ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/branches/new-templateless/OOPSE/libmdtools/NPTf.cpp
(Generate patch)

Comparing:
trunk/OOPSE/libmdtools/NPTf.cpp (file contents), Revision 772 by gezelter, Fri Sep 19 16:01:07 2003 UTC vs.
branches/new-templateless/OOPSE/libmdtools/NPTf.cpp (file contents), Revision 850 by mmeineke, Mon Nov 3 22:07:17 2003 UTC

# Line 1 | Line 1
1 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <math.h>
3 >
4   #include "Atom.hpp"
5   #include "SRI.hpp"
6   #include "AbstractClasses.hpp"
# Line 7 | Line 9
9   #include "Thermo.hpp"
10   #include "ReadWrite.hpp"
11   #include "Integrator.hpp"
12 < #include "simError.h"
12 > #include "simError.h"
13  
14   #ifdef IS_MPI
15   #include "mpiSimulation.hpp"
# Line 17 | Line 19
19   // modification of the Hoover algorithm:
20   //
21   //    Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
22 < //       Molec. Phys., 78, 533.
22 > //       Molec. Phys., 78, 533.
23   //
24   //           and
25 < //
25 > //
26   //    Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
27  
28 < template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 <  T( theInfo, the_ff )
28 > NPTf::NPTf ( SimInfo *theInfo, ForceFields* the_ff):
29 >  NPT( theInfo, the_ff )
30   {
31 <  int i, j;
32 <  chi = 0.0;
33 <  integralOfChidt = 0.0;
31 >  GenericData* data;
32 >  double *etaArray;
33 >  int i,j;
34  
35 <  for(i = 0; i < 3; i++)
36 <    for (j = 0; j < 3; j++)
35 >  for(i = 0; i < 3; i++){
36 >    for (j = 0; j < 3; j++){
37 >
38        eta[i][j] = 0.0;
39 +      oldEta[i][j] = 0.0;
40 +    }
41 +  }
42  
43 <  have_tau_thermostat = 0;
44 <  have_tau_barostat = 0;
45 <  have_target_temp = 0;
46 <  have_target_pressure = 0;
43 >  // retrieve eta array from simInfo if it exists
44 >  data = info->getProperty(ETAVALUE_ID);
45 >  if(data != NULL){
46 >    
47 >    int test = data->getDarray(etaArray);
48 >    
49 >    if( test == 9 ){
50 >      
51 >      for(i = 0; i < 3; i++){
52 >        for (j = 0; j < 3; j++){
53 >          eta[i][j] = etaArray[3*i+j];
54 >          oldEta[i][j] = eta[i][j];
55 >        }
56 >      }    
57 >      delete[] etaArray;
58 >    }
59 >    else
60 >      std::cerr << "NPTf error: etaArray is not length 9 (actual = " << test
61 >                << ").\n"
62 >                << "            Simulation wil proceed with eta = 0;\n";
63 >  }
64 > }
65  
66 <  have_chi_tolerance = 0;
43 <  have_eta_tolerance = 0;
44 <  have_pos_iter_tolerance = 0;
66 > NPTf::~NPTf() {
67  
68 <  oldPos = new double[3*nAtoms];
47 <  oldVel = new double[3*nAtoms];
48 <  oldJi = new double[3*nAtoms];
49 < #ifdef IS_MPI
50 <  Nparticles = mpiSim->getTotAtoms();
51 < #else
52 <  Nparticles = theInfo->n_atoms;
53 < #endif
54 <
68 >  // empty for now
69   }
70  
71 < template<typename T> NPTf<T>::~NPTf() {
58 <  delete[] oldPos;
59 <  delete[] oldVel;
60 <  delete[] oldJi;
61 < }
71 > void NPTf::resetIntegrator() {
72  
73 < template<typename T> void NPTf<T>::moveA() {
73 >  int i, j;
74  
75 <  // new version of NPTf
76 <  int i, j, k;
77 <  DirectionalAtom* dAtom;
68 <  double Tb[3], ji[3];
69 <  double A[3][3], I[3][3];
70 <  double angle, mass;
71 <  double vel[3], pos[3], frc[3];
75 >  for(i = 0; i < 3; i++)
76 >    for (j = 0; j < 3; j++)
77 >      eta[i][j] = 0.0;
78  
79 <  double rj[3];
80 <  double instaTemp, instaPress, instaVol;
75 <  double tt2, tb2;
76 <  double sc[3];
77 <  double eta2ij;
78 <  double press[3][3], vScale[3][3], hm[3][3], hmnew[3][3], scaleMat[3][3];
79 <  double bigScale, smallScale, offDiagMax;
80 <  double COM[3];
79 >  NPT::resetIntegrator();
80 > }
81  
82 <  tt2 = tauThermostat * tauThermostat;
83 <  tb2 = tauBarostat * tauBarostat;
82 > void NPTf::evolveEtaA() {
83  
84 <  instaTemp = tStats->getTemperature();
86 <  tStats->getPressureTensor(press);
87 <  instaVol = tStats->getVolume();
88 <  
89 <  tStats->getCOM(COM);
84 >  int i, j;
85  
86 <  //calculate scale factor of veloity
87 <  for (i = 0; i < 3; i++ ) {
88 <    for (j = 0; j < 3; j++ ) {
89 <      vScale[i][j] = eta[i][j];
90 <      
91 <      if (i == j) {
92 <        vScale[i][j] += chi;          
98 <      }              
86 >  for(i = 0; i < 3; i ++){
87 >    for(j = 0; j < 3; j++){
88 >      if( i == j)
89 >        eta[i][j] += dt2 *  instaVol *
90 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
91 >      else
92 >        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
93      }
94    }
101  
102  //evolve velocity half step
103  for( i=0; i<nAtoms; i++ ){
95  
96 <    atoms[i]->getVel( vel );
97 <    atoms[i]->getFrc( frc );
96 >  for(i = 0; i < 3; i++)
97 >    for (j = 0; j < 3; j++)
98 >      oldEta[i][j] = eta[i][j];
99 > }
100  
101 <    mass = atoms[i]->getMass();
109 <    
110 <    info->matVecMul3( vScale, vel, sc );
101 > void NPTf::evolveEtaB() {
102  
103 <    for (j=0; j < 3; j++) {
113 <      // velocity half step
114 <      vel[j] += dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
115 <    }
103 >  int i,j;
104  
105 <    atoms[i]->setVel( vel );
106 <  
107 <    if( atoms[i]->isDirectional() ){
105 >  for(i = 0; i < 3; i++)
106 >    for (j = 0; j < 3; j++)
107 >      prevEta[i][j] = eta[i][j];
108  
109 <      dAtom = (DirectionalAtom *)atoms[i];
109 >  for(i = 0; i < 3; i ++){
110 >    for(j = 0; j < 3; j++){
111 >      if( i == j) {
112 >        eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
113 >          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
114 >      } else {
115 >        eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
116 >      }
117 >    }
118 >  }
119 > }
120  
121 <      // get and convert the torque to body frame
122 <      
123 <      dAtom->getTrq( Tb );
126 <      dAtom->lab2Body( Tb );
127 <      
128 <      // get the angular momentum, and propagate a half step
121 > void NPTf::getVelScaleA(double sc[3], double vel[3]) {
122 >  int i,j;
123 >  double vScale[3][3];
124  
125 <      dAtom->getJ( ji );
125 >  for (i = 0; i < 3; i++ ) {
126 >    for (j = 0; j < 3; j++ ) {
127 >      vScale[i][j] = eta[i][j];
128  
129 <      for (j=0; j < 3; j++)
130 <        ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi);
131 <      
132 <      // use the angular velocities to propagate the rotation matrix a
136 <      // full time step
137 <
138 <      dAtom->getA(A);
139 <      dAtom->getI(I);
140 <    
141 <      // rotate about the x-axis      
142 <      angle = dt2 * ji[0] / I[0][0];
143 <      this->rotate( 1, 2, angle, ji, A );
144 <
145 <      // rotate about the y-axis
146 <      angle = dt2 * ji[1] / I[1][1];
147 <      this->rotate( 2, 0, angle, ji, A );
148 <      
149 <      // rotate about the z-axis
150 <      angle = dt * ji[2] / I[2][2];
151 <      this->rotate( 0, 1, angle, ji, A);
152 <      
153 <      // rotate about the y-axis
154 <      angle = dt2 * ji[1] / I[1][1];
155 <      this->rotate( 2, 0, angle, ji, A );
156 <      
157 <       // rotate about the x-axis
158 <      angle = dt2 * ji[0] / I[0][0];
159 <      this->rotate( 1, 2, angle, ji, A );
160 <      
161 <      dAtom->setJ( ji );
162 <      dAtom->setA( A  );    
163 <    }    
129 >      if (i == j) {
130 >        vScale[i][j] += chi;
131 >      }
132 >    }
133    }
134  
135 <  // advance chi half step
136 <  chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
135 >  info->matVecMul3( vScale, vel, sc );
136 > }
137  
138 <  // calculate the integral of chidt
139 <  integralOfChidt += dt2*chi;
138 > void NPTf::getVelScaleB(double sc[3], int index ){
139 >  int i,j;
140 >  double myVel[3];
141 >  double vScale[3][3];
142  
143 <  // advance eta half step
143 >  for (i = 0; i < 3; i++ ) {
144 >    for (j = 0; j < 3; j++ ) {
145 >      vScale[i][j] = eta[i][j];
146  
147 <  for(i = 0; i < 3; i ++)
148 <    for(j = 0; j < 3; j++){
149 <      if( i == j)
177 <        eta[i][j] += dt2 *  instaVol *
178 <          (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
179 <      else
180 <        eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2);
147 >      if (i == j) {
148 >        vScale[i][j] += chi;
149 >      }
150      }
182    
183  //save the old positions
184  for(i = 0; i < nAtoms; i++){
185    atoms[i]->getPos(pos);
186    for(j = 0; j < 3; j++)
187      oldPos[i*3 + j] = pos[j];
151    }
189  
190  //the first estimation of r(t+dt) is equal to  r(t)
191    
192  for(k = 0; k < 4; k ++){
152  
153 <    for(i =0 ; i < nAtoms; i++){
153 >  for (j = 0; j < 3; j++)
154 >    myVel[j] = oldVel[3*index + j];
155  
156 <      atoms[i]->getVel(vel);
157 <      atoms[i]->getPos(pos);
156 >  info->matVecMul3( vScale, myVel, sc );
157 > }
158  
159 <      for(j = 0; j < 3; j++)
160 <        rj[j] = (oldPos[i*3 + j] + pos[j])/2 - COM[j];
161 <      
162 <      info->matVecMul3( eta, rj, sc );
203 <      
204 <      for(j = 0; j < 3; j++)
205 <        pos[j] = oldPos[i*3 + j] + dt*(vel[j] + sc[j]);
159 > void NPTf::getPosScale(double pos[3], double COM[3],
160 >                                               int index, double sc[3]){
161 >  int j;
162 >  double rj[3];
163  
164 <      atoms[i]->setPos( pos );
164 >  for(j=0; j<3; j++)
165 >    rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j];
166  
167 <    }
167 >  info->matVecMul3( eta, rj, sc );
168 > }
169  
170 <    if (nConstrained) {
212 <      constrainA();
213 <    }
214 <  }  
170 > void NPTf::scaleSimBox( void ){
171  
172 <
172 >  int i,j,k;
173 >  double scaleMat[3][3];
174 >  double eta2ij;
175 >  double bigScale, smallScale, offDiagMax;
176 >  double hm[3][3], hmnew[3][3];
177 >
178 >
179 >
180    // Scale the box after all the positions have been moved:
181 <  
181 >
182    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
183    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
184 <  
184 >
185    bigScale = 1.0;
186    smallScale = 1.0;
187    offDiagMax = 0.0;
188 <  
188 >
189    for(i=0; i<3; i++){
190      for(j=0; j<3; j++){
191 <      
191 >
192        // Calculate the matrix Product of the eta array (we only need
193        // the ij element right now):
194 <      
194 >
195        eta2ij = 0.0;
196        for(k=0; k<3; k++){
197          eta2ij += eta[i][k] * eta[k][j];
198        }
199 <      
199 >
200        scaleMat[i][j] = 0.0;
201        // identity matrix (see above):
202        if (i == j) scaleMat[i][j] = 1.0;
# Line 241 | Line 204 | template<typename T> void NPTf<T>::moveA() {
204        scaleMat[i][j] += dt*eta[i][j]  + 0.5*dt*dt*eta2ij;
205  
206        if (i != j)
207 <        if (fabs(scaleMat[i][j]) > offDiagMax)
207 >        if (fabs(scaleMat[i][j]) > offDiagMax)
208            offDiagMax = fabs(scaleMat[i][j]);
209      }
210  
211      if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i];
212      if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i];
213    }
214 <  
214 >
215    if ((bigScale > 1.1) || (smallScale < 0.9)) {
216      sprintf( painCave.errMsg,
217               "NPTf error: Attempting a Box scaling of more than 10 percent.\n"
# Line 278 | Line 241 | template<typename T> void NPTf<T>::moveA() {
241      info->matMul3(hm, scaleMat, hmnew);
242      info->setBoxM(hmnew);
243    }
281  
244   }
245  
246 < template<typename T> void NPTf<T>::moveB( void ){
246 > bool NPTf::etaConverged() {
247 >  int i;
248 >  double diffEta, sumEta;
249  
250 <  //new version of NPTf
287 <  int i, j, k;
288 <  DirectionalAtom* dAtom;
289 <  double Tb[3], ji[3];
290 <  double vel[3], myVel[3], frc[3];
291 <  double mass;
292 <
293 <  double instaTemp, instaPress, instaVol;
294 <  double tt2, tb2;
295 <  double sc[3];
296 <  double press[3][3], vScale[3][3];
297 <  double oldChi, prevChi;
298 <  double oldEta[3][3], prevEta[3][3], diffEta;
299 <  
300 <  tt2 = tauThermostat * tauThermostat;
301 <  tb2 = tauBarostat * tauBarostat;
302 <
303 <  // Set things up for the iteration:
304 <
305 <  oldChi = chi;
306 <  
250 >  sumEta = 0;
251    for(i = 0; i < 3; i++)
252 <    for(j = 0; j < 3; j++)
309 <      oldEta[i][j] = eta[i][j];
252 >    sumEta += pow(prevEta[i][i] - eta[i][i], 2);
253  
254 <  for( i=0; i<nAtoms; i++ ){
254 >  diffEta = sqrt( sumEta / 3.0 );
255  
256 <    atoms[i]->getVel( vel );
314 <
315 <    for (j=0; j < 3; j++)
316 <      oldVel[3*i + j]  = vel[j];
317 <
318 <    if( atoms[i]->isDirectional() ){
319 <
320 <      dAtom = (DirectionalAtom *)atoms[i];
321 <
322 <      dAtom->getJ( ji );
323 <
324 <      for (j=0; j < 3; j++)
325 <        oldJi[3*i + j] = ji[j];
326 <
327 <    }
328 <  }
329 <
330 <  // do the iteration:
331 <
332 <  instaVol = tStats->getVolume();
333 <  
334 <  for (k=0; k < 4; k++) {
335 <    
336 <    instaTemp = tStats->getTemperature();
337 <    tStats->getPressureTensor(press);
338 <
339 <    // evolve chi another half step using the temperature at t + dt/2
340 <
341 <    prevChi = chi;
342 <    chi = oldChi + dt2 * ( instaTemp / targetTemp - 1.0) / tt2;
343 <    
344 <    for(i = 0; i < 3; i++)
345 <      for(j = 0; j < 3; j++)
346 <        prevEta[i][j] = eta[i][j];
347 <
348 <    //advance eta half step and calculate scale factor for velocity
349 <
350 <    for(i = 0; i < 3; i ++)
351 <      for(j = 0; j < 3; j++){
352 <        if( i == j) {
353 <          eta[i][j] = oldEta[i][j] + dt2 *  instaVol *
354 <            (press[i][j] - targetPressure/p_convert) / (NkBT*tb2);
355 <          vScale[i][j] = eta[i][j] + chi;
356 <        } else {
357 <          eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2);
358 <          vScale[i][j] = eta[i][j];
359 <        }
360 <      }  
361 <    
362 <    for( i=0; i<nAtoms; i++ ){
363 <
364 <      atoms[i]->getFrc( frc );
365 <      atoms[i]->getVel(vel);
366 <      
367 <      mass = atoms[i]->getMass();
368 <    
369 <      for (j = 0; j < 3; j++)
370 <        myVel[j] = oldVel[3*i + j];
371 <      
372 <      info->matVecMul3( vScale, myVel, sc );
373 <      
374 <      // velocity half step
375 <      for (j=0; j < 3; j++) {
376 <        // velocity half step  (use chi from previous step here):
377 <        vel[j] = oldVel[3*i+j] + dt2 * ((frc[j]  / mass) * eConvert - sc[j]);
378 <      }
379 <      
380 <      atoms[i]->setVel( vel );
381 <      
382 <      if( atoms[i]->isDirectional() ){
383 <
384 <        dAtom = (DirectionalAtom *)atoms[i];
385 <  
386 <        // get and convert the torque to body frame      
387 <  
388 <        dAtom->getTrq( Tb );
389 <        dAtom->lab2Body( Tb );      
390 <            
391 <        for (j=0; j < 3; j++)
392 <          ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi);
393 <      
394 <          dAtom->setJ( ji );
395 <      }
396 <    }
397 <
398 <    if (nConstrained) {
399 <      constrainB();
400 <    }
401 <    
402 <    diffEta = 0;
403 <    for(i = 0; i < 3; i++)
404 <      diffEta += pow(prevEta[i][i] - eta[i][i], 2);    
405 <    
406 <    if (fabs(prevChi - chi) <= chiTolerance && sqrt(diffEta / 3) <= etaTolerance)
407 <      break;
408 <  }
409 <
410 <  //calculate integral of chidt
411 <  integralOfChidt += dt2*chi;
412 <  
256 >  return ( diffEta <= etaTolerance );
257   }
258  
259 < template<typename T> void NPTf<T>::resetIntegrator() {
416 <  int i,j;
417 <  
418 <  chi = 0.0;
259 > double NPTf::getConservedQuantity(void){
260  
420  for(i = 0; i < 3; i++)
421    for (j = 0; j < 3; j++)
422      eta[i][j] = 0.0;
423
424 }
425
426 template<typename T> int NPTf<T>::readyCheck() {
427
428  //check parent's readyCheck() first
429  if (T::readyCheck() == -1)
430    return -1;
431
432  // First check to see if we have a target temperature.
433  // Not having one is fatal.
434  
435  if (!have_target_temp) {
436    sprintf( painCave.errMsg,
437             "NPTf error: You can't use the NPTf integrator\n"
438             "   without a targetTemp!\n"
439             );
440    painCave.isFatal = 1;
441    simError();
442    return -1;
443  }
444
445  if (!have_target_pressure) {
446    sprintf( painCave.errMsg,
447             "NPTf error: You can't use the NPTf integrator\n"
448             "   without a targetPressure!\n"
449             );
450    painCave.isFatal = 1;
451    simError();
452    return -1;
453  }
454  
455  // We must set tauThermostat.
456  
457  if (!have_tau_thermostat) {
458    sprintf( painCave.errMsg,
459             "NPTf error: If you use the NPTf\n"
460             "   integrator, you must set tauThermostat.\n");
461    painCave.isFatal = 1;
462    simError();
463    return -1;
464  }    
465
466  // We must set tauBarostat.
467  
468  if (!have_tau_barostat) {
469    sprintf( painCave.errMsg,
470             "NPTf error: If you use the NPTf\n"
471             "   integrator, you must set tauBarostat.\n");
472    painCave.isFatal = 1;
473    simError();
474    return -1;
475  }    
476
477  
478  // We need NkBT a lot, so just set it here: This is the RAW number
479  // of particles, so no subtraction or addition of constraints or
480  // orientational degrees of freedom:
481  
482  NkBT = (double)Nparticles * kB * targetTemp;
483  
484  // fkBT is used because the thermostat operates on more degrees of freedom
485  // than the barostat (when there are particles with orientational degrees
486  // of freedom).  ndf = 3 * (n_atoms + n_oriented -1) - n_constraint - nZcons
487  
488  fkBT = (double)info->ndf * kB * targetTemp;
489
490  return 1;
491 }
492
493 template<typename T> double NPTf<T>::getConservedQuantity(void){
494
261    double conservedQuantity;
262 <  double Energy;
262 >  double totalEnergy;
263    double thermostat_kinetic;
264    double thermostat_potential;
265    double barostat_kinetic;
# Line 501 | Line 267 | template<typename T> double NPTf<T>::getConservedQuant
267    double trEta;
268    double a[3][3], b[3][3];
269  
270 <  Energy = tStats->getTotalE();
270 >  totalEnergy = tStats->getTotalE();
271  
272 <  thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi /
272 >  thermostat_kinetic = fkBT * tt2 * chi * chi /
273      (2.0 * eConvert);
274  
275    thermostat_potential = fkBT* integralOfChidt / eConvert;
# Line 512 | Line 278 | template<typename T> double NPTf<T>::getConservedQuant
278    info->matMul3(a, eta, b);
279    trEta = info->matTrace3(b);
280  
281 <  barostat_kinetic = NkBT * tauBarostat * tauBarostat * trEta /
281 >  barostat_kinetic = NkBT * tb2 * trEta /
282      (2.0 * eConvert);
283 <  
284 <  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
283 >
284 >  barostat_potential = (targetPressure * tStats->getVolume() / p_convert) /
285      eConvert;
286  
287 <  conservedQuantity = Energy + thermostat_kinetic + thermostat_potential +
287 >  conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
288      barostat_kinetic + barostat_potential;
523  
524  cout.width(8);
525  cout.precision(8);
289  
290 <  cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
291 <      "\t" << thermostat_potential << "\t" << barostat_kinetic <<
529 <      "\t" << barostat_potential << "\t" << conservedQuantity << endl;
290 > //   cout.width(8);
291 > //   cout.precision(8);
292  
293 <  return conservedQuantity;
293 > //   cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic <<
294 > //       "\t" << thermostat_potential << "\t" << barostat_kinetic <<
295 > //       "\t" << barostat_potential << "\t" << conservedQuantity << endl;
296 >
297 >  return conservedQuantity;
298 >
299   }
300 +
301 + string NPTf::getAdditionalParameters(void){
302 +  string parameters;
303 +  const int BUFFERSIZE = 2000; // size of the read buffer
304 +  char buffer[BUFFERSIZE];
305 +
306 +  sprintf(buffer,"\t%lf\t%lf;", chi, integralOfChidt);
307 +  parameters += buffer;
308 +
309 +  for(int i = 0; i < 3; i++){
310 +    sprintf(buffer,"\t%lf\t%lf\t%lf;", eta[3*i], eta[3*i+1], eta[3*i+2]);
311 +    parameters += buffer;
312 +  }
313 +
314 +  return parameters;
315 +
316 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines