1 |
/* |
2 |
* Copyright (c) 2012 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#ifndef UTILS_ACCUMULATOR_HPP |
44 |
#define UTILS_ACCUMULATOR_HPP |
45 |
|
46 |
#include <cmath> |
47 |
#include <cassert> |
48 |
#include "math/Vector3.hpp" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
|
53 |
class BaseAccumulator { |
54 |
public: |
55 |
virtual void clear() = 0; |
56 |
/** |
57 |
* get the number of accumulated values |
58 |
*/ |
59 |
virtual size_t count() { |
60 |
return Count_; |
61 |
} |
62 |
virtual ~BaseAccumulator() {}; |
63 |
protected: |
64 |
size_t Count_; |
65 |
|
66 |
}; |
67 |
|
68 |
|
69 |
|
70 |
/** |
71 |
* Basic Accumulator class for numbers. |
72 |
*/ |
73 |
class Accumulator : public BaseAccumulator { |
74 |
|
75 |
typedef RealType ElementType; |
76 |
typedef RealType ResultType; |
77 |
|
78 |
public: |
79 |
|
80 |
Accumulator() : BaseAccumulator() { |
81 |
this->clear(); |
82 |
} |
83 |
|
84 |
~Accumulator() {}; |
85 |
|
86 |
/** |
87 |
* Accumulate another value |
88 |
*/ |
89 |
virtual void add(ElementType const& val) { |
90 |
Count_++; |
91 |
Avg_ += (val - Avg_ ) / Count_; |
92 |
Avg2_ += (val * val - Avg2_) / Count_; |
93 |
Val_ = val; |
94 |
if (Count_ <= 1) { |
95 |
Max_ = val; |
96 |
Min_ = val; |
97 |
} else { |
98 |
Max_ = val > Max_ ? val : Max_; |
99 |
Min_ = val < Min_ ? val : Min_; |
100 |
} |
101 |
} |
102 |
|
103 |
/** |
104 |
* reset the Accumulator to the empty state |
105 |
*/ |
106 |
void clear() { |
107 |
Count_ = 0; |
108 |
Avg_ = 0; |
109 |
Avg2_ = 0; |
110 |
Val_ = 0; |
111 |
} |
112 |
|
113 |
|
114 |
/** |
115 |
* return the most recently added value |
116 |
*/ |
117 |
void getLastValue(ElementType &ret) { |
118 |
ret = Val_; |
119 |
return; |
120 |
} |
121 |
|
122 |
/** |
123 |
* compute the Mean |
124 |
*/ |
125 |
void getAverage(ResultType &ret) { |
126 |
assert(Count_ != 0); |
127 |
ret = Avg_; |
128 |
return; |
129 |
} |
130 |
|
131 |
/** |
132 |
* compute the Variance |
133 |
*/ |
134 |
void getVariance(ResultType &ret) { |
135 |
assert(Count_ != 0); |
136 |
ret = (Avg2_ - Avg_ * Avg_); |
137 |
return; |
138 |
} |
139 |
|
140 |
/** |
141 |
* compute error of average value |
142 |
*/ |
143 |
void getStdDev(ResultType &ret) { |
144 |
assert(Count_ != 0); |
145 |
RealType var; |
146 |
this->getVariance(var); |
147 |
ret = sqrt(var); |
148 |
return; |
149 |
} |
150 |
|
151 |
/** |
152 |
* return the largest value |
153 |
*/ |
154 |
void getMax(ElementType &ret) { |
155 |
assert(Count_ != 0); |
156 |
ret = Max_; |
157 |
return; |
158 |
} |
159 |
|
160 |
/** |
161 |
* return the smallest value |
162 |
*/ |
163 |
void getMin(ElementType &ret) { |
164 |
assert(Count_ != 0); |
165 |
ret = Max_; |
166 |
return; |
167 |
} |
168 |
|
169 |
/** |
170 |
* return the 95% confidence interval: |
171 |
* |
172 |
* That is returns c, such that we have 95% confidence that the |
173 |
* true mean is within 2c of the Average (x): |
174 |
* |
175 |
* x - c <= true mean <= x + c |
176 |
* |
177 |
*/ |
178 |
void get95percentConfidenceInterval(ResultType &ret) { |
179 |
assert(Count_ != 0); |
180 |
RealType sd; |
181 |
this->getStdDev(sd); |
182 |
ret = 1.960 * sd / sqrt(RealType(Count_)); |
183 |
return; |
184 |
} |
185 |
|
186 |
private: |
187 |
ElementType Val_; |
188 |
ResultType Avg_; |
189 |
ResultType Avg2_; |
190 |
ElementType Min_; |
191 |
ElementType Max_; |
192 |
}; |
193 |
|
194 |
class VectorAccumulator : public BaseAccumulator { |
195 |
|
196 |
typedef Vector3d ElementType; |
197 |
typedef Vector3d ResultType; |
198 |
|
199 |
public: |
200 |
VectorAccumulator() : BaseAccumulator() { |
201 |
this->clear(); |
202 |
} |
203 |
|
204 |
/** |
205 |
* Accumulate another value |
206 |
*/ |
207 |
void add(ElementType const& val) { |
208 |
Count_++; |
209 |
RealType len(0.0); |
210 |
for (unsigned int i =0; i < 3; i++) { |
211 |
Avg_[i] += (val[i] - Avg_[i] ) / Count_; |
212 |
Avg2_[i] += (val[i] * val[i] - Avg2_[i]) / Count_; |
213 |
Val_[i] = val[i]; |
214 |
len += val[i]*val[i]; |
215 |
} |
216 |
len = sqrt(len); |
217 |
AvgLen_ += (len - AvgLen_ ) / Count_; |
218 |
AvgLen2_ += (len * len - AvgLen2_) / Count_; |
219 |
|
220 |
if (Count_ <= 1) { |
221 |
Max_ = len; |
222 |
Min_ = len; |
223 |
} else { |
224 |
Max_ = len > Max_ ? len : Max_; |
225 |
Min_ = len < Min_ ? len : Min_; |
226 |
} |
227 |
} |
228 |
|
229 |
/** |
230 |
* reset the Accumulator to the empty state |
231 |
*/ |
232 |
void clear() { |
233 |
Count_ = 0; |
234 |
Avg_ = V3Zero; |
235 |
Avg2_ = V3Zero; |
236 |
Val_ = V3Zero; |
237 |
AvgLen_ = 0; |
238 |
AvgLen2_ = 0; |
239 |
} |
240 |
|
241 |
/** |
242 |
* return the most recently added value |
243 |
*/ |
244 |
void getLastValue(ElementType &ret) { |
245 |
ret = Val_; |
246 |
return; |
247 |
} |
248 |
|
249 |
/** |
250 |
* compute the Mean |
251 |
*/ |
252 |
void getAverage(ResultType &ret) { |
253 |
assert(Count_ != 0); |
254 |
ret = Avg_; |
255 |
return; |
256 |
} |
257 |
|
258 |
/** |
259 |
* compute the Variance |
260 |
*/ |
261 |
void getVariance(ResultType &ret) { |
262 |
assert(Count_ != 0); |
263 |
for (unsigned int i =0; i < 3; i++) { |
264 |
ret[i] = (Avg2_[i] - Avg_[i] * Avg_[i]); |
265 |
} |
266 |
return; |
267 |
} |
268 |
|
269 |
/** |
270 |
* compute error of average value |
271 |
*/ |
272 |
void getStdDev(ResultType &ret) { |
273 |
assert(Count_ != 0); |
274 |
ResultType var; |
275 |
this->getVariance(var); |
276 |
ret[0] = sqrt(var[0]); |
277 |
ret[1] = sqrt(var[1]); |
278 |
ret[2] = sqrt(var[2]); |
279 |
return; |
280 |
} |
281 |
|
282 |
/** |
283 |
* return the 95% confidence interval: |
284 |
* |
285 |
* That is returns c, such that we have 95% confidence that the |
286 |
* true mean is within 2c of the Average (x): |
287 |
* |
288 |
* x - c <= true mean <= x + c |
289 |
* |
290 |
*/ |
291 |
void get95percentConfidenceInterval(ResultType &ret) { |
292 |
assert(Count_ != 0); |
293 |
ResultType sd; |
294 |
this->getStdDev(sd); |
295 |
ret[0] = 1.960 * sd[0] / sqrt(RealType(Count_)); |
296 |
ret[1] = 1.960 * sd[1] / sqrt(RealType(Count_)); |
297 |
ret[2] = 1.960 * sd[2] / sqrt(RealType(Count_)); |
298 |
return; |
299 |
} |
300 |
|
301 |
/** |
302 |
* return the largest length |
303 |
*/ |
304 |
void getMaxLength(RealType &ret) { |
305 |
assert(Count_ != 0); |
306 |
ret = Max_; |
307 |
return; |
308 |
} |
309 |
|
310 |
/** |
311 |
* return the smallest length |
312 |
*/ |
313 |
void getMinLength(RealType &ret) { |
314 |
assert(Count_ != 0); |
315 |
ret = Min_; |
316 |
return; |
317 |
} |
318 |
|
319 |
/** |
320 |
* return the largest length |
321 |
*/ |
322 |
void getAverageLength(RealType &ret) { |
323 |
assert(Count_ != 0); |
324 |
ret = AvgLen_; |
325 |
return; |
326 |
} |
327 |
|
328 |
/** |
329 |
* compute the Variance of the length |
330 |
*/ |
331 |
void getLengthVariance(RealType &ret) { |
332 |
assert(Count_ != 0); |
333 |
ret= (AvgLen2_ - AvgLen_ * AvgLen_); |
334 |
return; |
335 |
} |
336 |
|
337 |
/** |
338 |
* compute error of average value |
339 |
*/ |
340 |
void getLengthStdDev(RealType &ret) { |
341 |
assert(Count_ != 0); |
342 |
RealType var; |
343 |
this->getLengthVariance(var); |
344 |
ret = sqrt(var); |
345 |
return; |
346 |
} |
347 |
|
348 |
/** |
349 |
* return the 95% confidence interval: |
350 |
* |
351 |
* That is returns c, such that we have 95% confidence that the |
352 |
* true mean is within 2c of the Average (x): |
353 |
* |
354 |
* x - c <= true mean <= x + c |
355 |
* |
356 |
*/ |
357 |
void getLength95percentConfidenceInterval(ResultType &ret) { |
358 |
assert(Count_ != 0); |
359 |
RealType sd; |
360 |
this->getLengthStdDev(sd); |
361 |
ret = 1.960 * sd / sqrt(RealType(Count_)); |
362 |
return; |
363 |
} |
364 |
|
365 |
|
366 |
private: |
367 |
ResultType Val_; |
368 |
ResultType Avg_; |
369 |
ResultType Avg2_; |
370 |
RealType AvgLen_; |
371 |
RealType AvgLen2_; |
372 |
RealType Min_; |
373 |
RealType Max_; |
374 |
|
375 |
}; |
376 |
|
377 |
class MatrixAccumulator : public BaseAccumulator { |
378 |
|
379 |
typedef Mat3x3d ElementType; |
380 |
typedef Mat3x3d ResultType; |
381 |
|
382 |
public: |
383 |
MatrixAccumulator() : BaseAccumulator() { |
384 |
this->clear(); |
385 |
} |
386 |
|
387 |
/** |
388 |
* Accumulate another value |
389 |
*/ |
390 |
void add(ElementType const& val) { |
391 |
Count_++; |
392 |
for (unsigned int i = 0; i < 3; i++) { |
393 |
for (unsigned int j = 0; j < 3; j++) { |
394 |
Avg_(i,j) += (val(i,j) - Avg_(i,j) ) / Count_; |
395 |
Avg2_(i,j) += (val(i,j) * val(i,j) - Avg2_(i,j)) / Count_; |
396 |
Val_(i,j) = val(i,j); |
397 |
} |
398 |
} |
399 |
} |
400 |
|
401 |
/** |
402 |
* reset the Accumulator to the empty state |
403 |
*/ |
404 |
void clear() { |
405 |
Count_ = 0; |
406 |
Avg_ *= 0.0; |
407 |
Avg2_ *= 0.0; |
408 |
Val_ *= 0.0; |
409 |
} |
410 |
|
411 |
/** |
412 |
* return the most recently added value |
413 |
*/ |
414 |
void getLastValue(ElementType &ret) { |
415 |
ret = Val_; |
416 |
return; |
417 |
} |
418 |
|
419 |
/** |
420 |
* compute the Mean |
421 |
*/ |
422 |
void getAverage(ResultType &ret) { |
423 |
assert(Count_ != 0); |
424 |
ret = Avg_; |
425 |
return; |
426 |
} |
427 |
|
428 |
/** |
429 |
* compute the Variance |
430 |
*/ |
431 |
void getVariance(ResultType &ret) { |
432 |
assert(Count_ != 0); |
433 |
for (unsigned int i = 0; i < 3; i++) { |
434 |
for (unsigned int j = 0; j < 3; j++) { |
435 |
ret(i,j) = (Avg2_(i,j) - Avg_(i,j) * Avg_(i,j)); |
436 |
} |
437 |
} |
438 |
return; |
439 |
} |
440 |
|
441 |
/** |
442 |
* compute error of average value |
443 |
*/ |
444 |
void getStdDev(ResultType &ret) { |
445 |
assert(Count_ != 0); |
446 |
Mat3x3d var; |
447 |
this->getVariance(var); |
448 |
for (unsigned int i = 0; i < 3; i++) { |
449 |
for (unsigned int j = 0; j < 3; j++) { |
450 |
ret(i,j) = sqrt(var(i,j)); |
451 |
} |
452 |
} |
453 |
return; |
454 |
} |
455 |
|
456 |
/** |
457 |
* return the 95% confidence interval: |
458 |
* |
459 |
* That is returns c, such that we have 95% confidence that the |
460 |
* true mean is within 2c of the Average (x): |
461 |
* |
462 |
* x - c <= true mean <= x + c |
463 |
* |
464 |
*/ |
465 |
void get95percentConfidenceInterval(ResultType &ret) { |
466 |
assert(Count_ != 0); |
467 |
Mat3x3d sd; |
468 |
this->getStdDev(sd); |
469 |
for (unsigned int i = 0; i < 3; i++) { |
470 |
for (unsigned int j = 0; j < 3; j++) { |
471 |
ret(i,j) = 1.960 * sd(i,j) / sqrt(RealType(Count_)); |
472 |
} |
473 |
} |
474 |
return; |
475 |
} |
476 |
|
477 |
private: |
478 |
ElementType Val_; |
479 |
ResultType Avg_; |
480 |
ResultType Avg2_; |
481 |
}; |
482 |
|
483 |
|
484 |
} |
485 |
|
486 |
#endif |