1 |
/* |
2 |
* Copyright (c) 2005, 2010 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#ifdef IS_MPI |
44 |
#include <mpi.h> |
45 |
#endif |
46 |
|
47 |
#include "selection/DistanceFinder.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
|
50 |
namespace OpenMD { |
51 |
|
52 |
DistanceFinder::DistanceFinder(SimInfo* info) : info_(info) { |
53 |
nObjects_.push_back(info_->getNGlobalAtoms()+info_->getNGlobalRigidBodies()); |
54 |
nObjects_.push_back(info_->getNGlobalBonds()); |
55 |
nObjects_.push_back(info_->getNGlobalBends()); |
56 |
nObjects_.push_back(info_->getNGlobalTorsions()); |
57 |
nObjects_.push_back(info_->getNGlobalInversions()); |
58 |
|
59 |
stuntdoubles_.resize(nObjects_[STUNTDOUBLE]); |
60 |
bonds_.resize(nObjects_[BOND]); |
61 |
bends_.resize(nObjects_[BEND]); |
62 |
torsions_.resize(nObjects_[TORSION]); |
63 |
inversions_.resize(nObjects_[INVERSION]); |
64 |
|
65 |
SimInfo::MoleculeIterator mi; |
66 |
Molecule::AtomIterator ai; |
67 |
Molecule::RigidBodyIterator rbIter; |
68 |
Molecule::BondIterator bondIter; |
69 |
Molecule::BendIterator bendIter; |
70 |
Molecule::TorsionIterator torsionIter; |
71 |
Molecule::InversionIterator inversionIter; |
72 |
|
73 |
Molecule* mol; |
74 |
Atom* atom; |
75 |
RigidBody* rb; |
76 |
Bond* bond; |
77 |
Bend* bend; |
78 |
Torsion* torsion; |
79 |
Inversion* inversion; |
80 |
|
81 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
82 |
mol = info_->nextMolecule(mi)) { |
83 |
|
84 |
for(atom = mol->beginAtom(ai); atom != NULL; |
85 |
atom = mol->nextAtom(ai)) { |
86 |
stuntdoubles_[atom->getGlobalIndex()] = atom; |
87 |
} |
88 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
89 |
rb = mol->nextRigidBody(rbIter)) { |
90 |
stuntdoubles_[rb->getGlobalIndex()] = rb; |
91 |
} |
92 |
for (bond = mol->beginBond(bondIter); bond != NULL; |
93 |
bond = mol->nextBond(bondIter)) { |
94 |
bonds_[bond->getGlobalIndex()] = bond; |
95 |
} |
96 |
for (bend = mol->beginBend(bendIter); bend != NULL; |
97 |
bend = mol->nextBend(bendIter)) { |
98 |
bends_[bend->getGlobalIndex()] = bend; |
99 |
} |
100 |
for (torsion = mol->beginTorsion(torsionIter); torsion != NULL; |
101 |
torsion = mol->nextTorsion(torsionIter)) { |
102 |
torsions_[torsion->getGlobalIndex()] = torsion; |
103 |
} |
104 |
for (inversion = mol->beginInversion(inversionIter); inversion != NULL; |
105 |
inversion = mol->nextInversion(inversionIter)) { |
106 |
inversions_[inversion->getGlobalIndex()] = inversion; |
107 |
} |
108 |
|
109 |
} |
110 |
} |
111 |
|
112 |
SelectionSet DistanceFinder::find(const SelectionSet& bs, RealType distance) { |
113 |
StuntDouble * center; |
114 |
Vector3d centerPos; |
115 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
116 |
SelectionSet bsResult(nObjects_); |
117 |
assert(bsResult.size() == bs.size()); |
118 |
|
119 |
#ifdef IS_MPI |
120 |
int mol; |
121 |
int proc; |
122 |
RealType data[3]; |
123 |
int worldRank; |
124 |
MPI_Comm_rank( MPI_COMM_WORLD, &worldRank); |
125 |
#endif |
126 |
|
127 |
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) { |
128 |
if (stuntdoubles_[j]->isRigidBody()) { |
129 |
RigidBody* rb = static_cast<RigidBody*>(stuntdoubles_[j]); |
130 |
rb->updateAtoms(); |
131 |
} |
132 |
} |
133 |
|
134 |
SelectionSet bsTemp(nObjects_); |
135 |
bsTemp = bs; |
136 |
bsTemp.parallelReduce(); |
137 |
|
138 |
for (int i = bsTemp.bitsets_[STUNTDOUBLE].firstOnBit(); i != -1; |
139 |
i = bsTemp.bitsets_[STUNTDOUBLE].nextOnBit(i)) { |
140 |
|
141 |
// Now, if we own stuntdouble i, we can use the position, but in |
142 |
// parallel, we'll need to let everyone else know what that |
143 |
// position is! |
144 |
|
145 |
#ifdef IS_MPI |
146 |
mol = info_->getGlobalMolMembership(i); |
147 |
proc = info_->getMolToProc(mol); |
148 |
|
149 |
if (proc == worldRank) { |
150 |
center = stuntdoubles_[i]; |
151 |
centerPos = center->getPos(); |
152 |
data[0] = centerPos.x(); |
153 |
data[1] = centerPos.y(); |
154 |
data[2] = centerPos.z(); |
155 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc, MPI_COMM_WORLD); |
156 |
} else { |
157 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc, MPI_COMM_WORLD); |
158 |
centerPos = Vector3d(data); |
159 |
} |
160 |
#else |
161 |
center = stuntdoubles_[i]; |
162 |
centerPos = center->getPos(); |
163 |
#endif |
164 |
|
165 |
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) { |
166 |
Vector3d r =centerPos - stuntdoubles_[j]->getPos(); |
167 |
currSnapshot->wrapVector(r); |
168 |
if (r.length() <= distance) { |
169 |
bsResult.bitsets_[STUNTDOUBLE].setBitOn(j); |
170 |
} |
171 |
} |
172 |
for (unsigned int j = 0; j < bonds_.size(); ++j) { |
173 |
Vector3d loc = bonds_[j]->getAtomA()->getPos(); |
174 |
loc += bonds_[j]->getAtomB()->getPos(); |
175 |
loc = loc / 2.0; |
176 |
Vector3d r = centerPos - loc; |
177 |
currSnapshot->wrapVector(r); |
178 |
if (r.length() <= distance) { |
179 |
bsResult.bitsets_[BOND].setBitOn(j); |
180 |
} |
181 |
} |
182 |
for (unsigned int j = 0; j < bends_.size(); ++j) { |
183 |
Vector3d loc = bends_[j]->getAtomA()->getPos(); |
184 |
loc += bends_[j]->getAtomB()->getPos(); |
185 |
loc += bends_[j]->getAtomC()->getPos(); |
186 |
loc = loc / 3.0; |
187 |
Vector3d r = centerPos - loc; |
188 |
currSnapshot->wrapVector(r); |
189 |
if (r.length() <= distance) { |
190 |
bsResult.bitsets_[BEND].setBitOn(j); |
191 |
} |
192 |
} |
193 |
for (unsigned int j = 0; j < torsions_.size(); ++j) { |
194 |
Vector3d loc = torsions_[j]->getAtomA()->getPos(); |
195 |
loc += torsions_[j]->getAtomB()->getPos(); |
196 |
loc += torsions_[j]->getAtomC()->getPos(); |
197 |
loc += torsions_[j]->getAtomD()->getPos(); |
198 |
loc = loc / 4.0; |
199 |
Vector3d r = centerPos - loc; |
200 |
currSnapshot->wrapVector(r); |
201 |
if (r.length() <= distance) { |
202 |
bsResult.bitsets_[TORSION].setBitOn(j); |
203 |
} |
204 |
} |
205 |
for (unsigned int j = 0; j < inversions_.size(); ++j) { |
206 |
Vector3d loc = inversions_[j]->getAtomA()->getPos(); |
207 |
loc += inversions_[j]->getAtomB()->getPos(); |
208 |
loc += inversions_[j]->getAtomC()->getPos(); |
209 |
loc += inversions_[j]->getAtomD()->getPos(); |
210 |
loc = loc / 4.0; |
211 |
Vector3d r = centerPos - loc; |
212 |
currSnapshot->wrapVector(r); |
213 |
if (r.length() <= distance) { |
214 |
bsResult.bitsets_[INVERSION].setBitOn(j); |
215 |
} |
216 |
} |
217 |
} |
218 |
return bsResult; |
219 |
} |
220 |
|
221 |
|
222 |
SelectionSet DistanceFinder::find(const SelectionSet& bs, RealType distance, int frame ) { |
223 |
StuntDouble * center; |
224 |
Vector3d centerPos; |
225 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getSnapshot(frame); |
226 |
SelectionSet bsResult(nObjects_); |
227 |
assert(bsResult.size() == bs.size()); |
228 |
|
229 |
#ifdef IS_MPI |
230 |
int mol; |
231 |
int proc; |
232 |
RealType data[3]; |
233 |
int worldRank; |
234 |
MPI_Comm_rank( MPI_COMM_WORLD, &worldRank); |
235 |
#endif |
236 |
|
237 |
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) { |
238 |
if (stuntdoubles_[j]->isRigidBody()) { |
239 |
RigidBody* rb = static_cast<RigidBody*>(stuntdoubles_[j]); |
240 |
rb->updateAtoms(frame); |
241 |
} |
242 |
} |
243 |
|
244 |
SelectionSet bsTemp(nObjects_); |
245 |
bsTemp = bs; |
246 |
bsTemp.parallelReduce(); |
247 |
|
248 |
for (int i = bsTemp.bitsets_[STUNTDOUBLE].firstOnBit(); i != -1; |
249 |
i = bsTemp.bitsets_[STUNTDOUBLE].nextOnBit(i)) { |
250 |
|
251 |
// Now, if we own stuntdouble i, we can use the position, but in |
252 |
// parallel, we'll need to let everyone else know what that |
253 |
// position is! |
254 |
|
255 |
#ifdef IS_MPI |
256 |
mol = info_->getGlobalMolMembership(i); |
257 |
proc = info_->getMolToProc(mol); |
258 |
|
259 |
if (proc == worldRank) { |
260 |
center = stuntdoubles_[i]; |
261 |
centerPos = center->getPos(frame); |
262 |
data[0] = centerPos.x(); |
263 |
data[1] = centerPos.y(); |
264 |
data[2] = centerPos.z(); |
265 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc, MPI_COMM_WORLD); |
266 |
} else { |
267 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc, MPI_COMM_WORLD); |
268 |
centerPos = Vector3d(data); |
269 |
} |
270 |
#else |
271 |
center = stuntdoubles_[i]; |
272 |
centerPos = center->getPos(frame); |
273 |
#endif |
274 |
for (unsigned int j = 0; j < stuntdoubles_.size(); ++j) { |
275 |
Vector3d r =centerPos - stuntdoubles_[j]->getPos(frame); |
276 |
currSnapshot->wrapVector(r); |
277 |
if (r.length() <= distance) { |
278 |
bsResult.bitsets_[STUNTDOUBLE].setBitOn(j); |
279 |
} |
280 |
} |
281 |
for (unsigned int j = 0; j < bonds_.size(); ++j) { |
282 |
Vector3d loc = bonds_[j]->getAtomA()->getPos(frame); |
283 |
loc += bonds_[j]->getAtomB()->getPos(frame); |
284 |
loc = loc / 2.0; |
285 |
Vector3d r = centerPos - loc; |
286 |
currSnapshot->wrapVector(r); |
287 |
if (r.length() <= distance) { |
288 |
bsResult.bitsets_[BOND].setBitOn(j); |
289 |
} |
290 |
} |
291 |
for (unsigned int j = 0; j < bends_.size(); ++j) { |
292 |
Vector3d loc = bends_[j]->getAtomA()->getPos(frame); |
293 |
loc += bends_[j]->getAtomB()->getPos(frame); |
294 |
loc += bends_[j]->getAtomC()->getPos(frame); |
295 |
loc = loc / 3.0; |
296 |
Vector3d r = centerPos - loc; |
297 |
currSnapshot->wrapVector(r); |
298 |
if (r.length() <= distance) { |
299 |
bsResult.bitsets_[BEND].setBitOn(j); |
300 |
} |
301 |
} |
302 |
for (unsigned int j = 0; j < torsions_.size(); ++j) { |
303 |
Vector3d loc = torsions_[j]->getAtomA()->getPos(frame); |
304 |
loc += torsions_[j]->getAtomB()->getPos(frame); |
305 |
loc += torsions_[j]->getAtomC()->getPos(frame); |
306 |
loc += torsions_[j]->getAtomD()->getPos(frame); |
307 |
loc = loc / 4.0; |
308 |
Vector3d r = centerPos - loc; |
309 |
currSnapshot->wrapVector(r); |
310 |
if (r.length() <= distance) { |
311 |
bsResult.bitsets_[TORSION].setBitOn(j); |
312 |
} |
313 |
} |
314 |
for (unsigned int j = 0; j < inversions_.size(); ++j) { |
315 |
Vector3d loc = inversions_[j]->getAtomA()->getPos(frame); |
316 |
loc += inversions_[j]->getAtomB()->getPos(frame); |
317 |
loc += inversions_[j]->getAtomC()->getPos(frame); |
318 |
loc += inversions_[j]->getAtomD()->getPos(frame); |
319 |
loc = loc / 4.0; |
320 |
Vector3d r = centerPos - loc; |
321 |
currSnapshot->wrapVector(r); |
322 |
if (r.length() <= distance) { |
323 |
bsResult.bitsets_[INVERSION].setBitOn(j); |
324 |
} |
325 |
} |
326 |
} |
327 |
return bsResult; |
328 |
} |
329 |
} |