6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <iostream> |
49 |
|
#include "utils/MoLocator.hpp" |
50 |
|
#include "types/AtomType.hpp" |
51 |
|
|
52 |
< |
namespace oopse { |
52 |
> |
namespace OpenMD { |
53 |
|
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ |
54 |
|
|
55 |
|
myStamp = theStamp; |
59 |
|
} |
60 |
|
|
61 |
|
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
62 |
+ |
|
63 |
|
Vector3d newCoor; |
64 |
|
Vector3d curRefCoor; |
65 |
|
RotMat3x3d rotMat = latVec2RotMat(ort); |
73 |
|
} |
74 |
|
|
75 |
|
Molecule::IntegrableObjectIterator ii; |
76 |
< |
StuntDouble* integrableObject; |
76 |
> |
StuntDouble* sd; |
77 |
|
int i; |
78 |
< |
for (integrableObject = mol->beginIntegrableObject(ii), i = 0; integrableObject != NULL; |
79 |
< |
integrableObject = mol->nextIntegrableObject(ii), ++i) { |
78 |
> |
for (sd = mol->beginIntegrableObject(ii), i = 0; sd != NULL; |
79 |
> |
sd = mol->nextIntegrableObject(ii), ++i) { |
80 |
|
|
81 |
|
newCoor = rotMat * refCoords[i]; |
82 |
|
newCoor += offset; |
83 |
+ |
|
84 |
+ |
sd->setPos(newCoor); |
85 |
+ |
sd->setVel(V3Zero); |
86 |
|
|
87 |
< |
integrableObject->setPos( newCoor); |
88 |
< |
integrableObject->setVel(V3Zero); |
89 |
< |
|
85 |
< |
if(integrableObject->isDirectional()){ |
86 |
< |
integrableObject->setA(rotMat * integrableObject->getA()); |
87 |
< |
integrableObject->setJ(V3Zero); |
87 |
> |
if(sd->isDirectional()){ |
88 |
> |
sd->setA(rotMat * sd->getA()); |
89 |
> |
sd->setJ(V3Zero); |
90 |
|
} |
91 |
|
} |
92 |
|
} |
94 |
|
void MoLocator::calcRef( void ){ |
95 |
|
AtomStamp* currAtomStamp; |
96 |
|
RigidBodyStamp* rbStamp; |
97 |
< |
int nAtoms; |
97 |
> |
unsigned int nAtoms; |
98 |
|
int nRigidBodies; |
99 |
< |
std::vector<double> mass; |
99 |
> |
std::vector<RealType> mass; |
100 |
|
Vector3d coor; |
101 |
|
Vector3d refMolCom; |
102 |
|
int nAtomsInRb; |
103 |
< |
double totMassInRb; |
104 |
< |
double currAtomMass; |
105 |
< |
double molMass; |
103 |
> |
RealType totMassInRb; |
104 |
> |
RealType currAtomMass; |
105 |
> |
RealType molMass; |
106 |
|
|
107 |
|
nAtoms= myStamp->getNAtoms(); |
108 |
|
nRigidBodies = myStamp->getNRigidBodies(); |
109 |
|
|
110 |
< |
for(size_t i=0; i<nAtoms; i++){ |
110 |
> |
for(unsigned int i = 0; i < nAtoms; i++){ |
111 |
|
|
112 |
|
currAtomStamp = myStamp->getAtomStamp(i); |
113 |
|
|
184 |
|
refCoords[i] -= refMolCom; |
185 |
|
} |
186 |
|
|
187 |
< |
double getAtomMass(const std::string& at, ForceField* myFF) { |
188 |
< |
double mass; |
187 |
> |
RealType getAtomMass(const std::string& at, ForceField* myFF) { |
188 |
> |
RealType mass; |
189 |
|
AtomType* atomType= myFF->getAtomType(at); |
190 |
|
if (atomType != NULL) { |
191 |
|
mass = atomType->getMass(); |
196 |
|
return mass; |
197 |
|
} |
198 |
|
|
199 |
< |
double getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
200 |
< |
int nAtoms; |
201 |
< |
double totMass = 0; |
199 |
> |
RealType getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
200 |
> |
unsigned int nAtoms; |
201 |
> |
RealType totMass = 0; |
202 |
|
nAtoms = molStamp->getNAtoms(); |
203 |
|
|
204 |
< |
for(size_t i = 0; i < nAtoms; i++) { |
204 |
> |
for(unsigned int i = 0; i < nAtoms; i++) { |
205 |
|
AtomStamp *currAtomStamp = molStamp->getAtomStamp(i); |
206 |
|
totMass += getAtomMass(currAtomStamp->getType(), myFF); |
207 |
|
} |
209 |
|
} |
210 |
|
RotMat3x3d latVec2RotMat(const Vector3d& lv){ |
211 |
|
|
212 |
< |
double theta =acos(lv[2]); |
213 |
< |
double phi = atan2(lv[1], lv[0]); |
214 |
< |
double psi = 0; |
212 |
> |
RealType theta =acos(lv[2]); |
213 |
> |
RealType phi = atan2(lv[1], lv[0]); |
214 |
> |
RealType psi = 0; |
215 |
|
|
216 |
|
return RotMat3x3d(phi, theta, psi); |
217 |
|
|