1 |
mmeineke |
850 |
#include <math.h> |
2 |
|
|
|
3 |
gezelter |
560 |
#include "Atom.hpp" |
4 |
|
|
#include "SRI.hpp" |
5 |
|
|
#include "AbstractClasses.hpp" |
6 |
|
|
#include "SimInfo.hpp" |
7 |
|
|
#include "ForceFields.hpp" |
8 |
|
|
#include "Thermo.hpp" |
9 |
|
|
#include "ReadWrite.hpp" |
10 |
|
|
#include "Integrator.hpp" |
11 |
tim |
837 |
#include "simError.h" |
12 |
mmeineke |
561 |
|
13 |
|
|
|
14 |
gezelter |
560 |
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
15 |
|
|
|
16 |
mmeineke |
849 |
NVT::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
17 |
|
|
Integrator( theInfo, the_ff ) |
18 |
mmeineke |
561 |
{ |
19 |
tim |
837 |
GenericData* data; |
20 |
|
|
|
21 |
gezelter |
565 |
chi = 0.0; |
22 |
gezelter |
560 |
have_tau_thermostat = 0; |
23 |
|
|
have_target_temp = 0; |
24 |
tim |
763 |
have_chi_tolerance = 0; |
25 |
|
|
integralOfChidt = 0.0; |
26 |
|
|
|
27 |
tim |
837 |
// retrieve chi and integralOfChidt from simInfo |
28 |
|
|
data = info->getProperty(CHIVALUE_ID); |
29 |
mmeineke |
850 |
if(data != NULL ){ |
30 |
|
|
chi = data->getDval(); |
31 |
tim |
837 |
} |
32 |
|
|
|
33 |
|
|
data = info->getProperty(INTEGRALOFCHIDT_ID); |
34 |
mmeineke |
850 |
if(data != NULL ){ |
35 |
|
|
integralOfChidt = data->getDval(); |
36 |
tim |
837 |
} |
37 |
|
|
|
38 |
tim |
763 |
oldVel = new double[3*nAtoms]; |
39 |
|
|
oldJi = new double[3*nAtoms]; |
40 |
gezelter |
560 |
} |
41 |
|
|
|
42 |
mmeineke |
849 |
NVT::~NVT() { |
43 |
tim |
763 |
delete[] oldVel; |
44 |
|
|
delete[] oldJi; |
45 |
|
|
} |
46 |
|
|
|
47 |
mmeineke |
849 |
void NVT::moveA() { |
48 |
tim |
837 |
|
49 |
gezelter |
600 |
int i, j; |
50 |
gezelter |
560 |
DirectionalAtom* dAtom; |
51 |
gezelter |
600 |
double Tb[3], ji[3]; |
52 |
mmeineke |
778 |
double mass; |
53 |
gezelter |
600 |
double vel[3], pos[3], frc[3]; |
54 |
|
|
|
55 |
gezelter |
565 |
double instTemp; |
56 |
gezelter |
560 |
|
57 |
tim |
763 |
// We need the temperature at time = t for the chi update below: |
58 |
|
|
|
59 |
gezelter |
565 |
instTemp = tStats->getTemperature(); |
60 |
tim |
837 |
|
61 |
gezelter |
560 |
for( i=0; i<nAtoms; i++ ){ |
62 |
|
|
|
63 |
gezelter |
600 |
atoms[i]->getVel( vel ); |
64 |
|
|
atoms[i]->getPos( pos ); |
65 |
|
|
atoms[i]->getFrc( frc ); |
66 |
|
|
|
67 |
|
|
mass = atoms[i]->getMass(); |
68 |
|
|
|
69 |
|
|
for (j=0; j < 3; j++) { |
70 |
tim |
763 |
// velocity half step (use chi from previous step here): |
71 |
gezelter |
600 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
72 |
|
|
// position whole step |
73 |
gezelter |
560 |
pos[j] += dt * vel[j]; |
74 |
gezelter |
600 |
} |
75 |
gezelter |
560 |
|
76 |
gezelter |
600 |
atoms[i]->setVel( vel ); |
77 |
|
|
atoms[i]->setPos( pos ); |
78 |
tim |
837 |
|
79 |
gezelter |
560 |
if( atoms[i]->isDirectional() ){ |
80 |
|
|
|
81 |
|
|
dAtom = (DirectionalAtom *)atoms[i]; |
82 |
tim |
837 |
|
83 |
gezelter |
560 |
// get and convert the torque to body frame |
84 |
tim |
837 |
|
85 |
gezelter |
600 |
dAtom->getTrq( Tb ); |
86 |
gezelter |
560 |
dAtom->lab2Body( Tb ); |
87 |
tim |
837 |
|
88 |
gezelter |
560 |
// get the angular momentum, and propagate a half step |
89 |
|
|
|
90 |
gezelter |
600 |
dAtom->getJ( ji ); |
91 |
|
|
|
92 |
tim |
837 |
for (j=0; j < 3; j++) |
93 |
gezelter |
600 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
94 |
tim |
837 |
|
95 |
mmeineke |
778 |
this->rotationPropagation( dAtom, ji ); |
96 |
tim |
837 |
|
97 |
gezelter |
600 |
dAtom->setJ( ji ); |
98 |
tim |
837 |
} |
99 |
gezelter |
560 |
} |
100 |
tim |
837 |
|
101 |
mmeineke |
768 |
if (nConstrained){ |
102 |
|
|
constrainA(); |
103 |
|
|
} |
104 |
tim |
763 |
|
105 |
tim |
837 |
// Finally, evolve chi a half step (just like a velocity) using |
106 |
tim |
763 |
// temperature at time t, not time t+dt/2 |
107 |
|
|
|
108 |
|
|
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
109 |
|
|
integralOfChidt += chi*dt2; |
110 |
|
|
|
111 |
gezelter |
560 |
} |
112 |
|
|
|
113 |
mmeineke |
849 |
void NVT::moveB( void ){ |
114 |
tim |
763 |
int i, j, k; |
115 |
gezelter |
560 |
DirectionalAtom* dAtom; |
116 |
gezelter |
600 |
double Tb[3], ji[3]; |
117 |
|
|
double vel[3], frc[3]; |
118 |
|
|
double mass; |
119 |
tim |
763 |
double instTemp; |
120 |
|
|
double oldChi, prevChi; |
121 |
gezelter |
600 |
|
122 |
tim |
763 |
// Set things up for the iteration: |
123 |
|
|
|
124 |
|
|
oldChi = chi; |
125 |
|
|
|
126 |
gezelter |
560 |
for( i=0; i<nAtoms; i++ ){ |
127 |
gezelter |
600 |
|
128 |
|
|
atoms[i]->getVel( vel ); |
129 |
|
|
|
130 |
tim |
763 |
for (j=0; j < 3; j++) |
131 |
|
|
oldVel[3*i + j] = vel[j]; |
132 |
gezelter |
600 |
|
133 |
gezelter |
560 |
if( atoms[i]->isDirectional() ){ |
134 |
gezelter |
600 |
|
135 |
gezelter |
560 |
dAtom = (DirectionalAtom *)atoms[i]; |
136 |
gezelter |
600 |
|
137 |
tim |
763 |
dAtom->getJ( ji ); |
138 |
gezelter |
600 |
|
139 |
tim |
763 |
for (j=0; j < 3; j++) |
140 |
|
|
oldJi[3*i + j] = ji[j]; |
141 |
gezelter |
600 |
|
142 |
tim |
763 |
} |
143 |
|
|
} |
144 |
gezelter |
600 |
|
145 |
tim |
763 |
// do the iteration: |
146 |
gezelter |
600 |
|
147 |
tim |
763 |
for (k=0; k < 4; k++) { |
148 |
tim |
837 |
|
149 |
tim |
763 |
instTemp = tStats->getTemperature(); |
150 |
|
|
|
151 |
|
|
// evolve chi another half step using the temperature at t + dt/2 |
152 |
|
|
|
153 |
|
|
prevChi = chi; |
154 |
tim |
837 |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
155 |
tim |
763 |
(tauThermostat*tauThermostat); |
156 |
tim |
837 |
|
157 |
tim |
763 |
for( i=0; i<nAtoms; i++ ){ |
158 |
|
|
|
159 |
|
|
atoms[i]->getFrc( frc ); |
160 |
|
|
atoms[i]->getVel(vel); |
161 |
tim |
837 |
|
162 |
tim |
763 |
mass = atoms[i]->getMass(); |
163 |
tim |
837 |
|
164 |
tim |
763 |
// velocity half step |
165 |
tim |
837 |
for (j=0; j < 3; j++) |
166 |
tim |
763 |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); |
167 |
tim |
837 |
|
168 |
tim |
763 |
atoms[i]->setVel( vel ); |
169 |
tim |
837 |
|
170 |
tim |
763 |
if( atoms[i]->isDirectional() ){ |
171 |
tim |
837 |
|
172 |
tim |
763 |
dAtom = (DirectionalAtom *)atoms[i]; |
173 |
tim |
837 |
|
174 |
|
|
// get and convert the torque to body frame |
175 |
|
|
|
176 |
tim |
763 |
dAtom->getTrq( Tb ); |
177 |
tim |
837 |
dAtom->lab2Body( Tb ); |
178 |
|
|
|
179 |
|
|
for (j=0; j < 3; j++) |
180 |
tim |
763 |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
181 |
tim |
837 |
|
182 |
tim |
763 |
dAtom->setJ( ji ); |
183 |
|
|
} |
184 |
|
|
} |
185 |
gezelter |
600 |
|
186 |
mmeineke |
768 |
if (nConstrained){ |
187 |
|
|
constrainB(); |
188 |
|
|
} |
189 |
|
|
|
190 |
tim |
763 |
if (fabs(prevChi - chi) <= chiTolerance) break; |
191 |
gezelter |
560 |
} |
192 |
tim |
837 |
|
193 |
tim |
763 |
integralOfChidt += dt2*chi; |
194 |
gezelter |
560 |
} |
195 |
|
|
|
196 |
mmeineke |
849 |
void NVT::resetIntegrator( void ){ |
197 |
tim |
837 |
|
198 |
mmeineke |
746 |
chi = 0.0; |
199 |
tim |
763 |
integralOfChidt = 0.0; |
200 |
mmeineke |
746 |
} |
201 |
|
|
|
202 |
mmeineke |
849 |
int NVT::readyCheck() { |
203 |
tim |
658 |
|
204 |
|
|
//check parent's readyCheck() first |
205 |
mmeineke |
849 |
if (Integrator::readyCheck() == -1) |
206 |
tim |
658 |
return -1; |
207 |
tim |
837 |
|
208 |
|
|
// First check to see if we have a target temperature. |
209 |
|
|
// Not having one is fatal. |
210 |
|
|
|
211 |
gezelter |
560 |
if (!have_target_temp) { |
212 |
|
|
sprintf( painCave.errMsg, |
213 |
|
|
"NVT error: You can't use the NVT integrator without a targetTemp!\n" |
214 |
|
|
); |
215 |
|
|
painCave.isFatal = 1; |
216 |
|
|
simError(); |
217 |
|
|
return -1; |
218 |
|
|
} |
219 |
tim |
837 |
|
220 |
gezelter |
565 |
// We must set tauThermostat. |
221 |
tim |
837 |
|
222 |
gezelter |
565 |
if (!have_tau_thermostat) { |
223 |
gezelter |
560 |
sprintf( painCave.errMsg, |
224 |
gezelter |
565 |
"NVT error: If you use the constant temperature\n" |
225 |
|
|
" integrator, you must set tauThermostat.\n"); |
226 |
gezelter |
560 |
painCave.isFatal = 1; |
227 |
|
|
simError(); |
228 |
|
|
return -1; |
229 |
tim |
837 |
} |
230 |
tim |
763 |
|
231 |
|
|
if (!have_chi_tolerance) { |
232 |
|
|
sprintf( painCave.errMsg, |
233 |
|
|
"NVT warning: setting chi tolerance to 1e-6\n"); |
234 |
|
|
chiTolerance = 1e-6; |
235 |
|
|
have_chi_tolerance = 1; |
236 |
|
|
painCave.isFatal = 0; |
237 |
|
|
simError(); |
238 |
tim |
837 |
} |
239 |
tim |
763 |
|
240 |
tim |
837 |
return 1; |
241 |
tim |
763 |
|
242 |
gezelter |
560 |
} |
243 |
tim |
763 |
|
244 |
mmeineke |
849 |
double NVT::getConservedQuantity(void){ |
245 |
tim |
763 |
|
246 |
|
|
double conservedQuantity; |
247 |
tim |
769 |
double fkBT; |
248 |
|
|
double Energy; |
249 |
|
|
double thermostat_kinetic; |
250 |
|
|
double thermostat_potential; |
251 |
tim |
763 |
|
252 |
tim |
837 |
fkBT = (double)(info->getNDF() ) * kB * targetTemp; |
253 |
|
|
|
254 |
tim |
769 |
Energy = tStats->getTotalE(); |
255 |
tim |
763 |
|
256 |
tim |
837 |
thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |
257 |
tim |
769 |
(2.0 * eConvert); |
258 |
tim |
763 |
|
259 |
tim |
769 |
thermostat_potential = fkBT * integralOfChidt / eConvert; |
260 |
tim |
763 |
|
261 |
tim |
769 |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
262 |
tim |
837 |
|
263 |
|
|
cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
264 |
tim |
769 |
"\t" << thermostat_potential << "\t" << conservedQuantity << endl; |
265 |
|
|
|
266 |
tim |
837 |
return conservedQuantity; |
267 |
tim |
763 |
} |
268 |
tim |
837 |
|
269 |
mmeineke |
851 |
char* NVT::getAdditionalParameters(void){ |
270 |
tim |
837 |
|
271 |
mmeineke |
851 |
sprintf(addParamBuffer, |
272 |
|
|
"\t%G\t%G;", |
273 |
|
|
chi, integralOfChidt |
274 |
|
|
); |
275 |
tim |
837 |
|
276 |
mmeineke |
851 |
return addParamBuffer; |
277 |
tim |
837 |
} |