ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new-templateless/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing:
trunk/OOPSE/libmdtools/NPTf.cpp (file contents), Revision 778 by mmeineke, Fri Sep 19 20:00:27 2003 UTC vs.
branches/new-templateless/OOPSE/libmdtools/NPTf.cpp (file contents), Revision 852 by mmeineke, Thu Nov 6 18:20:47 2003 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <math.h>
3 > #include <string.h>
4 >
5   #include "Atom.hpp"
6   #include "SRI.hpp"
7   #include "AbstractClasses.hpp"
# Line 7 | Line 10
10   #include "Thermo.hpp"
11   #include "ReadWrite.hpp"
12   #include "Integrator.hpp"
13 < #include "simError.h"
13 > #include "simError.h"
14  
15   #ifdef IS_MPI
16   #include "mpiSimulation.hpp"
# Line 17 | Line 20
20   // modification of the Hoover algorithm:
21   //
22   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
23 < //       Molec. Phys., 78, 533.
23 > //       Molec. Phys., 78, 533.
24   //
25   //           and
26 < //
26 > //
27   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
28  
29 < template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
30 <  T( theInfo, the_ff )
29 > NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
30 >  NPT( theInfo, the_ff )
31   {
32 <  int i, j;
33 <  chi = 0.0;
34 <  integralOfChidt = 0.0;
32 >  GenericData* data;
33 >  double *etaArray;
34 >  int i,j;
35  
36 <  for(i = 0; i < 3; i++)
37 <    for (j = 0; j < 3; j++)
36 >  for(i = 0; i < 3; i++){
37 >    for (j = 0; j < 3; j++){
38 >
39        eta[i][j] = 0.0;
40 +      oldEta[i][j] = 0.0;
41 +    }
42 +  }
43  
44 <  have_tau_thermostat = 0;
45 <  have_tau_barostat = 0;
46 <  have_target_temp = 0;
47 <  have_target_pressure = 0;
44 >  // retrieve eta array from simInfo if it exists
45 >  data = info->getProperty(ETAVALUE_ID);
46 >  if(data != NULL){
47 >    
48 >    int test = data->getDarray(etaArray);
49 >    
50 >    if( test == 9 ){
51 >      
52 >      for(i = 0; i < 3; i++){
53 >        for (j = 0; j < 3; j++){
54 >          eta[i][j] = etaArray[3*i+j];
55 >          oldEta[i][j] = eta[i][j];
56 >        }
57 >      }    
58 >      delete[] etaArray;
59 >    }
60 >    else
61 >      std::cerr << "NPTf error: etaArray is not length 9 (actual = " << test
62 >                << ").\n"
63 >                << "            Simulation wil proceed with eta = 0;\n";
64 >  }
65 > }
66  
67 <  have_chi_tolerance = 0;
43 <  have_eta_tolerance = 0;
44 <  have_pos_iter_tolerance = 0;
67 > NPTf::~NPTf() {
68  
69 <  oldPos = new double[3*nAtoms];
47 <  oldVel = new double[3*nAtoms];
48 <  oldJi = new double[3*nAtoms];
49 < #ifdef IS_MPI
50 <  Nparticles = mpiSim->getTotAtoms();
51 < #else
52 <  Nparticles = theInfo->n_atoms;
53 < #endif
54 <
69 >  // empty for now
70   }
71  
72 < template<typename T> NPTf<T>::~NPTf() {
58 <  delete[] oldPos;
59 <  delete[] oldVel;
60 <  delete[] oldJi;
61 < }
72 > void NPTf::resetIntegrator() {
73  
74 < template<typename T> void NPTf<T>::moveA() {
74 >  int i, j;
75  
76 <  // new version of NPTf
77 <  int i, j, k;
78 <  DirectionalAtom* dAtom;
68 <  double Tb[3], ji[3];
76 >  for(i = 0; i < 3; i++)
77 >    for (j = 0; j < 3; j++)
78 >      eta[i][j] = 0.0;
79  
80 <  double mass;
81 <  double vel[3], pos[3], frc[3];
80 >  NPT::resetIntegrator();
81 > }
82  
83 <  double rj[3];
74 <  double instaTemp, instaPress, instaVol;
75 <  double tt2, tb2;
76 <  double sc[3];
77 <  double eta2ij;
78 <  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
79 <  double bigScale, smallScale, offDiagMax;
80 <  double COM[3];
83 > void NPTf::evolveEtaA() {
84  
85 <  tt2 = tauThermostat * tauThermostat;
83 <  tb2 = tauBarostat * tauBarostat;
85 >  int i, j;
86  
87 <  instaTemp = tStats->getTemperature();
88 <  tStats->getPressureTensor(press);
89 <  instaVol = tStats->getVolume();
90 <  
91 <  tStats->getCOM(COM);
92 <
93 <  //calculate scale factor of veloity
92 <  for (i = 0; i < 3; i++ ) {
93 <    for (j = 0; j < 3; j++ ) {
94 <      vScale[i][j] = eta[i][j];
95 <      
96 <      if (i == j) {
97 <        vScale[i][j] += chi;          
98 <      }              
87 >  for(i = 0; i < 3; i ++){
88 >    for(j = 0; j < 3; j++){
89 >      if( i == j)
90 >        eta[i][j] += dt2 *  instaVol *
91 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
92 >      else
93 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
94      }
95    }
101  
102  //evolve velocity half step
103  for( i=0; i<nAtoms; i++ ){
96  
97 <    atoms[i]->getVel( vel );
98 <    atoms[i]->getFrc( frc );
97 >  for(i = 0; i < 3; i++)
98 >    for (j = 0; j < 3; j++)
99 >      oldEta[i][j] = eta[i][j];
100 > }
101  
102 <    mass = atoms[i]->getMass();
109 <    
110 <    info->matVecMul3( vScale, vel, sc );
102 > void NPTf::evolveEtaB() {
103  
104 <    for (j=0; j < 3; j++) {
113 <      // velocity half step
114 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
115 <    }
104 >  int i,j;
105  
106 <    atoms[i]->setVel( vel );
107 <  
108 <    if( atoms[i]->isDirectional() ){
106 >  for(i = 0; i < 3; i++)
107 >    for (j = 0; j < 3; j++)
108 >      prevEta[i][j] = eta[i][j];
109  
110 <      dAtom = (DirectionalAtom *)atoms[i];
110 >  for(i = 0; i < 3; i ++){
111 >    for(j = 0; j < 3; j++){
112 >      if( i == j) {
113 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
114 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
115 >      } else {
116 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
117 >      }
118 >    }
119 >  }
120 > }
121  
122 <      // get and convert the torque to body frame
123 <      
124 <      dAtom->getTrq( Tb );
126 <      dAtom->lab2Body( Tb );
127 <      
128 <      // get the angular momentum, and propagate a half step
122 > void NPTf::getVelScaleA(double sc[3], double vel[3]) {
123 >  int i,j;
124 >  double vScale[3][3];
125  
126 <      dAtom->getJ( ji );
126 >  for (i = 0; i < 3; i++ ) {
127 >    for (j = 0; j < 3; j++ ) {
128 >      vScale[i][j] = eta[i][j];
129  
130 <      for (j=0; j < 3; j++)
131 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
132 <      
133 <      this->rotationPropagation( dAtom, ji );
136 <  
137 <      dAtom->setJ( ji );
138 <    }    
130 >      if (i == j) {
131 >        vScale[i][j] += chi;
132 >      }
133 >    }
134    }
135  
136 <  // advance chi half step
137 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
136 >  info->matVecMul3( vScale, vel, sc );
137 > }
138  
139 <  // calculate the integral of chidt
140 <  integralOfChidt += dt2*chi;
139 > void NPTf::getVelScaleB(double sc[3], int index ){
140 >  int i,j;
141 >  double myVel[3];
142 >  double vScale[3][3];
143  
144 <  // advance eta half step
144 > //   std::cerr << "velScaleB chi = " << chi << "\n";
145  
146 <  for(i = 0; i < 3; i ++)
147 <    for(j = 0; j < 3; j++){
148 <      if( i == j)
149 <        eta[i][j] += dt2 *  instaVol *
150 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
151 <      else
152 <        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
146 >  for (i = 0; i < 3; i++ ) {
147 >    for (j = 0; j < 3; j++ ) {
148 >      vScale[i][j] = eta[i][j];
149 >
150 >      if (i == j) {
151 >        vScale[i][j] += chi;
152 >      }
153      }
157    
158  //save the old positions
159  for(i = 0; i < nAtoms; i++){
160    atoms[i]->getPos(pos);
161    for(j = 0; j < 3; j++)
162      oldPos[i*3 + j] = pos[j];
154    }
164  
165  //the first estimation of r(t+dt) is equal to  r(t)
166    
167  for(k = 0; k < 4; k ++){
155  
156 <    for(i =0 ; i < nAtoms; i++){
156 >  for (j = 0; j < 3; j++)
157 >    myVel[j] = oldVel[3*index + j];
158  
159 <      atoms[i]->getVel(vel);
160 <      atoms[i]->getPos(pos);
159 >  info->matVecMul3( vScale, myVel, sc );
160 > }
161  
162 <      for(j = 0; j < 3; j++)
163 <        rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
164 <      
165 <      info->matVecMul3( eta, rj, sc );
178 <      
179 <      for(j = 0; j < 3; j++)
180 <        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
162 > void NPTf::getPosScale(double pos[3], double COM[3],
163 >                       int index, double sc[3]){
164 >  int j;
165 >  double rj[3];
166  
167 <      atoms[i]->setPos( pos );
167 >  for(j=0; j<3; j++)
168 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
169  
170 <    }
170 >  info->matVecMul3( eta, rj, sc );
171 > }
172  
173 <    if (nConstrained) {
187 <      constrainA();
188 <    }
189 <  }  
173 > void NPTf::scaleSimBox( void ){
174  
175 <
175 >  int i,j,k;
176 >  double scaleMat[3][3];
177 >  double eta2ij;
178 >  double bigScale, smallScale, offDiagMax;
179 >  double hm[3][3], hmnew[3][3];
180 >
181 >
182 >
183    // Scale the box after all the positions have been moved:
184 <  
184 >
185    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
186    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
187 <  
187 >
188    bigScale = 1.0;
189    smallScale = 1.0;
190    offDiagMax = 0.0;
191 <  
191 >
192    for(i=0; i<3; i++){
193      for(j=0; j<3; j++){
194 <      
194 >
195        // Calculate the matrix Product of the eta array (we only need
196        // the ij element right now):
197 <      
197 >
198        eta2ij = 0.0;
199        for(k=0; k<3; k++){
200          eta2ij += eta[i][k] * eta[k][j];
201        }
202 <      
202 >
203        scaleMat[i][j] = 0.0;
204        // identity matrix (see above):
205        if (i == j) scaleMat[i][j] = 1.0;
# Line 216 | Line 207 | template<typename T> void NPTf<T>::moveA() {
207        scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
208  
209        if (i != j)
210 <        if (fabs(scaleMat[i][j]) > offDiagMax)
210 >        if (fabs(scaleMat[i][j]) > offDiagMax)
211            offDiagMax = fabs(scaleMat[i][j]);
212      }
213  
214      if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
215      if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
216    }
217 <  
218 <  if ((bigScale > 1.1) || (smallScale < 0.9)) {
217 >
218 >  if ((bigScale > 1.01) || (smallScale < 0.99)) {
219      sprintf( painCave.errMsg,
220 <             "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
220 >             "NPTf error: Attempting a Box scaling of more than 1 percent.\n"
221               " Check your tauBarostat, as it is probably too small!\n\n"
222               " scaleMat = [%lf\t%lf\t%lf]\n"
223               "            [%lf\t%lf\t%lf]\n"
# Line 236 | Line 227 | template<typename T> void NPTf<T>::moveA() {
227               scaleMat[2][0],scaleMat[2][1],scaleMat[2][2]);
228      painCave.isFatal = 1;
229      simError();
230 <  } else if (offDiagMax > 0.1) {
230 >  } else if (offDiagMax > 0.01) {
231      sprintf( painCave.errMsg,
232 <             "NPTf error: Attempting an off-diagonal Box scaling of more than 10 percent.\n"
232 >             "NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
233               " Check your tauBarostat, as it is probably too small!\n\n"
234               " scaleMat = [%lf\t%lf\t%lf]\n"
235               "            [%lf\t%lf\t%lf]\n"
# Line 253 | Line 244 | template<typename T> void NPTf<T>::moveA() {
244      info->matMul3(hm, scaleMat, hmnew);
245      info->setBoxM(hmnew);
246    }
256  
247   }
248  
249 < template<typename T> void NPTf<T>::moveB( void ){
249 > bool NPTf::etaConverged() {
250 >  int i;
251 >  double diffEta, sumEta;
252  
253 <  //new version of NPTf
262 <  int i, j, k;
263 <  DirectionalAtom* dAtom;
264 <  double Tb[3], ji[3];
265 <  double vel[3], myVel[3], frc[3];
266 <  double mass;
267 <
268 <  double instaTemp, instaPress, instaVol;
269 <  double tt2, tb2;
270 <  double sc[3];
271 <  double press[3][3], vScale[3][3];
272 <  double oldChi, prevChi;
273 <  double oldEta[3][3], prevEta[3][3], diffEta;
274 <  
275 <  tt2 = tauThermostat * tauThermostat;
276 <  tb2 = tauBarostat * tauBarostat;
277 <
278 <  // Set things up for the iteration:
279 <
280 <  oldChi = chi;
281 <  
253 >  sumEta = 0;
254    for(i = 0; i < 3; i++)
255 <    for(j = 0; j < 3; j++)
284 <      oldEta[i][j] = eta[i][j];
255 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
256  
257 <  for( i=0; i<nAtoms; i++ ){
257 >  diffEta = sqrt( sumEta / 3.0 );
258  
259 <    atoms[i]->getVel( vel );
289 <
290 <    for (j=0; j < 3; j++)
291 <      oldVel[3*i + j]  = vel[j];
292 <
293 <    if( atoms[i]->isDirectional() ){
294 <
295 <      dAtom = (DirectionalAtom *)atoms[i];
296 <
297 <      dAtom->getJ( ji );
298 <
299 <      for (j=0; j < 3; j++)
300 <        oldJi[3*i + j] = ji[j];
301 <
302 <    }
303 <  }
304 <
305 <  // do the iteration:
306 <
307 <  instaVol = tStats->getVolume();
308 <  
309 <  for (k=0; k < 4; k++) {
310 <    
311 <    instaTemp = tStats->getTemperature();
312 <    tStats->getPressureTensor(press);
313 <
314 <    // evolve chi another half step using the temperature at t + dt/2
315 <
316 <    prevChi = chi;
317 <    chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
318 <    
319 <    for(i = 0; i < 3; i++)
320 <      for(j = 0; j < 3; j++)
321 <        prevEta[i][j] = eta[i][j];
322 <
323 <    //advance eta half step and calculate scale factor for velocity
324 <
325 <    for(i = 0; i < 3; i ++)
326 <      for(j = 0; j < 3; j++){
327 <        if( i == j) {
328 <          eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
329 <            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
330 <          vScale[i][j] = eta[i][j] + chi;
331 <        } else {
332 <          eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
333 <          vScale[i][j] = eta[i][j];
334 <        }
335 <      }  
336 <    
337 <    for( i=0; i<nAtoms; i++ ){
338 <
339 <      atoms[i]->getFrc( frc );
340 <      atoms[i]->getVel(vel);
341 <      
342 <      mass = atoms[i]->getMass();
343 <    
344 <      for (j = 0; j < 3; j++)
345 <        myVel[j] = oldVel[3*i + j];
346 <      
347 <      info->matVecMul3( vScale, myVel, sc );
348 <      
349 <      // velocity half step
350 <      for (j=0; j < 3; j++) {
351 <        // velocity half step  (use chi from previous step here):
352 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
353 <      }
354 <      
355 <      atoms[i]->setVel( vel );
356 <      
357 <      if( atoms[i]->isDirectional() ){
358 <
359 <        dAtom = (DirectionalAtom *)atoms[i];
360 <  
361 <        // get and convert the torque to body frame      
362 <  
363 <        dAtom->getTrq( Tb );
364 <        dAtom->lab2Body( Tb );      
365 <            
366 <        for (j=0; j < 3; j++)
367 <          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
368 <      
369 <          dAtom->setJ( ji );
370 <      }
371 <    }
372 <
373 <    if (nConstrained) {
374 <      constrainB();
375 <    }
376 <    
377 <    diffEta = 0;
378 <    for(i = 0; i < 3; i++)
379 <      diffEta += pow(prevEta[i][i] - eta[i][i], 2);    
380 <    
381 <    if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
382 <      break;
383 <  }
384 <
385 <  //calculate integral of chidt
386 <  integralOfChidt += dt2*chi;
387 <  
259 >  return ( diffEta <= etaTolerance );
260   }
261  
262 < template<typename T> void NPTf<T>::resetIntegrator() {
391 <  int i,j;
392 <  
393 <  chi = 0.0;
262 > double NPTf::getConservedQuantity(void){
263  
395  for(i = 0; i < 3; i++)
396    for (j = 0; j < 3; j++)
397      eta[i][j] = 0.0;
398
399 }
400
401 template<typename T> int NPTf<T>::readyCheck() {
402
403  //check parent's readyCheck() first
404  if (T::readyCheck() == -1)
405    return -1;
406
407  // First check to see if we have a target temperature.
408  // Not having one is fatal.
409  
410  if (!have_target_temp) {
411    sprintf( painCave.errMsg,
412             "NPTf error: You can't use the NPTf integrator\n"
413             "   without a targetTemp!\n"
414             );
415    painCave.isFatal = 1;
416    simError();
417    return -1;
418  }
419
420  if (!have_target_pressure) {
421    sprintf( painCave.errMsg,
422             "NPTf error: You can't use the NPTf integrator\n"
423             "   without a targetPressure!\n"
424             );
425    painCave.isFatal = 1;
426    simError();
427    return -1;
428  }
429  
430  // We must set tauThermostat.
431  
432  if (!have_tau_thermostat) {
433    sprintf( painCave.errMsg,
434             "NPTf error: If you use the NPTf\n"
435             "   integrator, you must set tauThermostat.\n");
436    painCave.isFatal = 1;
437    simError();
438    return -1;
439  }    
440
441  // We must set tauBarostat.
442  
443  if (!have_tau_barostat) {
444    sprintf( painCave.errMsg,
445             "NPTf error: If you use the NPTf\n"
446             "   integrator, you must set tauBarostat.\n");
447    painCave.isFatal = 1;
448    simError();
449    return -1;
450  }    
451
452  
453  // We need NkBT a lot, so just set it here: This is the RAW number
454  // of particles, so no subtraction or addition of constraints or
455  // orientational degrees of freedom:
456  
457  NkBT = (double)Nparticles * kB * targetTemp;
458  
459  // fkBT is used because the thermostat operates on more degrees of freedom
460  // than the barostat (when there are particles with orientational degrees
461  // of freedom).  ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
462  
463  fkBT = (double)info->ndf * kB * targetTemp;
464
465  return 1;
466 }
467
468 template<typename T> double NPTf<T>::getConservedQuantity(void){
469
264    double conservedQuantity;
265 <  double Energy;
265 >  double totalEnergy;
266    double thermostat_kinetic;
267    double thermostat_potential;
268    double barostat_kinetic;
# Line 476 | Line 270 | template<typename T> double NPTf<T>::getConservedQuant
270    double trEta;
271    double a[3][3], b[3][3];
272  
273 <  Energy = tStats->getTotalE();
273 >  totalEnergy = tStats->getTotalE();
274  
275 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
275 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
276      (2.0 * eConvert);
277  
278    thermostat_potential = fkBT* integralOfChidt / eConvert;
# Line 487 | Line 281 | template<typename T> double NPTf<T>::getConservedQuant
281    info->matMul3(a, eta, b);
282    trEta = info->matTrace3(b);
283  
284 <  barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta /
284 >  barostat_kinetic = NkBT * tb2 * trEta /
285      (2.0 * eConvert);
286 <  
287 <  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
286 >
287 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
288      eConvert;
289  
290 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
290 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
291      barostat_kinetic + barostat_potential;
498  
499  cout.width(8);
500  cout.precision(8);
292  
293 <  cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
503 <      "\t" << thermostat_potential << "\t" << barostat_kinetic <<
504 <      "\t" << barostat_potential << "\t" << conservedQuantity << endl;
293 >  return conservedQuantity;
294  
506  return conservedQuantity;
295   }
296 +
297 + char* NPTf::getAdditionalParameters(void){
298 +
299 +  sprintf(addParamBuffer,
300 +          "\t%G\t%G;"
301 +          "\t%G\t%G\t%G;"
302 +          "\t%G\t%G\t%G;"
303 +          "\t%G\t%G\t%G;",
304 +          chi, integralOfChidt,
305 +          eta[0][0], eta[0][1], eta[0][2],
306 +          eta[1][0], eta[1][1], eta[1][2],
307 +          eta[2][0], eta[2][1], eta[2][2]
308 +          );
309 +
310 +  return addParamBuffer;
311 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines