1 |
tim |
391 |
#include <cassert> |
2 |
|
|
#include <fstream> |
3 |
|
|
#include <algorithm> |
4 |
|
|
#include "utils/simError.h" |
5 |
|
|
#include "math/ParallelRandNumGen.hpp" |
6 |
|
|
|
7 |
|
|
void RandNumGenTestCase::testUniform(){ |
8 |
|
|
MTRand randNumGen(823645754); |
9 |
|
|
|
10 |
|
|
const int N = 16; |
11 |
|
|
std::vector<unsigned long int> histogram(N, 0); |
12 |
|
|
const int num = 1000000; |
13 |
|
|
for (int i = 0; i <num; ++i) { |
14 |
|
|
++histogram[randNumGen.randInt(N -1 )]; // rantInt returns an integer in [0, N-1] |
15 |
|
|
} |
16 |
|
|
|
17 |
|
|
std::ofstream uniform("uniform.dat") |
18 |
|
|
int avg = num / N; |
19 |
|
|
double tolerance = 0.01*avg; |
20 |
|
|
for (int i = 0; i < num; ++i) { |
21 |
|
|
assert((histogram[i] - avg) /avg <= tolerance); |
22 |
|
|
uniform << i << "\t" << histogram[i] << std::endl; |
23 |
|
|
} |
24 |
|
|
} |
25 |
|
|
|
26 |
|
|
void RandNumGenTestCase::testGaussian(){ |
27 |
|
|
MTRand randNumGen(823645754); |
28 |
|
|
double mean = 100.0; |
29 |
|
|
double variance = 1.0; |
30 |
|
|
const int num = 1000000; |
31 |
|
|
double interval = 0.1; |
32 |
|
|
const int size = 2000; |
33 |
|
|
vector<unsigned long int> histogram(size , 0); |
34 |
|
|
vector<double> normalizedHistogram(size); |
35 |
|
|
for (int i = 0; i < num; ++i) { |
36 |
|
|
int index = static_cast<int>(randNumGen.randNorm(mean, variance) / interval); |
37 |
|
|
++histogram[index]; |
38 |
|
|
} |
39 |
|
|
|
40 |
|
|
std::transform(histogram.begin(), histogram.end(), normalizedHistogram.begin(), std::bind2nd(std::divides<double>(), num)); |
41 |
|
|
std::ofstream gaussian("gaussian.dat"); |
42 |
|
|
for (int i = 0; i < num; ++i) { |
43 |
|
|
gaussian << i << "\t" << normalizedHistogram[i] << std::endl; |
44 |
|
|
} |
45 |
|
|
} |
46 |
|
|
|
47 |
|
|
void RandNumGenTestCase::testParallelRandNumGen(){ |
48 |
|
|
const int seed = 324271632; |
49 |
|
|
const int nloops = 1000000; |
50 |
|
|
MPI_Status istatus; |
51 |
|
|
ParallelRandNumGen mpiRandNumGen(seed); |
52 |
|
|
const int masterNode = 0; |
53 |
|
|
if (worldRank = masterNode) { |
54 |
|
|
|
55 |
|
|
MTRand singleRandNumGen(seed); |
56 |
|
|
|
57 |
|
|
int nProcessors; |
58 |
|
|
MPI_Comm_size(MPI_COMM_WORLD, &nProcessors); |
59 |
|
|
std::vector<unsigned long int> mpiRandNums(nProcessors); |
60 |
|
|
std::vector<unsigned long int> singleRandNums(nProcessors); |
61 |
|
|
|
62 |
|
|
for (int i = 0; i < nloops; ++i) { |
63 |
|
|
mpiRandNums[masterNode] = mpiRandNumGen.randInt(); |
64 |
|
|
|
65 |
|
|
for (int j = 0; j < nProcessors; ++j) { |
66 |
|
|
if (j != masterNode) { |
67 |
|
|
MPI_Recv(&mpiRandNums[j], 1, MPI_UNSIGNED_LONG, j, i, MPI_COMM_WORLD, &istatus); |
68 |
|
|
} |
69 |
|
|
|
70 |
|
|
singleRandNums[j] = mpiRandNumGen.randInt(); |
71 |
|
|
} |
72 |
|
|
|
73 |
|
|
assert(mpiRandNums, singleRandNums); |
74 |
|
|
} |
75 |
|
|
|
76 |
|
|
|
77 |
|
|
|
78 |
|
|
} else { |
79 |
|
|
|
80 |
|
|
unsigned long int randNum; |
81 |
|
|
for (int i = 0; i < nloops; ++i) { |
82 |
|
|
randNum = mpiRandNumGen.randInt(); |
83 |
|
|
MPI_Send(&randNum, 1, MPI_INT, masterNode, i, MPI_COMM_WORLD); |
84 |
|
|
} |
85 |
|
|
|
86 |
|
|
} |
87 |
|
|
|
88 |
|
|
} |
89 |
|
|
|
90 |
|
|
|
91 |
|
|
int main(int argc, char* argv[]) { |
92 |
|
|
|
93 |
|
|
MPI_Init(argc, argv); |
94 |
|
|
|
95 |
|
|
if (worldRank == 0 ) { |
96 |
|
|
testUniform(); |
97 |
|
|
testGaussian(); |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
testParallelRandNumGen(); |
101 |
|
|
|
102 |
|
|
MPI_Finalize(); |
103 |
|
|
} |