1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <iostream> |
47 |
|
#include "utils/simError.h" |
48 |
|
#include "utils/MoLocator.hpp" |
49 |
|
#include "types/AtomType.hpp" |
50 |
– |
namespace oopse { |
51 |
– |
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ |
50 |
|
|
51 |
< |
myStamp = theStamp; |
52 |
< |
myFF = theFF; |
53 |
< |
nIntegrableObjects = myStamp->getNIntegrable(); |
54 |
< |
calcRef(); |
55 |
< |
} |
51 |
> |
namespace OpenMD { |
52 |
> |
MoLocator::MoLocator( MoleculeStamp* theStamp, ForceField* theFF){ |
53 |
> |
|
54 |
> |
myStamp = theStamp; |
55 |
> |
myFF = theFF; |
56 |
> |
nIntegrableObjects = myStamp->getNIntegrable(); |
57 |
> |
calcRef(); |
58 |
> |
} |
59 |
> |
|
60 |
> |
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
61 |
|
|
59 |
– |
void MoLocator::placeMol( const Vector3d& offset, const Vector3d& ort, Molecule* mol){ |
62 |
|
Vector3d newCoor; |
63 |
|
Vector3d curRefCoor; |
64 |
|
RotMat3x3d rotMat = latVec2RotMat(ort); |
65 |
< |
|
65 |
> |
|
66 |
|
if(mol->getNIntegrableObjects() != nIntegrableObjects){ |
67 |
< |
sprintf( painCave.errMsg, |
68 |
< |
"MoLocator error.\n" |
69 |
< |
" The number of integrable objects of MoleculeStamp is not the same as that of Molecule\n"); |
70 |
< |
painCave.isFatal = 1; |
71 |
< |
simError(); |
67 |
> |
sprintf( painCave.errMsg, |
68 |
> |
"MoLocator error.\n" |
69 |
> |
" The number of integrable objects of MoleculeStamp is not the same as that of Molecule\n"); |
70 |
> |
painCave.isFatal = 1; |
71 |
> |
simError(); |
72 |
|
} |
73 |
< |
|
73 |
> |
|
74 |
|
Molecule::IntegrableObjectIterator ii; |
75 |
|
StuntDouble* integrableObject; |
76 |
|
int i; |
77 |
|
for (integrableObject = mol->beginIntegrableObject(ii), i = 0; integrableObject != NULL; |
78 |
< |
integrableObject = mol->nextIntegrableObject(ii), ++i) { |
79 |
< |
|
80 |
< |
newCoor = rotMat * refCoords[i]; |
81 |
< |
newCoor += offset; |
82 |
< |
|
83 |
< |
integrableObject->setPos( newCoor); |
84 |
< |
integrableObject->setVel(V3Zero); |
85 |
< |
|
86 |
< |
if(integrableObject->isDirectional()){ |
87 |
< |
integrableObject->setA(rotMat * integrableObject->getA()); |
88 |
< |
integrableObject->setJ(V3Zero); |
89 |
< |
} |
78 |
> |
integrableObject = mol->nextIntegrableObject(ii), ++i) { |
79 |
> |
|
80 |
> |
newCoor = rotMat * refCoords[i]; |
81 |
> |
newCoor += offset; |
82 |
> |
|
83 |
> |
integrableObject->setPos(newCoor); |
84 |
> |
integrableObject->setVel(V3Zero); |
85 |
> |
|
86 |
> |
if(integrableObject->isDirectional()){ |
87 |
> |
integrableObject->setA(rotMat * integrableObject->getA()); |
88 |
> |
integrableObject->setJ(V3Zero); |
89 |
> |
} |
90 |
|
} |
91 |
< |
} |
90 |
< |
|
91 |
< |
void MoLocator::calcRef( void ){ |
92 |
< |
AtomStamp* currAtomStamp; |
93 |
< |
int nAtoms; |
94 |
< |
int nRigidBodies; |
95 |
< |
std::vector<double> mass; |
96 |
< |
Vector3d coor; |
97 |
< |
Vector3d refMolCom; |
98 |
< |
int nAtomsInRb; |
99 |
< |
double totMassInRb; |
100 |
< |
double currAtomMass; |
101 |
< |
double molMass; |
91 |
> |
} |
92 |
|
|
93 |
< |
nAtoms= myStamp->getNAtoms(); |
94 |
< |
nRigidBodies = myStamp->getNRigidBodies(); |
95 |
< |
|
96 |
< |
for(size_t i=0; i<nAtoms; i++){ |
97 |
< |
|
98 |
< |
currAtomStamp = myStamp->getAtom(i); |
99 |
< |
|
100 |
< |
if( !currAtomStamp->havePosition() ){ |
101 |
< |
sprintf( painCave.errMsg, |
102 |
< |
"MoLocator error.\n" |
103 |
< |
" Component %s, atom %s does not have a position specified.\n" |
104 |
< |
" This means MoLocator cannot initalize it's position.\n", |
105 |
< |
myStamp->getID(), |
106 |
< |
currAtomStamp->getType() ); |
107 |
< |
|
108 |
< |
painCave.isFatal = 1; |
109 |
< |
simError(); |
93 |
> |
void MoLocator::calcRef( void ){ |
94 |
> |
AtomStamp* currAtomStamp; |
95 |
> |
RigidBodyStamp* rbStamp; |
96 |
> |
int nAtoms; |
97 |
> |
int nRigidBodies; |
98 |
> |
std::vector<RealType> mass; |
99 |
> |
Vector3d coor; |
100 |
> |
Vector3d refMolCom; |
101 |
> |
int nAtomsInRb; |
102 |
> |
RealType totMassInRb; |
103 |
> |
RealType currAtomMass; |
104 |
> |
RealType molMass; |
105 |
> |
|
106 |
> |
nAtoms= myStamp->getNAtoms(); |
107 |
> |
nRigidBodies = myStamp->getNRigidBodies(); |
108 |
> |
|
109 |
> |
for(size_t i=0; i<nAtoms; i++){ |
110 |
> |
|
111 |
> |
currAtomStamp = myStamp->getAtomStamp(i); |
112 |
> |
|
113 |
> |
if( !currAtomStamp->havePosition() ){ |
114 |
> |
sprintf( painCave.errMsg, |
115 |
> |
"MoLocator error.\n" |
116 |
> |
" Component %s, atom %s does not have a position specified.\n" |
117 |
> |
" This means MoLocator cannot initalize it's position.\n", |
118 |
> |
myStamp->getName().c_str(), |
119 |
> |
currAtomStamp->getType().c_str()); |
120 |
> |
|
121 |
> |
painCave.isFatal = 1; |
122 |
> |
simError(); |
123 |
> |
} |
124 |
> |
|
125 |
> |
//if atom belongs to rigidbody, just skip it |
126 |
> |
if(myStamp->isAtomInRigidBody(i)) |
127 |
> |
continue; |
128 |
> |
//get mass and the reference coordinate |
129 |
> |
else{ |
130 |
> |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
131 |
> |
mass.push_back(currAtomMass); |
132 |
> |
coor.x() = currAtomStamp->getPosX(); |
133 |
> |
coor.y() = currAtomStamp->getPosY(); |
134 |
> |
coor.z() = currAtomStamp->getPosZ(); |
135 |
> |
refCoords.push_back(coor); |
136 |
> |
|
137 |
> |
} |
138 |
|
} |
121 |
– |
|
122 |
– |
//if atom belongs to rigidbody, just skip it |
123 |
– |
if(myStamp->isAtomInRigidBody(i)) |
124 |
– |
continue; |
125 |
– |
//get mass and the reference coordinate |
126 |
– |
else{ |
139 |
|
|
140 |
< |
mass.push_back(currAtomMass); |
141 |
< |
coor.x() = currAtomStamp->getPosX(); |
142 |
< |
coor.y() = currAtomStamp->getPosY(); |
143 |
< |
coor.z() = currAtomStamp->getPosZ(); |
140 |
> |
for(int i = 0; i < nRigidBodies; i++){ |
141 |
> |
|
142 |
> |
rbStamp = myStamp->getRigidBodyStamp(i); |
143 |
> |
nAtomsInRb = rbStamp->getNMembers(); |
144 |
> |
|
145 |
> |
coor.x() = 0.0; |
146 |
> |
coor.y() = 0.0; |
147 |
> |
coor.z() = 0.0; |
148 |
> |
totMassInRb = 0.0; |
149 |
> |
|
150 |
> |
for(int j = 0; j < nAtomsInRb; j++){ |
151 |
> |
|
152 |
> |
currAtomStamp = myStamp->getAtomStamp(rbStamp->getMemberAt(j)); |
153 |
> |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
154 |
> |
totMassInRb += currAtomMass; |
155 |
> |
|
156 |
> |
coor.x() += currAtomStamp->getPosX() * currAtomMass; |
157 |
> |
coor.y() += currAtomStamp->getPosY() * currAtomMass; |
158 |
> |
coor.z() += currAtomStamp->getPosZ() * currAtomMass; |
159 |
> |
} |
160 |
> |
|
161 |
> |
mass.push_back(totMassInRb); |
162 |
> |
coor /= totMassInRb; |
163 |
|
refCoords.push_back(coor); |
133 |
– |
|
164 |
|
} |
165 |
< |
} |
166 |
< |
|
167 |
< |
for(int i = 0; i < nRigidBodies; i++){ |
168 |
< |
coor.x() = 0; |
169 |
< |
coor.y() = 0; |
170 |
< |
coor.z() = 0; |
171 |
< |
totMassInRb = 0; |
172 |
< |
|
173 |
< |
for(int j = 0; j < nAtomsInRb; j++){ |
174 |
< |
|
175 |
< |
currAtomMass = getAtomMass(currAtomStamp->getType(), myFF); |
146 |
< |
totMassInRb += currAtomMass; |
147 |
< |
|
148 |
< |
coor.x() += currAtomStamp->getPosX() * currAtomMass; |
149 |
< |
coor.y() += currAtomStamp->getPosY() * currAtomMass; |
150 |
< |
coor.z() += currAtomStamp->getPosZ() * currAtomMass; |
165 |
> |
|
166 |
> |
|
167 |
> |
//calculate the reference center of mass |
168 |
> |
molMass = 0; |
169 |
> |
refMolCom.x() = 0; |
170 |
> |
refMolCom.y() = 0; |
171 |
> |
refMolCom.z() = 0; |
172 |
> |
|
173 |
> |
for(int i = 0; i < nIntegrableObjects; i++){ |
174 |
> |
refMolCom += refCoords[i] * mass[i]; |
175 |
> |
molMass += mass[i]; |
176 |
|
} |
177 |
< |
|
178 |
< |
mass.push_back(totMassInRb); |
179 |
< |
coor /= totMassInRb; |
180 |
< |
refCoords.push_back(coor); |
177 |
> |
|
178 |
> |
refMolCom /= molMass; |
179 |
> |
|
180 |
> |
//move the reference center of mass to (0,0,0) and adjust the reference coordinate |
181 |
> |
//of the integrabel objects |
182 |
> |
for(int i = 0; i < nIntegrableObjects; i++) |
183 |
> |
refCoords[i] -= refMolCom; |
184 |
|
} |
157 |
– |
|
158 |
– |
|
159 |
– |
//calculate the reference center of mass |
160 |
– |
molMass = 0; |
161 |
– |
refMolCom.x() = 0; |
162 |
– |
refMolCom.y() = 0; |
163 |
– |
refMolCom.z() = 0; |
185 |
|
|
186 |
< |
for(int i = 0; i < nIntegrableObjects; i++){ |
187 |
< |
refMolCom += refCoords[i] * mass[i]; |
167 |
< |
molMass += mass[i]; |
168 |
< |
} |
169 |
< |
|
170 |
< |
refMolCom /= molMass; |
171 |
< |
|
172 |
< |
//move the reference center of mass to (0,0,0) and adjust the reference coordinate |
173 |
< |
//of the integrabel objects |
174 |
< |
for(int i = 0; i < nIntegrableObjects; i++) |
175 |
< |
refCoords[i] -= refMolCom; |
176 |
< |
} |
177 |
< |
|
178 |
< |
|
179 |
< |
|
180 |
< |
double getAtomMass(const std::string& at, ForceField* myFF) { |
181 |
< |
double mass; |
186 |
> |
RealType getAtomMass(const std::string& at, ForceField* myFF) { |
187 |
> |
RealType mass; |
188 |
|
AtomType* atomType= myFF->getAtomType(at); |
189 |
|
if (atomType != NULL) { |
190 |
< |
mass = atomType->getMass(); |
190 |
> |
mass = atomType->getMass(); |
191 |
|
} else { |
192 |
< |
mass = 0.0; |
193 |
< |
std::cerr << "Can not find AtomType: " << at << std::endl; |
192 |
> |
mass = 0.0; |
193 |
> |
std::cerr << "Can not find AtomType: " << at << std::endl; |
194 |
|
} |
195 |
|
return mass; |
196 |
< |
} |
197 |
< |
|
198 |
< |
double getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
196 |
> |
} |
197 |
> |
|
198 |
> |
RealType getMolMass(MoleculeStamp *molStamp, ForceField *myFF) { |
199 |
|
int nAtoms; |
200 |
< |
double totMass = 0; |
200 |
> |
RealType totMass = 0; |
201 |
|
nAtoms = molStamp->getNAtoms(); |
202 |
< |
|
202 |
> |
|
203 |
|
for(size_t i = 0; i < nAtoms; i++) { |
204 |
< |
AtomStamp *currAtomStamp = molStamp->getAtom(i); |
205 |
< |
totMass += getAtomMass(currAtomStamp->getType(), myFF); |
204 |
> |
AtomStamp *currAtomStamp = molStamp->getAtomStamp(i); |
205 |
> |
totMass += getAtomMass(currAtomStamp->getType(), myFF); |
206 |
|
} |
207 |
|
return totMass; |
208 |
< |
} |
209 |
< |
RotMat3x3d latVec2RotMat(const Vector3d& lv){ |
210 |
< |
|
211 |
< |
double theta =acos(lv[2]); |
212 |
< |
double phi = atan2(lv[1], lv[0]); |
213 |
< |
double psi = 0; |
214 |
< |
|
208 |
> |
} |
209 |
> |
RotMat3x3d latVec2RotMat(const Vector3d& lv){ |
210 |
> |
|
211 |
> |
RealType theta =acos(lv[2]); |
212 |
> |
RealType phi = atan2(lv[1], lv[0]); |
213 |
> |
RealType psi = 0; |
214 |
> |
|
215 |
|
return RotMat3x3d(phi, theta, psi); |
216 |
< |
|
216 |
> |
|
217 |
> |
} |
218 |
|
} |
212 |
– |
} |
219 |
|
|