1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <iostream> |
43 |
|
44 |
#include <cstdlib> |
45 |
#include <cmath> |
46 |
|
47 |
#include "utils/simError.h" |
48 |
#include "utils/MoLocator.hpp" |
49 |
#include "types/AtomType.hpp" |
50 |
|
51 |
namespace OpenMD { |
52 |
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ |
53 |
|
54 |
myStamp = theStamp; |
55 |
myFF = theFF; |
56 |
nIntegrableObjects = myStamp->getNIntegrable(); |
57 |
calcRef(); |
58 |
} |
59 |
|
60 |
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
61 |
|
62 |
Vector3d newCoor; |
63 |
Vector3d curRefCoor; |
64 |
RotMat3x3d rotMat = latVec2RotMat(ort); |
65 |
|
66 |
if(mol->getNIntegrableObjects() != nIntegrableObjects){ |
67 |
sprintf( painCave.errMsg, |
68 |
"MoLocator error.\n" |
69 |
" The number of integrable objects of MoleculeStamp is not the same as that of Molecule\n"); |
70 |
painCave.isFatal = 1; |
71 |
simError(); |
72 |
} |
73 |
|
74 |
Molecule::IntegrableObjectIterator ii; |
75 |
StuntDouble* integrableObject; |
76 |
int i; |
77 |
for (integrableObject = mol->beginIntegrableObject(ii), i = 0; integrableObject != NULL; |
78 |
integrableObject = mol->nextIntegrableObject(ii), ++i) { |
79 |
|
80 |
newCoor = rotMat * refCoords[i]; |
81 |
newCoor += offset; |
82 |
|
83 |
integrableObject->setPos(newCoor); |
84 |
integrableObject->setVel(V3Zero); |
85 |
|
86 |
if(integrableObject->isDirectional()){ |
87 |
integrableObject->setA(rotMat * integrableObject->getA()); |
88 |
integrableObject->setJ(V3Zero); |
89 |
} |
90 |
} |
91 |
} |
92 |
|
93 |
void MoLocator::calcRef( void ){ |
94 |
AtomStamp* currAtomStamp; |
95 |
RigidBodyStamp* rbStamp; |
96 |
int nAtoms; |
97 |
int nRigidBodies; |
98 |
std::vector<RealType> mass; |
99 |
Vector3d coor; |
100 |
Vector3d refMolCom; |
101 |
int nAtomsInRb; |
102 |
RealType totMassInRb; |
103 |
RealType currAtomMass; |
104 |
RealType molMass; |
105 |
|
106 |
nAtoms= myStamp->getNAtoms(); |
107 |
nRigidBodies = myStamp->getNRigidBodies(); |
108 |
|
109 |
for(size_t i=0; i<nAtoms; i++){ |
110 |
|
111 |
currAtomStamp = myStamp->getAtomStamp(i); |
112 |
|
113 |
if( !currAtomStamp->havePosition() ){ |
114 |
sprintf( painCave.errMsg, |
115 |
"MoLocator error.\n" |
116 |
" Component %s, atom %s does not have a position specified.\n" |
117 |
" This means MoLocator cannot initalize it's position.\n", |
118 |
myStamp->getName().c_str(), |
119 |
currAtomStamp->getType().c_str()); |
120 |
|
121 |
painCave.isFatal = 1; |
122 |
simError(); |
123 |
} |
124 |
|
125 |
//if atom belongs to rigidbody, just skip it |
126 |
if(myStamp->isAtomInRigidBody(i)) |
127 |
continue; |
128 |
//get mass and the reference coordinate |
129 |
else{ |
130 |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
131 |
mass.push_back(currAtomMass); |
132 |
coor.x() = currAtomStamp->getPosX(); |
133 |
coor.y() = currAtomStamp->getPosY(); |
134 |
coor.z() = currAtomStamp->getPosZ(); |
135 |
refCoords.push_back(coor); |
136 |
|
137 |
} |
138 |
} |
139 |
|
140 |
for(int i = 0; i < nRigidBodies; i++){ |
141 |
|
142 |
rbStamp = myStamp->getRigidBodyStamp(i); |
143 |
nAtomsInRb = rbStamp->getNMembers(); |
144 |
|
145 |
coor.x() = 0.0; |
146 |
coor.y() = 0.0; |
147 |
coor.z() = 0.0; |
148 |
totMassInRb = 0.0; |
149 |
|
150 |
for(int j = 0; j < nAtomsInRb; j++){ |
151 |
|
152 |
currAtomStamp = myStamp->getAtomStamp(rbStamp->getMemberAt(j)); |
153 |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
154 |
totMassInRb += currAtomMass; |
155 |
|
156 |
coor.x() += currAtomStamp->getPosX() * currAtomMass; |
157 |
coor.y() += currAtomStamp->getPosY() * currAtomMass; |
158 |
coor.z() += currAtomStamp->getPosZ() * currAtomMass; |
159 |
} |
160 |
|
161 |
mass.push_back(totMassInRb); |
162 |
coor /= totMassInRb; |
163 |
refCoords.push_back(coor); |
164 |
} |
165 |
|
166 |
|
167 |
//calculate the reference center of mass |
168 |
molMass = 0; |
169 |
refMolCom.x() = 0; |
170 |
refMolCom.y() = 0; |
171 |
refMolCom.z() = 0; |
172 |
|
173 |
for(int i = 0; i < nIntegrableObjects; i++){ |
174 |
refMolCom += refCoords[i] * mass[i]; |
175 |
molMass += mass[i]; |
176 |
} |
177 |
|
178 |
refMolCom /= molMass; |
179 |
|
180 |
//move the reference center of mass to (0,0,0) and adjust the reference coordinate |
181 |
//of the integrabel objects |
182 |
for(int i = 0; i < nIntegrableObjects; i++) |
183 |
refCoords[i] -= refMolCom; |
184 |
} |
185 |
|
186 |
RealType getAtomMass(const std::string& at, ForceField* myFF) { |
187 |
RealType mass; |
188 |
AtomType* atomType= myFF->getAtomType(at); |
189 |
if (atomType != NULL) { |
190 |
mass = atomType->getMass(); |
191 |
} else { |
192 |
mass = 0.0; |
193 |
std::cerr << "Can not find AtomType: " << at << std::endl; |
194 |
} |
195 |
return mass; |
196 |
} |
197 |
|
198 |
RealType getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
199 |
int nAtoms; |
200 |
RealType totMass = 0; |
201 |
nAtoms = molStamp->getNAtoms(); |
202 |
|
203 |
for(size_t i = 0; i < nAtoms; i++) { |
204 |
AtomStamp *currAtomStamp = molStamp->getAtomStamp(i); |
205 |
totMass += getAtomMass(currAtomStamp->getType(), myFF); |
206 |
} |
207 |
return totMass; |
208 |
} |
209 |
RotMat3x3d latVec2RotMat(const Vector3d& lv){ |
210 |
|
211 |
RealType theta =acos(lv[2]); |
212 |
RealType phi = atan2(lv[1], lv[0]); |
213 |
RealType psi = 0; |
214 |
|
215 |
return RotMat3x3d(phi, theta, psi); |
216 |
|
217 |
} |
218 |
} |
219 |
|