1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include <cstring> |
43 |
#include "visitors/AtomVisitor.hpp" |
44 |
#include "primitives/DirectionalAtom.hpp" |
45 |
#include "primitives/RigidBody.hpp" |
46 |
|
47 |
namespace oopse { |
48 |
void BaseAtomVisitor::visit(RigidBody *rb) { |
49 |
//vector<Atom*> myAtoms; |
50 |
//vector<Atom*>::iterator atomIter; |
51 |
|
52 |
//myAtoms = rb->getAtoms(); |
53 |
|
54 |
//for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) |
55 |
// (*atomIter)->accept(this); |
56 |
} |
57 |
|
58 |
void BaseAtomVisitor::setVisited(Atom *atom) { |
59 |
GenericData *data; |
60 |
data = atom->getPropertyByName("VISITED"); |
61 |
|
62 |
//if visited property is not existed, add it as new property |
63 |
if (data == NULL) { |
64 |
data = new GenericData(); |
65 |
data->setID("VISITED"); |
66 |
atom->addProperty(data); |
67 |
} |
68 |
} |
69 |
|
70 |
bool BaseAtomVisitor::isVisited(Atom *atom) { |
71 |
GenericData *data; |
72 |
data = atom->getPropertyByName("VISITED"); |
73 |
return data == NULL ? false : true; |
74 |
} |
75 |
|
76 |
bool SSDAtomVisitor::isSSDAtom(const std::string&atomType) { |
77 |
std::set<std::string>::iterator strIter; |
78 |
strIter = ssdAtomType.find(atomType); |
79 |
return strIter != ssdAtomType.end() ? true : false; |
80 |
} |
81 |
|
82 |
void SSDAtomVisitor::visit(DirectionalAtom *datom) { |
83 |
std::vector<AtomInfo*>atoms; |
84 |
|
85 |
//we need to convert SSD into 4 different atoms |
86 |
//one oxygen atom, two hydrogen atoms and one pseudo atom which is the center of |
87 |
//the mass of the water with a dipole moment |
88 |
Vector3d h1(0.0, -0.75695, 0.5206); |
89 |
Vector3d h2(0.0, 0.75695, 0.5206); |
90 |
Vector3d ox(0.0, 0.0, -0.0654); |
91 |
Vector3d u(0, 0, 1); |
92 |
RotMat3x3d rotMatrix; |
93 |
RotMat3x3d rotTrans; |
94 |
AtomInfo * atomInfo; |
95 |
Vector3d pos; |
96 |
Vector3d newVec; |
97 |
Quat4d q; |
98 |
AtomData * atomData; |
99 |
GenericData *data; |
100 |
bool haveAtomData; |
101 |
|
102 |
//if atom is not SSD atom, just skip it |
103 |
if (!isSSDAtom(datom->getType())) |
104 |
return; |
105 |
|
106 |
data = datom->getPropertyByName("ATOMDATA"); |
107 |
|
108 |
if (data != NULL) { |
109 |
atomData = dynamic_cast<AtomData *>(data); |
110 |
|
111 |
if (atomData == NULL) { |
112 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
113 |
atomData = new AtomData; |
114 |
haveAtomData = false; |
115 |
} else |
116 |
haveAtomData = true; |
117 |
} else { |
118 |
atomData = new AtomData; |
119 |
haveAtomData = false; |
120 |
} |
121 |
|
122 |
pos = datom->getPos(); |
123 |
q = datom->getQ(); |
124 |
rotMatrix = datom->getA(); |
125 |
|
126 |
// We need A^T to convert from body-fixed to space-fixed: |
127 |
//transposeMat3(rotMatrix, rotTrans); |
128 |
rotTrans = rotMatrix.transpose(); |
129 |
|
130 |
//center of mass of the water molecule |
131 |
//matVecMul3(rotTrans, u, newVec); |
132 |
newVec = rotTrans * u; |
133 |
|
134 |
atomInfo = new AtomInfo; |
135 |
atomInfo->atomTypeName = "X"; |
136 |
atomInfo->pos[0] = pos[0]; |
137 |
atomInfo->pos[1] = pos[1]; |
138 |
atomInfo->pos[2] = pos[2]; |
139 |
atomInfo->dipole[0] = newVec[0]; |
140 |
atomInfo->dipole[1] = newVec[1]; |
141 |
atomInfo->dipole[2] = newVec[2]; |
142 |
|
143 |
atomData->addAtomInfo(atomInfo); |
144 |
|
145 |
//oxygen |
146 |
//matVecMul3(rotTrans, ox, newVec); |
147 |
newVec = rotTrans * ox; |
148 |
|
149 |
atomInfo = new AtomInfo; |
150 |
atomInfo->atomTypeName = "O"; |
151 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
152 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
153 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
154 |
atomInfo->dipole[0] = 0.0; |
155 |
atomInfo->dipole[1] = 0.0; |
156 |
atomInfo->dipole[2] = 0.0; |
157 |
atomData->addAtomInfo(atomInfo); |
158 |
|
159 |
//hydrogen1 |
160 |
//matVecMul3(rotTrans, h1, newVec); |
161 |
newVec = rotTrans * h1; |
162 |
atomInfo = new AtomInfo; |
163 |
atomInfo->atomTypeName = "H"; |
164 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
165 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
166 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
167 |
atomInfo->dipole[0] = 0.0; |
168 |
atomInfo->dipole[1] = 0.0; |
169 |
atomInfo->dipole[2] = 0.0; |
170 |
atomData->addAtomInfo(atomInfo); |
171 |
|
172 |
//hydrogen2 |
173 |
//matVecMul3(rotTrans, h2, newVec); |
174 |
newVec = rotTrans * h2; |
175 |
atomInfo = new AtomInfo; |
176 |
atomInfo->atomTypeName = "H"; |
177 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
178 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
179 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
180 |
atomInfo->dipole[0] = 0.0; |
181 |
atomInfo->dipole[1] = 0.0; |
182 |
atomInfo->dipole[2] = 0.0; |
183 |
atomData->addAtomInfo(atomInfo); |
184 |
|
185 |
//add atom data into atom's property |
186 |
|
187 |
if (!haveAtomData) { |
188 |
atomData->setID("ATOMDATA"); |
189 |
datom->addProperty(atomData); |
190 |
} |
191 |
|
192 |
setVisited(datom); |
193 |
} |
194 |
|
195 |
const std::string SSDAtomVisitor::toString() { |
196 |
char buffer[65535]; |
197 |
std::string result; |
198 |
|
199 |
sprintf(buffer, |
200 |
"------------------------------------------------------------------\n"); |
201 |
result += buffer; |
202 |
|
203 |
sprintf(buffer, "Visitor name: %s\n", visitorName.c_str()); |
204 |
result += buffer; |
205 |
|
206 |
sprintf(buffer, |
207 |
"Visitor Description: Convert SSD into 4 different atoms\n"); |
208 |
result += buffer; |
209 |
|
210 |
sprintf(buffer, |
211 |
"------------------------------------------------------------------\n"); |
212 |
result += buffer; |
213 |
|
214 |
return result; |
215 |
} |
216 |
|
217 |
|
218 |
bool TREDAtomVisitor::isTREDAtom(const std::string&atomType) { |
219 |
std::set<std::string>::iterator strIter; |
220 |
strIter = tredAtomType.find(atomType); |
221 |
return strIter != tredAtomType.end() ? true : false; |
222 |
} |
223 |
|
224 |
void TREDAtomVisitor::visit(DirectionalAtom *datom) { |
225 |
std::vector<AtomInfo*>atoms; |
226 |
|
227 |
// we need to convert a TRED into 4 different atoms: |
228 |
// one oxygen atom, two hydrogen atoms, and one atom which is the center of |
229 |
// the mass of the water with a dipole moment |
230 |
Vector3d h1(0.0, -0.75695, 0.5206); |
231 |
Vector3d h2(0.0, 0.75695, 0.5206); |
232 |
Vector3d ox(0.0, 0.0, -0.0654); |
233 |
Vector3d u(0, 0, 1); |
234 |
RotMat3x3d rotMatrix; |
235 |
RotMat3x3d rotTrans; |
236 |
AtomInfo * atomInfo; |
237 |
Vector3d pos; |
238 |
Vector3d newVec; |
239 |
Quat4d q; |
240 |
AtomData * atomData; |
241 |
GenericData *data; |
242 |
bool haveAtomData; |
243 |
|
244 |
// if the atom is not a TRED atom, skip it |
245 |
if (!isTREDAtom(datom->getType())) |
246 |
return; |
247 |
|
248 |
data = datom->getPropertyByName("ATOMDATA"); |
249 |
|
250 |
if (data != NULL) { |
251 |
atomData = dynamic_cast<AtomData *>(data); |
252 |
|
253 |
if (atomData == NULL) { |
254 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
255 |
atomData = new AtomData; |
256 |
haveAtomData = false; |
257 |
} else |
258 |
haveAtomData = true; |
259 |
} else { |
260 |
atomData = new AtomData; |
261 |
haveAtomData = false; |
262 |
} |
263 |
|
264 |
pos = datom->getPos(); |
265 |
q = datom->getQ(); |
266 |
rotMatrix = datom->getA(); |
267 |
|
268 |
// We need A^T to convert from body-fixed to space-fixed: |
269 |
// transposeMat3(rotMatrix, rotTrans); |
270 |
rotTrans = rotMatrix.transpose(); |
271 |
|
272 |
// center of mass of the water molecule |
273 |
// matVecMul3(rotTrans, u, newVec); |
274 |
newVec = rotTrans * u; |
275 |
|
276 |
atomInfo = new AtomInfo; |
277 |
atomInfo->atomTypeName = "TRED"; |
278 |
atomInfo->pos[0] = pos[0]; |
279 |
atomInfo->pos[1] = pos[1]; |
280 |
atomInfo->pos[2] = pos[2]; |
281 |
atomInfo->dipole[0] = newVec[0]; |
282 |
atomInfo->dipole[1] = newVec[1]; |
283 |
atomInfo->dipole[2] = newVec[2]; |
284 |
|
285 |
atomData->addAtomInfo(atomInfo); |
286 |
|
287 |
// oxygen |
288 |
// matVecMul3(rotTrans, ox, newVec); |
289 |
newVec = rotTrans * ox; |
290 |
|
291 |
atomInfo = new AtomInfo; |
292 |
atomInfo->atomTypeName = "O"; |
293 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
294 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
295 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
296 |
atomInfo->dipole[0] = 0.0; |
297 |
atomInfo->dipole[1] = 0.0; |
298 |
atomInfo->dipole[2] = 0.0; |
299 |
atomData->addAtomInfo(atomInfo); |
300 |
|
301 |
// hydrogen1 |
302 |
// matVecMul3(rotTrans, h1, newVec); |
303 |
newVec = rotTrans * h1; |
304 |
atomInfo = new AtomInfo; |
305 |
atomInfo->atomTypeName = "H"; |
306 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
307 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
308 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
309 |
atomInfo->dipole[0] = 0.0; |
310 |
atomInfo->dipole[1] = 0.0; |
311 |
atomInfo->dipole[2] = 0.0; |
312 |
atomData->addAtomInfo(atomInfo); |
313 |
|
314 |
// hydrogen2 |
315 |
// matVecMul3(rotTrans, h2, newVec); |
316 |
newVec = rotTrans * h2; |
317 |
atomInfo = new AtomInfo; |
318 |
atomInfo->atomTypeName = "H"; |
319 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
320 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
321 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
322 |
atomInfo->dipole[0] = 0.0; |
323 |
atomInfo->dipole[1] = 0.0; |
324 |
atomInfo->dipole[2] = 0.0; |
325 |
atomData->addAtomInfo(atomInfo); |
326 |
|
327 |
// add atom data into atom's property |
328 |
|
329 |
if (!haveAtomData) { |
330 |
atomData->setID("ATOMDATA"); |
331 |
datom->addProperty(atomData); |
332 |
} |
333 |
|
334 |
setVisited(datom); |
335 |
} |
336 |
|
337 |
const std::string TREDAtomVisitor::toString() { |
338 |
char buffer[65535]; |
339 |
std::string result; |
340 |
|
341 |
sprintf(buffer, |
342 |
"------------------------------------------------------------------\n"); |
343 |
result += buffer; |
344 |
|
345 |
sprintf(buffer, "Visitor name: %s\n", visitorName.c_str()); |
346 |
result += buffer; |
347 |
|
348 |
sprintf(buffer, |
349 |
"Visitor Description: Convert the TRED atom into 4 different atoms\n"); |
350 |
result += buffer; |
351 |
|
352 |
sprintf(buffer, |
353 |
"------------------------------------------------------------------\n"); |
354 |
result += buffer; |
355 |
|
356 |
return result; |
357 |
} |
358 |
|
359 |
|
360 |
bool LinearAtomVisitor::isLinearAtom(const std::string& atomType){ |
361 |
std::set<std::string>::iterator strIter; |
362 |
strIter = linearAtomType.find(atomType); |
363 |
|
364 |
return strIter != linearAtomType.end() ? true : false; |
365 |
} |
366 |
|
367 |
void LinearAtomVisitor::addGayBerneAtomType(const std::string& atomType){ |
368 |
linearAtomType.insert(atomType); |
369 |
} |
370 |
|
371 |
void LinearAtomVisitor::visit(DirectionalAtom* datom){ |
372 |
std::vector<AtomInfo*> atoms; |
373 |
//we need to convert linear into 4 different atoms |
374 |
Vector3d c1(0.0, 0.0, -1.8); |
375 |
Vector3d c2(0.0, 0.0, -0.6); |
376 |
Vector3d c3(0.0, 0.0, 0.6); |
377 |
Vector3d c4(0.0, 0.0, 1.8); |
378 |
RotMat3x3d rotMatrix; |
379 |
RotMat3x3d rotTrans; |
380 |
AtomInfo* atomInfo; |
381 |
Vector3d pos; |
382 |
Vector3d newVec; |
383 |
Quat4d q; |
384 |
AtomData* atomData; |
385 |
GenericData* data; |
386 |
bool haveAtomData; |
387 |
AtomType* atomType; |
388 |
//if atom is not linear atom, just skip it |
389 |
if(!isLinearAtom(datom->getType()) || !datom->getAtomType()->isGayBerne()) |
390 |
return; |
391 |
|
392 |
//setup GayBerne type in fortran side |
393 |
data = datom->getAtomType()->getPropertyByName("GayBerne"); |
394 |
if (data != NULL) { |
395 |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
396 |
|
397 |
if (gayBerneData != NULL) { |
398 |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
399 |
|
400 |
// double halfLen = gayBerneParam.GB_sigma * gayBerneParam.GB_l2b_ratio/2.0; |
401 |
double halfLen = gayBerneParam.GB_l/2.0; |
402 |
c1[2] = -halfLen; |
403 |
c2[2] = -halfLen /2; |
404 |
c3[2] = halfLen/2; |
405 |
c4[2] = halfLen; |
406 |
|
407 |
} |
408 |
|
409 |
else { |
410 |
sprintf( painCave.errMsg, |
411 |
"Can not cast GenericData to GayBerneParam\n"); |
412 |
painCave.severity = OOPSE_ERROR; |
413 |
painCave.isFatal = 1; |
414 |
simError(); |
415 |
} |
416 |
} |
417 |
|
418 |
|
419 |
data = datom->getPropertyByName("ATOMDATA"); |
420 |
if(data != NULL){ |
421 |
atomData = dynamic_cast<AtomData*>(data); |
422 |
if(atomData == NULL){ |
423 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
424 |
atomData = new AtomData; |
425 |
haveAtomData = false; |
426 |
} else { |
427 |
haveAtomData = true; |
428 |
} |
429 |
} else { |
430 |
atomData = new AtomData; |
431 |
haveAtomData = false; |
432 |
} |
433 |
|
434 |
|
435 |
pos = datom->getPos(); |
436 |
q = datom->getQ(); |
437 |
rotMatrix = datom->getA(); |
438 |
|
439 |
// We need A^T to convert from body-fixed to space-fixed: |
440 |
rotTrans = rotMatrix.transpose(); |
441 |
|
442 |
newVec = rotTrans * c1; |
443 |
atomInfo = new AtomInfo; |
444 |
atomInfo->atomTypeName = "C"; |
445 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
446 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
447 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
448 |
atomInfo->dipole[0] = 0.0; |
449 |
atomInfo->dipole[1] = 0.0; |
450 |
atomInfo->dipole[2] = 0.0; |
451 |
atomData->addAtomInfo(atomInfo); |
452 |
|
453 |
newVec = rotTrans * c2; |
454 |
atomInfo = new AtomInfo; |
455 |
atomInfo->atomTypeName = "C"; |
456 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
457 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
458 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
459 |
atomInfo->dipole[0] = 0.0; |
460 |
atomInfo->dipole[1] = 0.0; |
461 |
atomInfo->dipole[2] = 0.0; |
462 |
atomData->addAtomInfo(atomInfo); |
463 |
|
464 |
newVec = rotTrans * c3; |
465 |
atomInfo = new AtomInfo; |
466 |
atomInfo->atomTypeName = "C"; |
467 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
468 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
469 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
470 |
atomInfo->dipole[0] = 0.0; |
471 |
atomInfo->dipole[1] = 0.0; |
472 |
atomInfo->dipole[2] = 0.0; |
473 |
atomData->addAtomInfo(atomInfo); |
474 |
|
475 |
newVec = rotTrans * c4; |
476 |
atomInfo = new AtomInfo; |
477 |
atomInfo->atomTypeName = "C"; |
478 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
479 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
480 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
481 |
atomInfo->dipole[0] = 0.0; |
482 |
atomInfo->dipole[1] = 0.0; |
483 |
atomInfo->dipole[2] = 0.0; |
484 |
atomData->addAtomInfo(atomInfo); |
485 |
|
486 |
//add atom data into atom's property |
487 |
|
488 |
if(!haveAtomData){ |
489 |
atomData->setID("ATOMDATA"); |
490 |
datom->addProperty(atomData); |
491 |
} |
492 |
|
493 |
setVisited(datom); |
494 |
|
495 |
} |
496 |
|
497 |
const std::string LinearAtomVisitor::toString(){ |
498 |
char buffer[65535]; |
499 |
std::string result; |
500 |
|
501 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
502 |
result += buffer; |
503 |
|
504 |
sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str()); |
505 |
result += buffer; |
506 |
|
507 |
sprintf(buffer , "Visitor Description: Convert linear into 4 different atoms\n"); |
508 |
result += buffer; |
509 |
|
510 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
511 |
result += buffer; |
512 |
|
513 |
return result; |
514 |
} |
515 |
|
516 |
bool GBLipidAtomVisitor::isGBLipidAtom(const std::string& atomType){ |
517 |
std::set<std::string>::iterator strIter; |
518 |
strIter = GBLipidAtomType.find(atomType); |
519 |
|
520 |
return strIter != GBLipidAtomType.end() ? true : false; |
521 |
} |
522 |
|
523 |
void GBLipidAtomVisitor::visit(DirectionalAtom* datom){ |
524 |
std::vector<AtomInfo*> atoms; |
525 |
//we need to convert linear into 4 different atoms |
526 |
Vector3d c1(0.0, 0.0, -6.25); |
527 |
Vector3d c2(0.0, 0.0, -2.1); |
528 |
Vector3d c3(0.0, 0.0, 2.1); |
529 |
Vector3d c4(0.0, 0.0, 6.25); |
530 |
RotMat3x3d rotMatrix; |
531 |
RotMat3x3d rotTrans; |
532 |
AtomInfo* atomInfo; |
533 |
Vector3d pos; |
534 |
Vector3d newVec; |
535 |
Quat4d q; |
536 |
AtomData* atomData; |
537 |
GenericData* data; |
538 |
bool haveAtomData; |
539 |
|
540 |
//if atom is not GBlipid atom, just skip it |
541 |
if(!isGBLipidAtom(datom->getType())) |
542 |
return; |
543 |
|
544 |
data = datom->getPropertyByName("ATOMDATA"); |
545 |
if(data != NULL){ |
546 |
atomData = dynamic_cast<AtomData*>(data); |
547 |
if(atomData == NULL){ |
548 |
std::cerr << "can not get Atom Data from " << datom->getType() << std::endl; |
549 |
atomData = new AtomData; |
550 |
haveAtomData = false; |
551 |
} else { |
552 |
haveAtomData = true; |
553 |
} |
554 |
} else { |
555 |
atomData = new AtomData; |
556 |
haveAtomData = false; |
557 |
} |
558 |
|
559 |
|
560 |
pos = datom->getPos(); |
561 |
q = datom->getQ(); |
562 |
rotMatrix = datom->getA(); |
563 |
|
564 |
// We need A^T to convert from body-fixed to space-fixed: |
565 |
rotTrans = rotMatrix.transpose(); |
566 |
|
567 |
newVec = rotTrans * c1; |
568 |
atomInfo = new AtomInfo; |
569 |
atomInfo->atomTypeName = "K"; |
570 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
571 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
572 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
573 |
atomInfo->dipole[0] = 0.0; |
574 |
atomInfo->dipole[1] = 0.0; |
575 |
atomInfo->dipole[2] = 0.0; |
576 |
atomData->addAtomInfo(atomInfo); |
577 |
|
578 |
newVec = rotTrans * c2; |
579 |
atomInfo = new AtomInfo; |
580 |
atomInfo->atomTypeName = "K"; |
581 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
582 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
583 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
584 |
atomInfo->dipole[0] = 0.0; |
585 |
atomInfo->dipole[1] = 0.0; |
586 |
atomInfo->dipole[2] = 0.0; |
587 |
atomData->addAtomInfo(atomInfo); |
588 |
|
589 |
newVec = rotTrans * c3; |
590 |
atomInfo = new AtomInfo; |
591 |
atomInfo->atomTypeName = "K"; |
592 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
593 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
594 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
595 |
atomInfo->dipole[0] = 0.0; |
596 |
atomInfo->dipole[1] = 0.0; |
597 |
atomInfo->dipole[2] = 0.0; |
598 |
atomData->addAtomInfo(atomInfo); |
599 |
|
600 |
newVec = rotTrans * c4; |
601 |
atomInfo = new AtomInfo; |
602 |
atomInfo->atomTypeName = "K"; |
603 |
atomInfo->pos[0] = pos[0] + newVec[0]; |
604 |
atomInfo->pos[1] = pos[1] + newVec[1]; |
605 |
atomInfo->pos[2] = pos[2] + newVec[2]; |
606 |
atomInfo->dipole[0] = 0.0; |
607 |
atomInfo->dipole[1] = 0.0; |
608 |
atomInfo->dipole[2] = 0.0; |
609 |
atomData->addAtomInfo(atomInfo); |
610 |
|
611 |
//add atom data into atom's property |
612 |
|
613 |
if(!haveAtomData){ |
614 |
atomData->setID("ATOMDATA"); |
615 |
datom->addProperty(atomData); |
616 |
} |
617 |
|
618 |
setVisited(datom); |
619 |
|
620 |
} |
621 |
|
622 |
const std::string GBLipidAtomVisitor::toString(){ |
623 |
char buffer[65535]; |
624 |
std::string result; |
625 |
|
626 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
627 |
result += buffer; |
628 |
|
629 |
sprintf(buffer ,"Visitor name: %s\n", visitorName.c_str()); |
630 |
result += buffer; |
631 |
|
632 |
sprintf(buffer , "Visitor Description: Convert GBlipid into 4 different K atoms\n"); |
633 |
result += buffer; |
634 |
|
635 |
sprintf(buffer ,"------------------------------------------------------------------\n"); |
636 |
result += buffer; |
637 |
|
638 |
return result; |
639 |
} |
640 |
|
641 |
//----------------------------------------------------------------------------// |
642 |
|
643 |
void DefaultAtomVisitor::visit(Atom *atom) { |
644 |
AtomData *atomData; |
645 |
AtomInfo *atomInfo; |
646 |
Vector3d pos; |
647 |
|
648 |
if (isVisited(atom)) |
649 |
return; |
650 |
|
651 |
atomInfo = new AtomInfo; |
652 |
|
653 |
atomData = new AtomData; |
654 |
atomData->setID("ATOMDATA"); |
655 |
|
656 |
pos = atom->getPos(); |
657 |
atomInfo->atomTypeName = atom->getType(); |
658 |
atomInfo->pos[0] = pos[0]; |
659 |
atomInfo->pos[1] = pos[1]; |
660 |
atomInfo->pos[2] = pos[2]; |
661 |
atomInfo->dipole[0] = 0.0; |
662 |
atomInfo->dipole[1] = 0.0; |
663 |
atomInfo->dipole[2] = 0.0; |
664 |
|
665 |
atomData->addAtomInfo(atomInfo); |
666 |
|
667 |
atom->addProperty(atomData); |
668 |
|
669 |
setVisited(atom); |
670 |
} |
671 |
|
672 |
void DefaultAtomVisitor::visit(DirectionalAtom *datom) { |
673 |
AtomData *atomData; |
674 |
AtomInfo *atomInfo; |
675 |
Vector3d pos; |
676 |
Vector3d u; |
677 |
|
678 |
if (isVisited(datom)) |
679 |
return; |
680 |
|
681 |
pos = datom->getPos(); |
682 |
if (datom->getAtomType()->isGayBerne()) { |
683 |
u = datom->getA().transpose()*V3Z; |
684 |
} else if (datom->getAtomType()->isMultipole()) { |
685 |
u = datom->getElectroFrame().getColumn(2); |
686 |
} |
687 |
atomData = new AtomData; |
688 |
atomData->setID("ATOMDATA"); |
689 |
atomInfo = new AtomInfo; |
690 |
|
691 |
atomInfo->atomTypeName = datom->getType(); |
692 |
atomInfo->pos[0] = pos[0]; |
693 |
atomInfo->pos[1] = pos[1]; |
694 |
atomInfo->pos[2] = pos[2]; |
695 |
atomInfo->dipole[0] = u[0]; |
696 |
atomInfo->dipole[1] = u[1]; |
697 |
atomInfo->dipole[2] = u[2]; |
698 |
|
699 |
atomData->addAtomInfo(atomInfo); |
700 |
|
701 |
datom->addProperty(atomData); |
702 |
|
703 |
setVisited(datom); |
704 |
} |
705 |
|
706 |
const std::string DefaultAtomVisitor::toString() { |
707 |
char buffer[65535]; |
708 |
std::string result; |
709 |
|
710 |
sprintf(buffer, |
711 |
"------------------------------------------------------------------\n"); |
712 |
result += buffer; |
713 |
|
714 |
sprintf(buffer, "Visitor name: %s\n", visitorName.c_str()); |
715 |
result += buffer; |
716 |
|
717 |
sprintf(buffer, |
718 |
"Visitor Description: copy atom infomation into atom data\n"); |
719 |
result += buffer; |
720 |
|
721 |
sprintf(buffer, |
722 |
"------------------------------------------------------------------\n"); |
723 |
result += buffer; |
724 |
|
725 |
return result; |
726 |
} |
727 |
} //namespace oopse |