcut = 0;
48 +  haveOrigEcr = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +  
53 +
54    usePBC = 0;
55    useLJ = 0;
56    useSticky = 0;
# Line 43 | Line 59 | SimInfo::SimInfo(){
59    useGB = 0;
60    useEAM = 0;
61  
62 +  myConfiguration = new SimState();
63 +
64 +  properties = new GenericData();
65 +
66    wrapMeSimInfo( this );
67   }
68  
69 +
70 + SimInfo::~SimInfo(){
71 +
72 +  delete myConfiguration;
73 +  delete properties;    
74 + }
75 +
76   void SimInfo::setBox(double newBox[3]) {
77 +  
78 +  int i, j;
79 +  double tempMat[3][3];
80  
81 <  double smallestBoxL, maxCutoff;
82 <  int status;
53 <  int i;
81 >  for(i=0; i<3; i++)
82 >    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
83  
84 <  for(i=0; i<9; i++) Hmat[i] = 0.0;;
84 >  tempMat[0][0] = newBox[0];
85 >  tempMat[1][1] = newBox[1];
86 >  tempMat[2][2] = newBox[2];
87  
88 <  Hmat[0] = newBox[0];
58 <  Hmat[4] = newBox[1];
59 <  Hmat[8] = newBox[2];
88 >  setBoxM( tempMat );
89  
90 <  calcHmatI();
90 > }
91 >
92 > void SimInfo::setBoxM( double theBox[3][3] ){
93 >  
94 >  int i, j;
95 >  double FortranHmat[9]; // to preserve compatibility with Fortran the
96 >                         // ordering in the array is as follows:
97 >                         // [ 0 3 6 ]
98 >                         // [ 1 4 7 ]
99 >                         // [ 2 5 8 ]
100 >  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
101 >
102 >  
103 >  if( !boxIsInit ) boxIsInit = 1;
104 >
105 >  for(i=0; i < 3; i++)
106 >    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
107 >  
108    calcBoxL();
109 +  calcHmatInv();
110  
111 <  setFortranBoxSize(Hmat, HmatI, &orthoRhombic);
111 >  for(i=0; i < 3; i++) {
112 >    for (j=0; j < 3; j++) {
113 >      FortranHmat[3*j + i] = Hmat[i][j];
114 >      FortranHmatInv[3*j + i] = HmatInv[i][j];
115 >    }
116 >  }
117  
118 <  smallestBoxL = boxLx;
119 <  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
120 <  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
118 >  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
119 >
120 > }
121 >
122  
123 <  maxCutoff = smallestBoxL / 2.0;
123 > void SimInfo::getBoxM (double theBox[3][3]) {
124  
125 <  if (rList > maxCutoff) {
126 <    sprintf( painCave.errMsg,
127 <             "New Box size is forcing neighborlist radius down to %lf\n",
128 <             maxCutoff );
76 <    painCave.isFatal = 0;
77 <    simError();
125 >  int i, j;
126 >  for(i=0; i<3; i++)
127 >    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
128 > }
129  
79    rList = maxCutoff;
130  
131 <    sprintf( painCave.errMsg,
132 <             "New Box size is forcing cutoff radius down to %lf\n",
133 <             maxCutoff - 1.0 );
84 <    painCave.isFatal = 0;
85 <    simError();
131 > void SimInfo::scaleBox(double scale) {
132 >  double theBox[3][3];
133 >  int i, j;
134  
135 <    rCut = rList - 1.0;
135 >  // cerr << "Scaling box by " << scale << "\n";
136  
137 <    // list radius changed so we have to refresh the simulation structure.
138 <    refreshSim();
91 <  }
137 >  for(i=0; i<3; i++)
138 >    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
139  
140 <  if (rCut > maxCutoff) {
94 <    sprintf( painCave.errMsg,
95 <             "New Box size is forcing cutoff radius down to %lf\n",
96 <             maxCutoff );
97 <    painCave.isFatal = 0;
98 <    simError();
140 >  setBoxM(theBox);
141  
100    status = 0;
101    LJ_new_rcut(&rCut, &status);
102    if (status != 0) {
103      sprintf( painCave.errMsg,
104               "Error in recomputing LJ shifts based on new rcut\n");
105      painCave.isFatal = 1;
106      simError();
107    }
108  }
142   }
143  
144 < void SimInfo::setBoxM( double theBox[9] ){
144 > void SimInfo::calcHmatInv( void ) {
145    
146 <  int i, status;
147 <  double smallestBoxL, maxCutoff;
146 >  int i,j;
147 >  double smallDiag;
148 >  double tol;
149 >  double sanity[3][3];
150  
151 <  for(i=0; i<9; i++) Hmat[i] = theBox[i];
117 <  calcHmatI();
118 <  calcBoxL();
151 >  invertMat3( Hmat, HmatInv );
152  
153 <  setFortranBoxSize(Hmat, HmatI, &orthoRhombic);
121 <
122 <  smallestBoxL = boxLx;
123 <  if (boxLy < smallestBoxL) smallestBoxL = boxLy;
124 <  if (boxLz < smallestBoxL) smallestBoxL = boxLz;
153 >  // Check the inverse to make sure it is sane:
154  
155 <  maxCutoff = smallestBoxL / 2.0;
155 >  matMul3( Hmat, HmatInv, sanity );
156 >    
157 >  // check to see if Hmat is orthorhombic
158 >  
159 >  smallDiag = Hmat[0][0];
160 >  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
161 >  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
162 >  tol = smallDiag * 1E-6;
163  
164 <  if (rList > maxCutoff) {
165 <    sprintf( painCave.errMsg,
166 <             "New Box size is forcing neighborlist radius down to %lf\n",
167 <             maxCutoff );
168 <    painCave.isFatal = 0;
169 <    simError();
164 >  orthoRhombic = 1;
165 >  
166 >  for (i = 0; i < 3; i++ ) {
167 >    for (j = 0 ; j < 3; j++) {
168 >      if (i != j) {
169 >        if (orthoRhombic) {
170 >          if (Hmat[i][j] >= tol) orthoRhombic = 0;
171 >        }        
172 >      }
173 >    }
174 >  }
175 > }
176  
177 <    rList = maxCutoff;
177 > double SimInfo::matDet3(double a[3][3]) {
178 >  int i, j, k;
179 >  double determinant;
180  
181 <    sprintf( painCave.errMsg,
138 <             "New Box size is forcing cutoff radius down to %lf\n",
139 <             maxCutoff - 1.0 );
140 <    painCave.isFatal = 0;
141 <    simError();
181 >  determinant = 0.0;
182  
183 <    rCut = rList - 1.0;
183 >  for(i = 0; i < 3; i++) {
184 >    j = (i+1)%3;
185 >    k = (i+2)%3;
186  
187 <    // list radius changed so we have to refresh the simulation structure.
146 <    refreshSim();
187 >    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
188    }
189  
190 <  if (rCut > maxCutoff) {
190 >  return determinant;
191 > }
192 >
193 > void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
194 >  
195 >  int  i, j, k, l, m, n;
196 >  double determinant;
197 >
198 >  determinant = matDet3( a );
199 >
200 >  if (determinant == 0.0) {
201      sprintf( painCave.errMsg,
202 <             "New Box size is forcing cutoff radius down to %lf\n",
203 <             maxCutoff );
153 <    painCave.isFatal = 0;
202 >             "Can't invert a matrix with a zero determinant!\n");
203 >    painCave.isFatal = 1;
204      simError();
205 +  }
206  
207 <    status = 0;
208 <    LJ_new_rcut(&rCut, &status);
209 <    if (status != 0) {
210 <      sprintf( painCave.errMsg,
211 <               "Error in recomputing LJ shifts based on new rcut\n");
212 <      painCave.isFatal = 1;
213 <      simError();
207 >  for (i=0; i < 3; i++) {
208 >    j = (i+1)%3;
209 >    k = (i+2)%3;
210 >    for(l = 0; l < 3; l++) {
211 >      m = (l+1)%3;
212 >      n = (l+2)%3;
213 >      
214 >      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
215      }
216    }
217   }
166
218  
219 < void SimInfo::getBoxM (double theBox[9]) {
219 > void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
220 >  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
221  
222 <  int i;
223 <  for(i=0; i<9; i++) theBox[i] = Hmat[i];
222 >  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
223 >  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
224 >  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
225 >  
226 >  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
227 >  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
228 >  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
229 >  
230 >  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
231 >  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
232 >  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
233 >  
234 >  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
235 >  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
236 >  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
237   }
238  
239 + void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
240 +  double a0, a1, a2;
241  
242 < void SimInfo::scaleBox(double scale) {
176 <  double theBox[9];
177 <  int i;
242 >  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
243  
244 <  for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale;
244 >  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
245 >  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
246 >  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
247 > }
248  
249 <  setBoxM(theBox);
249 > void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
250 >  double temp[3][3];
251 >  int i, j;
252  
253 +  for (i = 0; i < 3; i++) {
254 +    for (j = 0; j < 3; j++) {
255 +      temp[j][i] = in[i][j];
256 +    }
257 +  }
258 +  for (i = 0; i < 3; i++) {
259 +    for (j = 0; j < 3; j++) {
260 +      out[i][j] = temp[i][j];
261 +    }
262 +  }
263   }
264 +  
265 + void SimInfo::printMat3(double A[3][3] ){
266  
267 < void SimInfo::calcHmatI( void ) {
267 >  std::cerr
268 >            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
269 >            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
270 >            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
271 > }
272  
273 <  double C[3][3];
188 <  double detHmat;
189 <  int i, j, k;
190 <  double smallDiag;
191 <  double tol;
192 <  double sanity[3][3];
273 > void SimInfo::printMat9(double A[9] ){
274  
275 <  // calculate the adjunct of Hmat;
275 >  std::cerr
276 >            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
277 >            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
278 >            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
279 > }
280  
196  C[0][0] =  ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]);
197  C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]);
198  C[2][0] =  ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]);
281  
282 <  C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]);
201 <  C[1][1] =  ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]);
202 <  C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]);
282 > void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
283  
284 <  C[0][2] =  ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]);
285 <  C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]);
286 <  C[2][2] =  ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]);
284 >      out[0] = a[1] * b[2] - a[2] * b[1];
285 >      out[1] = a[2] * b[0] - a[0] * b[2] ;
286 >      out[2] = a[0] * b[1] - a[1] * b[0];
287 >      
288 > }
289  
290 <  // calcutlate the determinant of Hmat
291 <  
292 <  detHmat = 0.0;
211 <  for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0];
212 <
213 <  
214 <  // H^-1 = C^T / det(H)
215 <  
216 <  i=0;
217 <  for(j=0; j<3; j++){
218 <    for(k=0; k<3; k++){
290 > double SimInfo::dotProduct3(double a[3], double b[3]){
291 >  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
292 > }
293  
294 <      HmatI[i] = C[j][k] / detHmat;
295 <      i++;
222 <    }
223 <  }
224 <
225 <  // sanity check
226 <
227 <  for(i=0; i<3; i++){
228 <    for(j=0; j<3; j++){
229 <      
230 <      sanity[i][j] = 0.0;
231 <      for(k=0; k<3; k++){
232 <        sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k];
233 <      }
234 <    }
235 <  }
236 <
237 <  cerr << "sanity => \n"
238 <       << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n"
239 <       << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n"
240 <       << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]
241 <       << "\n";
242 <    
243 <
244 <  // check to see if Hmat is orthorhombic
245 <  
246 <  smallDiag = Hmat[0];
247 <  if(smallDiag > Hmat[4]) smallDiag = Hmat[4];
248 <  if(smallDiag > Hmat[8]) smallDiag = Hmat[8];
249 <  tol = smallDiag * 1E-6;
250 <
251 <  orthoRhombic = 1;
252 <  for(i=0; (i<9) && orthoRhombic; i++){
253 <    
254 <    if( (i%4) ){ // ignore the diagonals (0, 4, and 8)
255 <      orthoRhombic = (Hmat[i] <= tol);
256 <    }
257 <  }
258 <    
294 > double SimInfo::length3(double a[3]){
295 >  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
296   }
297  
298   void SimInfo::calcBoxL( void ){
299  
300    double dx, dy, dz, dsq;
264  int i;
301  
302 <  // boxVol = h1 (dot) h2 (cross) h3
302 >  // boxVol = Determinant of Hmat
303  
304 <  boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) )
269 <         + Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) )
270 <         + Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) );
304 >  boxVol = matDet3( Hmat );
305  
272
306    // boxLx
307    
308 <  dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2];
308 >  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
309    dsq = dx*dx + dy*dy + dz*dz;
310 <  boxLx = sqrt( dsq );
310 >  boxL[0] = sqrt( dsq );
311 >  //maxCutoff = 0.5 * boxL[0];
312  
313    // boxLy
314    
315 <  dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5];
315 >  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
316    dsq = dx*dx + dy*dy + dz*dz;
317 <  boxLy = sqrt( dsq );
317 >  boxL[1] = sqrt( dsq );
318 >  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
319  
320 +
321    // boxLz
322    
323 <  dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8];
323 >  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
324    dsq = dx*dx + dy*dy + dz*dz;
325 <  boxLz = sqrt( dsq );
325 >  boxL[2] = sqrt( dsq );
326 >  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
327 >
328 >  //calculate the max cutoff
329 >  maxCutoff =  calcMaxCutOff();
330    
331 +  checkCutOffs();
332 +
333   }
334  
335  
336 + double SimInfo::calcMaxCutOff(){
337 +
338 +  double ri[3], rj[3], rk[3];
339 +  double rij[3], rjk[3], rki[3];
340 +  double minDist;
341 +
342 +  ri[0] = Hmat[0][0];
343 +  ri[1] = Hmat[1][0];
344 +  ri[2] = Hmat[2][0];
345 +
346 +  rj[0] = Hmat[0][1];
347 +  rj[1] = Hmat[1][1];
348 +  rj[2] = Hmat[2][1];
349 +
350 +  rk[0] = Hmat[0][2];
351 +  rk[1] = Hmat[1][2];
352 +  rk[2] = Hmat[2][2];
353 +  
354 +  crossProduct3(ri,rj, rij);
355 +  distXY = dotProduct3(rk,rij) / length3(rij);
356 +
357 +  crossProduct3(rj,rk, rjk);
358 +  distYZ = dotProduct3(ri,rjk) / length3(rjk);
359 +
360 +  crossProduct3(rk,ri, rki);
361 +  distZX = dotProduct3(rj,rki) / length3(rki);
362 +
363 +  minDist = min(min(distXY, distYZ), distZX);
364 +  return minDist/2;
365 +  
366 + }
367 +
368   void SimInfo::wrapVector( double thePos[3] ){
369  
370 <  int i, j, k;
370 >  int i;
371    double scaled[3];
372  
373    if( !orthoRhombic ){
374      // calc the scaled coordinates.
375 +  
376 +
377 +    matVecMul3(HmatInv, thePos, scaled);
378      
379      for(i=0; i<3; i++)
303      scaled[i] =
304        thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6];
305    
306    // wrap the scaled coordinates
307    
308    for(i=0; i<3; i++)
380        scaled[i] -= roundMe(scaled[i]);
381      
382      // calc the wrapped real coordinates from the wrapped scaled coordinates
383      
384 <    for(i=0; i<3; i++)
385 <      thePos[i] =
315 <        scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6];
384 >    matVecMul3(Hmat, scaled, thePos);
385 >
386    }
387    else{
388      // calc the scaled coordinates.
389      
390      for(i=0; i<3; i++)
391 <      scaled[i] = thePos[i]*HmatI[i*4];
391 >      scaled[i] = thePos[i]*HmatInv[i][i];
392      
393      // wrap the scaled coordinates
394      
# Line 328 | Line 398 | void SimInfo::wrapVector( double thePos[3] ){
398      // calc the wrapped real coordinates from the wrapped scaled coordinates
399      
400      for(i=0; i<3; i++)
401 <      thePos[i] = scaled[i]*Hmat[i*4];
401 >      thePos[i] = scaled[i]*Hmat[i][i];
402    }
403      
334    
404   }
405  
406  
407   int SimInfo::getNDF(){
408 <  int ndf_local, ndf;
408 >  int ndf_local;
409    
410    ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
411  
# Line 346 | Line 415 | int SimInfo::getNDF(){
415    ndf = ndf_local;
416   #endif
417  
418 <  ndf = ndf - 3;
418 >  ndf = ndf - 3 - nZconstraints;
419  
420    return ndf;
421   }
422  
423   int SimInfo::getNDFraw() {
424 <  int ndfRaw_local, ndfRaw;
424 >  int ndfRaw_local;
425  
426    // Raw degrees of freedom that we have to set
427    ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
# Line 365 | Line 434 | int SimInfo::getNDFraw() {
434  
435    return ndfRaw;
436   }
437 <
437 >
438 > int SimInfo::getNDFtranslational() {
439 >  int ndfTrans_local;
440 >
441 >  ndfTrans_local = 3 * n_atoms - n_constraints;
442 >
443 > #ifdef IS_MPI
444 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
445 > #else
446 >  ndfTrans = ndfTrans_local;
447 > #endif
448 >
449 >  ndfTrans = ndfTrans - 3 - nZconstraints;
450 >
451 >  return ndfTrans;
452 > }
453 >
454   void SimInfo::refreshSim(){
455  
456    simtype fInfo;
457    int isError;
458    int n_global;
459    int* excl;
460 <  
376 <  fInfo.rrf = 0.0;
377 <  fInfo.rt = 0.0;
460 >
461    fInfo.dielect = 0.0;
462  
380  fInfo.rlist = rList;
381  fInfo.rcut = rCut;
382
463    if( useDipole ){
384    fInfo.rrf = ecr;
385    fInfo.rt = ecr - est;
464      if( useReactionField )fInfo.dielect = dielectric;
465    }
466  
# Line 428 | Line 506 | void SimInfo::refreshSim(){
506  
507    this->ndf = this->getNDF();
508    this->ndfRaw = this->getNDFraw();
509 +  this->ndfTrans = this->getNDFtranslational();
510 + }
511  
512 +
513 + void SimInfo::setRcut( double theRcut ){
514 +
515 +  rCut = theRcut;
516 +  checkCutOffs();
517   }
518  
519 + void SimInfo::setDefaultRcut( double theRcut ){
520 +
521 +  haveOrigRcut = 1;
522 +  origRcut = theRcut;
523 +  rCut = theRcut;
524 +
525 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
526 +
527 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
528 + }
529 +
530 + void SimInfo::setEcr( double theEcr ){
531 +
532 +  ecr = theEcr;
533 +  checkCutOffs();
534 + }
535 +
536 + void SimInfo::setDefaultEcr( double theEcr ){
537 +
538 +  haveOrigEcr = 1;
539 +  origEcr = theEcr;
540 +  
541 +  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
542 +
543 +  ecr = theEcr;
544 +
545 +  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
546 + }
547 +
548 + void SimInfo::setEcr( double theEcr, double theEst ){
549 +
550 +  est = theEst;
551 +  setEcr( theEcr );
552 + }
553 +
554 + void SimInfo::setDefaultEcr( double theEcr, double theEst ){
555 +
556 +  est = theEst;
557 +  setDefaultEcr( theEcr );
558 + }
559 +
560 +
561 + void SimInfo::checkCutOffs( void ){
562 +
563 +  int cutChanged = 0;
564 +  
565 +  if( boxIsInit ){
566 +    
567 +    //we need to check cutOffs against the box
568 +
569 +    //detect the change of rCut
570 +    if(( maxCutoff > rCut )&&(usePBC)){
571 +      if( rCut < origRcut ){
572 +        rCut = origRcut;
573 +        
574 +        if (rCut > maxCutoff)
575 +          rCut = maxCutoff;
576 +  
577 +          sprintf( painCave.errMsg,
578 +                    "New Box size is setting the long range cutoff radius "
579 +                    "to %lf at time %lf\n",
580 +                    rCut, currentTime );
581 +          painCave.isFatal = 0;
582 +          simError();
583 +      }
584 +    }
585 +    else if ((rCut > maxCutoff)&&(usePBC)) {
586 +      sprintf( painCave.errMsg,
587 +               "New Box size is setting the long range cutoff radius "
588 +               "to %lf at time %lf\n",
589 +               maxCutoff, currentTime );
590 +      painCave.isFatal = 0;
591 +      simError();
592 +      rCut = maxCutoff;
593 +    }
594 +
595 +
596 +    //detect the change of ecr
597 +    if( maxCutoff > ecr ){
598 +      if( ecr < origEcr ){
599 +        ecr = origEcr;
600 +        if (ecr > maxCutoff) ecr = maxCutoff;
601 +  
602 +          sprintf( painCave.errMsg,
603 +                    "New Box size is setting the electrostaticCutoffRadius "
604 +                    "to %lf at time %lf\n",
605 +                    ecr, currentTime );
606 +            painCave.isFatal = 0;
607 +            simError();
608 +      }
609 +    }
610 +    else if( ecr > maxCutoff){
611 +      sprintf( painCave.errMsg,
612 +               "New Box size is setting the electrostaticCutoffRadius "
613 +               "to %lf at time %lf\n",
614 +               maxCutoff, currentTime  );
615 +      painCave.isFatal = 0;
616 +      simError();      
617 +      ecr = maxCutoff;
618 +    }
619 +
620 +    if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
621 +    
622 +    // rlist is the 1.0 plus max( rcut, ecr )
623 +    
624 +    ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
625 +    
626 +    if( cutChanged ){
627 +      notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
628 +    }
629 +    
630 +    oldEcr = ecr;
631 +    oldRcut = rCut;
632 +    
633 +  } else {
634 +    // initialize this stuff before using it, OK?
635 +    sprintf( painCave.errMsg,
636 +             "Trying to check cutoffs without a box. Be smarter.\n" );
637 +    painCave.isFatal = 1;
638 +    simError();      
639 +  }
640 +  
641 + }
642 +
643 + GenericData* SimInfo::getProperty(char* propName){
644 +
645 +  return properties->find( propName );
646 + }
647 +
648 + double SimInfo::matTrace3(double m[3][3]){
649 +  double trace;
650 +  trace = m[0][0] + m[1][1] + m[2][2];
651 +
652 +  return trace;
653 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines