ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new-templateless/OOPSE/libmdtools/NPTi.cpp
(Generate patch)

Comparing:
trunk/OOPSE/libmdtools/NPTi.cpp (file contents), Revision 600 by gezelter, Mon Jul 14 22:38:13 2003 UTC vs.
branches/new-templateless/OOPSE/libmdtools/NPTi.cpp (file contents), Revision 851 by mmeineke, Wed Nov 5 19:18:17 2003 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <iostream>
2 > #include <math.h>
3 >
4 >
5   #include "Atom.hpp"
6   #include "SRI.hpp"
7   #include "AbstractClasses.hpp"
# Line 7 | Line 10
10   #include "Thermo.hpp"
11   #include "ReadWrite.hpp"
12   #include "Integrator.hpp"
13 < #include "simError.h"
13 > #include "simError.h"
14  
15 + #ifdef IS_MPI
16 + #include "mpiSimulation.hpp"
17 + #endif
18  
19   // Basic isotropic thermostating and barostating via the Melchionna
20   // modification of the Hoover algorithm:
21   //
22   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
23 < //       Molec. Phys., 78, 533.
23 > //       Molec. Phys., 78, 533.
24   //
25   //           and
26 < //
26 > //
27   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
28  
29   NPTi::NPTi ( SimInfo *theInfo, ForceFields* the_ff):
30 <  Integrator( theInfo, the_ff )
30 >  NPT( theInfo, the_ff )
31   {
32 <  chi = 0.0;
32 >  GenericData* data;
33 >  double *etaArray;
34 >  int test;
35 >
36    eta = 0.0;
37 <  have_tau_thermostat = 0;
38 <  have_tau_barostat = 0;
39 <  have_target_temp = 0;
40 <  have_target_pressure = 0;
37 >  oldEta = 0.0;
38 >
39 >  // retrieve eta array from simInfo if it exists
40 >  data = info->getProperty(ETAVALUE_ID);
41 >  if(data != NULL){
42 >    
43 >    test = data->getDarray(etaArray);
44 >    
45 >    if( test == 9 ){
46 >      
47 >      eta = etaArray[0];
48 >      delete[] etaArray;
49 >    }
50 >    else
51 >      std::cerr << "NPTi error: etaArray is not length 9 (actual = " << test
52 >                << ").\n"
53 >                << "            Simulation wil proceed with eta = 0;\n";
54 >  }
55   }
56  
57 < void NPTi::moveA() {
58 <  
59 <  int i, j;
37 <  DirectionalAtom* dAtom;
38 <  double Tb[3], ji[3];
39 <  double A[3][3], I[3][3];
40 <  double angle, mass;
41 <  double vel[3], pos[3], frc[3];
57 > NPTi::~NPTi() {
58 >  //nothing for now
59 > }
60  
61 <  double rj[3];
62 <  double instaTemp, instaPress, instaVol;
63 <  double tt2, tb2;
61 > void NPTi::resetIntegrator() {
62 >  eta = 0.0;
63 >  NPT::resetIntegrator();
64 > }
65  
66 <  tt2 = tauThermostat * tauThermostat;
67 <  tb2 = tauBarostat * tauBarostat;
49 <
50 <  instaTemp = tStats->getTemperature();
51 <  instaPress = tStats->getPressure();
52 <  instaVol = tStats->getVolume();
53 <  
54 <   // first evolve chi a half step
55 <  
56 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
57 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
66 > void NPTi::evolveEtaA() {
67 >  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
68                   (p_convert*NkBT*tb2));
69 +  oldEta = eta;
70 + }
71  
72 <  for( i=0; i<nAtoms; i++ ){
61 <    atoms[i]->getVel( vel );
62 <    atoms[i]->getPos( pos );
63 <    atoms[i]->getFrc( frc );
72 > void NPTi::evolveEtaB() {
73  
74 <    mass = atoms[i]->getMass();
74 >  prevEta = eta;
75 >  eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) /
76 >                 (p_convert*NkBT*tb2));
77 > }
78  
79 <    for (j=0; j < 3; j++) {
80 <      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta));
69 <      rj[j] = pos[j];
70 <    }
79 > void NPTi::getVelScaleA(double sc[3], double vel[3]) {
80 >  int i;
81  
82 <    atoms[i]->setVel( vel );
82 >  for(i=0; i<3; i++) sc[i] = vel[i] * ( chi + eta );
83 > }
84  
85 <    info->wrapVector(rj);
85 > void NPTi::getVelScaleB(double sc[3], int index ){
86 >  int i;
87  
88 <    for (j = 0; j < 3; j++)
89 <      pos[j] += dt * (vel[j] + eta*rj[j]);
88 >  for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * ( chi + eta );
89 > }
90  
91  
92 <    atoms[i]->setPos( pos );
92 > void NPTi::getPosScale(double pos[3], double COM[3],
93 >                                               int index, double sc[3]){
94 >  int j;
95  
96 +  for(j=0; j<3; j++)
97 +    sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
98  
99 <    if( atoms[i]->isDirectional() ){
99 >  for(j=0; j<3; j++)
100 >    sc[j] *= eta;
101 > }
102  
103 <      dAtom = (DirectionalAtom *)atoms[i];
86 <          
87 <      // get and convert the torque to body frame
88 <      
89 <      dAtom->getTrq( Tb );
90 <      dAtom->lab2Body( Tb );
91 <      
92 <      // get the angular momentum, and propagate a half step
103 > void NPTi::scaleSimBox( void ){
104  
105 <      dAtom->getJ( ji );
105 >  double scaleFactor;
106  
107 <      for (j=0; j < 3; j++)
97 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
98 <      
99 <      // use the angular velocities to propagate the rotation matrix a
100 <      // full time step
107 >  scaleFactor = exp(dt*eta);
108  
109 <      dAtom->getA(A);
110 <      dAtom->getI(I);
111 <    
112 <      // rotate about the x-axis      
113 <      angle = dt2 * ji[0] / I[0][0];
114 <      this->rotate( 1, 2, angle, ji, A );
115 <
116 <      // rotate about the y-axis
117 <      angle = dt2 * ji[1] / I[1][1];
118 <      this->rotate( 2, 0, angle, ji, A );
112 <      
113 <      // rotate about the z-axis
114 <      angle = dt * ji[2] / I[2][2];
115 <      this->rotate( 0, 1, angle, ji, A);
116 <      
117 <      // rotate about the y-axis
118 <      angle = dt2 * ji[1] / I[1][1];
119 <      this->rotate( 2, 0, angle, ji, A );
120 <      
121 <       // rotate about the x-axis
122 <      angle = dt2 * ji[0] / I[0][0];
123 <      this->rotate( 1, 2, angle, ji, A );
124 <      
125 <      dAtom->setJ( ji );
126 <      dAtom->setA( A  );    
127 <    }                
128 <
109 >  if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) {
110 >    sprintf( painCave.errMsg,
111 >             "NPTi error: Attempting a Box scaling of more than 10 percent"
112 >             " check your tauBarostat, as it is probably too small!\n"
113 >             " eta = %lf, scaleFactor = %lf\n", eta, scaleFactor
114 >             );
115 >    painCave.isFatal = 1;
116 >    simError();
117 >  } else {
118 >    info->scaleBox(scaleFactor);
119    }
120 <  // Scale the box after all the positions have been moved:
131 <  
132 <  cerr << "eta = " << eta
133 <       << "; exp(dt*eta) = " << exp(eta*dt) << "\n";
134 <  
135 <  info->scaleBox(exp(dt*eta));  
120 >
121   }
122  
123 < void NPTi::moveB( void ){
123 > bool NPTi::etaConverged() {
124  
125 <  int i, j;
126 <  DirectionalAtom* dAtom;
142 <  double Tb[3], ji[3];
143 <  double vel[3], frc[3];
144 <  double mass;
125 >  return ( fabs(prevEta - eta) <= etaTolerance );
126 > }
127  
128 <  double instaTemp, instaPress, instaVol;
147 <  double tt2, tb2;
148 <  
149 <  tt2 = tauThermostat * tauThermostat;
150 <  tb2 = tauBarostat * tauBarostat;
128 > double NPTi::getConservedQuantity(void){
129  
130 <  instaTemp = tStats->getTemperature();
131 <  instaPress = tStats->getPressure();
132 <  instaVol = tStats->getVolume();
130 >  double conservedQuantity;
131 >  double Energy;
132 >  double thermostat_kinetic;
133 >  double thermostat_potential;
134 >  double barostat_kinetic;
135 >  double barostat_potential;
136  
137 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
157 <  eta += dt2 * ( instaVol * (instaPress - targetPressure) /
158 <                 (p_convert*NkBT*tb2));
159 <  
160 <  for( i=0; i<nAtoms; i++ ){
137 >  Energy = tStats->getTotalE();
138  
139 <    atoms[i]->getVel( vel );
140 <    atoms[i]->getFrc( frc );
139 >  thermostat_kinetic = fkBT* tt2 * chi * chi /
140 >    (2.0 * eConvert);
141  
142 <    mass = atoms[i]->getMass();
142 >  thermostat_potential = fkBT* integralOfChidt / eConvert;
143  
167    // velocity half step
168    for (j=0; j < 3; j++)
169      vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+eta));
170    
171    atoms[i]->setVel( vel );
144  
145 <    if( atoms[i]->isDirectional() ){
145 >  barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /
146 >    (2.0 * eConvert);
147  
148 <      dAtom = (DirectionalAtom *)atoms[i];
148 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
149 >    eConvert;
150  
151 <      // get and convert the torque to body frame      
151 >  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
152 >    barostat_kinetic + barostat_potential;
153  
154 <      dAtom->getTrq( Tb );
155 <      dAtom->lab2Body( Tb );
154 > //   cout.width(8);
155 > //   cout.precision(8);
156  
157 <      // get the angular momentum, and propagate a half step
158 <
159 <      dAtom->getJ( ji );
160 <
186 <      for (j=0; j < 3; j++)
187 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);    
188 <
189 <      dAtom->setJ( ji );
190 <    }
191 <  }
157 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
158 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
159 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
160 >  return conservedQuantity;
161   }
162  
163 < int NPTi::readyCheck() {
195 <
196 <  // First check to see if we have a target temperature.
197 <  // Not having one is fatal.
198 <  
199 <  if (!have_target_temp) {
200 <    sprintf( painCave.errMsg,
201 <             "NPTi error: You can't use the NPTi integrator\n"
202 <             "   without a targetTemp!\n"
203 <             );
204 <    painCave.isFatal = 1;
205 <    simError();
206 <    return -1;
207 <  }
163 > char* NPTi::getAdditionalParameters(void){
164  
165 <  if (!have_target_pressure) {
166 <    sprintf( painCave.errMsg,
167 <             "NPTi error: You can't use the NPTi integrator\n"
168 <             "   without a targetPressure!\n"
169 <             );
170 <    painCave.isFatal = 1;
171 <    simError();
172 <    return -1;
217 <  }
218 <  
219 <  // We must set tauThermostat.
220 <  
221 <  if (!have_tau_thermostat) {
222 <    sprintf( painCave.errMsg,
223 <             "NPTi error: If you use the NPTi\n"
224 <             "   integrator, you must set tauThermostat.\n");
225 <    painCave.isFatal = 1;
226 <    simError();
227 <    return -1;
228 <  }    
165 >  sprintf(addParamBuffer,
166 >          "\t%G\t%G;"
167 >          "\t%G\t%0.0\t%0.0;"
168 >          "\t%0.0\t%G\t%0.0;"
169 >          "\t%0.0\t%0.0\t%G;",
170 >          chi, integralOfChidt,
171 >          eta, eta, eta
172 >          );
173  
174 <  // We must set tauBarostat.
231 <  
232 <  if (!have_tau_barostat) {
233 <    sprintf( painCave.errMsg,
234 <             "NPTi error: If you use the NPTi\n"
235 <             "   integrator, you must set tauBarostat.\n");
236 <    painCave.isFatal = 1;
237 <    simError();
238 <    return -1;
239 <  }    
240 <
241 <  // We need NkBT a lot, so just set it here:
242 <
243 <  NkBT = (double)info->ndf * kB * targetTemp;
244 <
245 <  return 1;
174 >  return addParamBuffer;
175   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines