| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 40 | */ | 
| 41 |  | 
| 42 | #include <cmath> | 
| 43 | #include "rnemd/RNEMD.hpp" | 
| 44 | #include "math/Vector3.hpp" | 
| 45 | #include "math/Vector.hpp" | 
| 46 | #include "math/SquareMatrix3.hpp" | 
| 47 | #include "math/Polynomial.hpp" | 
| 48 | #include "primitives/Molecule.hpp" | 
| 49 | #include "primitives/StuntDouble.hpp" | 
| 50 | #include "utils/PhysicalConstants.hpp" | 
| 51 | #include "utils/Tuple.hpp" | 
| 52 | #ifdef IS_MPI | 
| 53 | #include <mpi.h> | 
| 54 | #endif | 
| 55 |  | 
| 56 | #ifdef _MSC_VER | 
| 57 | #define isnan(x) _isnan((x)) | 
| 58 | #define isinf(x) (!_finite(x) && !_isnan(x)) | 
| 59 | #endif | 
| 60 |  | 
| 61 | #define HONKING_LARGE_VALUE 1.0e10 | 
| 62 |  | 
| 63 | using namespace std; | 
| 64 | namespace OpenMD { | 
| 65 |  | 
| 66 | RNEMD::RNEMD(SimInfo* info) : info_(info), evaluator_(info), seleMan_(info), | 
| 67 | usePeriodicBoundaryConditions_(info->getSimParams()->getUsePeriodicBoundaryConditions()) { | 
| 68 |  | 
| 69 | trialCount_ = 0; | 
| 70 | failTrialCount_ = 0; | 
| 71 | failRootCount_ = 0; | 
| 72 |  | 
| 73 | Globals * simParams = info->getSimParams(); | 
| 74 | RNEMDParameters* rnemdParams = simParams->getRNEMDParameters(); | 
| 75 |  | 
| 76 | doRNEMD_ = rnemdParams->getUseRNEMD(); | 
| 77 | if (!doRNEMD_) return; | 
| 78 |  | 
| 79 | stringToMethod_["Swap"]  = rnemdSwap; | 
| 80 | stringToMethod_["NIVS"]  = rnemdNIVS; | 
| 81 | stringToMethod_["VSS"]   = rnemdVSS; | 
| 82 |  | 
| 83 | stringToFluxType_["KE"]  = rnemdKE; | 
| 84 | stringToFluxType_["Px"]  = rnemdPx; | 
| 85 | stringToFluxType_["Py"]  = rnemdPy; | 
| 86 | stringToFluxType_["Pz"]  = rnemdPz; | 
| 87 | stringToFluxType_["Pvector"]  = rnemdPvector; | 
| 88 | stringToFluxType_["KE+Px"]  = rnemdKePx; | 
| 89 | stringToFluxType_["KE+Py"]  = rnemdKePy; | 
| 90 | stringToFluxType_["KE+Pvector"]  = rnemdKePvector; | 
| 91 |  | 
| 92 | runTime_ = simParams->getRunTime(); | 
| 93 | statusTime_ = simParams->getStatusTime(); | 
| 94 |  | 
| 95 | rnemdObjectSelection_ = rnemdParams->getObjectSelection(); | 
| 96 | evaluator_.loadScriptString(rnemdObjectSelection_); | 
| 97 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 98 |  | 
| 99 | const string methStr = rnemdParams->getMethod(); | 
| 100 | bool hasFluxType = rnemdParams->haveFluxType(); | 
| 101 |  | 
| 102 | string fluxStr; | 
| 103 | if (hasFluxType) { | 
| 104 | fluxStr = rnemdParams->getFluxType(); | 
| 105 | } else { | 
| 106 | sprintf(painCave.errMsg, | 
| 107 | "RNEMD: No fluxType was set in the md file.  This parameter,\n" | 
| 108 | "\twhich must be one of the following values:\n" | 
| 109 | "\tKE, Px, Py, Pz, Pvector, KE+Px, KE+Py, KE+Pvector\n" | 
| 110 | "\tmust be set to use RNEMD\n"); | 
| 111 | painCave.isFatal = 1; | 
| 112 | painCave.severity = OPENMD_ERROR; | 
| 113 | simError(); | 
| 114 | } | 
| 115 |  | 
| 116 | bool hasKineticFlux = rnemdParams->haveKineticFlux(); | 
| 117 | bool hasMomentumFlux = rnemdParams->haveMomentumFlux(); | 
| 118 | bool hasMomentumFluxVector = rnemdParams->haveMomentumFluxVector(); | 
| 119 | bool hasSlabWidth = rnemdParams->haveSlabWidth(); | 
| 120 | bool hasSlabACenter = rnemdParams->haveSlabACenter(); | 
| 121 | bool hasSlabBCenter = rnemdParams->haveSlabBCenter(); | 
| 122 | bool hasOutputFileName = rnemdParams->haveOutputFileName(); | 
| 123 | bool hasOutputFields = rnemdParams->haveOutputFields(); | 
| 124 |  | 
| 125 | map<string, RNEMDMethod>::iterator i; | 
| 126 | i = stringToMethod_.find(methStr); | 
| 127 | if (i != stringToMethod_.end()) | 
| 128 | rnemdMethod_ = i->second; | 
| 129 | else { | 
| 130 | sprintf(painCave.errMsg, | 
| 131 | "RNEMD: The current method,\n" | 
| 132 | "\t\t%s is not one of the recognized\n" | 
| 133 | "\texchange methods: Swap, NIVS, or VSS\n", | 
| 134 | methStr.c_str()); | 
| 135 | painCave.isFatal = 1; | 
| 136 | painCave.severity = OPENMD_ERROR; | 
| 137 | simError(); | 
| 138 | } | 
| 139 |  | 
| 140 | map<string, RNEMDFluxType>::iterator j; | 
| 141 | j = stringToFluxType_.find(fluxStr); | 
| 142 | if (j != stringToFluxType_.end()) | 
| 143 | rnemdFluxType_ = j->second; | 
| 144 | else { | 
| 145 | sprintf(painCave.errMsg, | 
| 146 | "RNEMD: The current fluxType,\n" | 
| 147 | "\t\t%s\n" | 
| 148 | "\tis not one of the recognized flux types.\n", | 
| 149 | fluxStr.c_str()); | 
| 150 | painCave.isFatal = 1; | 
| 151 | painCave.severity = OPENMD_ERROR; | 
| 152 | simError(); | 
| 153 | } | 
| 154 |  | 
| 155 | bool methodFluxMismatch = false; | 
| 156 | bool hasCorrectFlux = false; | 
| 157 | switch(rnemdMethod_) { | 
| 158 | case rnemdSwap: | 
| 159 | switch (rnemdFluxType_) { | 
| 160 | case rnemdKE: | 
| 161 | hasCorrectFlux = hasKineticFlux; | 
| 162 | break; | 
| 163 | case rnemdPx: | 
| 164 | case rnemdPy: | 
| 165 | case rnemdPz: | 
| 166 | hasCorrectFlux = hasMomentumFlux; | 
| 167 | break; | 
| 168 | default : | 
| 169 | methodFluxMismatch = true; | 
| 170 | break; | 
| 171 | } | 
| 172 | break; | 
| 173 | case rnemdNIVS: | 
| 174 | switch (rnemdFluxType_) { | 
| 175 | case rnemdKE: | 
| 176 | case rnemdRotKE: | 
| 177 | case rnemdFullKE: | 
| 178 | hasCorrectFlux = hasKineticFlux; | 
| 179 | break; | 
| 180 | case rnemdPx: | 
| 181 | case rnemdPy: | 
| 182 | case rnemdPz: | 
| 183 | hasCorrectFlux = hasMomentumFlux; | 
| 184 | break; | 
| 185 | case rnemdKePx: | 
| 186 | case rnemdKePy: | 
| 187 | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 188 | break; | 
| 189 | default: | 
| 190 | methodFluxMismatch = true; | 
| 191 | break; | 
| 192 | } | 
| 193 | break; | 
| 194 | case rnemdVSS: | 
| 195 | switch (rnemdFluxType_) { | 
| 196 | case rnemdKE: | 
| 197 | case rnemdRotKE: | 
| 198 | case rnemdFullKE: | 
| 199 | hasCorrectFlux = hasKineticFlux; | 
| 200 | break; | 
| 201 | case rnemdPx: | 
| 202 | case rnemdPy: | 
| 203 | case rnemdPz: | 
| 204 | hasCorrectFlux = hasMomentumFlux; | 
| 205 | break; | 
| 206 | case rnemdPvector: | 
| 207 | hasCorrectFlux = hasMomentumFluxVector; | 
| 208 | break; | 
| 209 | case rnemdKePx: | 
| 210 | case rnemdKePy: | 
| 211 | hasCorrectFlux = hasMomentumFlux && hasKineticFlux; | 
| 212 | break; | 
| 213 | case rnemdKePvector: | 
| 214 | hasCorrectFlux = hasMomentumFluxVector && hasKineticFlux; | 
| 215 | break; | 
| 216 | default: | 
| 217 | methodFluxMismatch = true; | 
| 218 | break; | 
| 219 | } | 
| 220 | default: | 
| 221 | break; | 
| 222 | } | 
| 223 |  | 
| 224 | if (methodFluxMismatch) { | 
| 225 | sprintf(painCave.errMsg, | 
| 226 | "RNEMD: The current method,\n" | 
| 227 | "\t\t%s\n" | 
| 228 | "\tcannot be used with the current flux type, %s\n", | 
| 229 | methStr.c_str(), fluxStr.c_str()); | 
| 230 | painCave.isFatal = 1; | 
| 231 | painCave.severity = OPENMD_ERROR; | 
| 232 | simError(); | 
| 233 | } | 
| 234 | if (!hasCorrectFlux) { | 
| 235 | sprintf(painCave.errMsg, | 
| 236 | "RNEMD: The current method, %s, and flux type, %s,\n" | 
| 237 | "\tdid not have the correct flux value specified. Options\n" | 
| 238 | "\tinclude: kineticFlux, momentumFlux, and momentumFluxVector\n", | 
| 239 | methStr.c_str(), fluxStr.c_str()); | 
| 240 | painCave.isFatal = 1; | 
| 241 | painCave.severity = OPENMD_ERROR; | 
| 242 | simError(); | 
| 243 | } | 
| 244 |  | 
| 245 | if (hasKineticFlux) { | 
| 246 | // convert the kcal / mol / Angstroms^2 / fs values in the md file | 
| 247 | // into  amu / fs^3: | 
| 248 | kineticFlux_ = rnemdParams->getKineticFlux() | 
| 249 | * PhysicalConstants::energyConvert; | 
| 250 | } else { | 
| 251 | kineticFlux_ = 0.0; | 
| 252 | } | 
| 253 | if (hasMomentumFluxVector) { | 
| 254 | momentumFluxVector_ = rnemdParams->getMomentumFluxVector(); | 
| 255 | } else { | 
| 256 | momentumFluxVector_ = V3Zero; | 
| 257 | if (hasMomentumFlux) { | 
| 258 | RealType momentumFlux = rnemdParams->getMomentumFlux(); | 
| 259 | switch (rnemdFluxType_) { | 
| 260 | case rnemdPx: | 
| 261 | momentumFluxVector_.x() = momentumFlux; | 
| 262 | break; | 
| 263 | case rnemdPy: | 
| 264 | momentumFluxVector_.y() = momentumFlux; | 
| 265 | break; | 
| 266 | case rnemdPz: | 
| 267 | momentumFluxVector_.z() = momentumFlux; | 
| 268 | break; | 
| 269 | case rnemdKePx: | 
| 270 | momentumFluxVector_.x() = momentumFlux; | 
| 271 | break; | 
| 272 | case rnemdKePy: | 
| 273 | momentumFluxVector_.y() = momentumFlux; | 
| 274 | break; | 
| 275 | default: | 
| 276 | break; | 
| 277 | } | 
| 278 | } | 
| 279 | } | 
| 280 |  | 
| 281 | // do some sanity checking | 
| 282 |  | 
| 283 | int selectionCount = seleMan_.getSelectionCount(); | 
| 284 | int nIntegrable = info->getNGlobalIntegrableObjects(); | 
| 285 |  | 
| 286 | if (selectionCount > nIntegrable) { | 
| 287 | sprintf(painCave.errMsg, | 
| 288 | "RNEMD: The current objectSelection,\n" | 
| 289 | "\t\t%s\n" | 
| 290 | "\thas resulted in %d selected objects.  However,\n" | 
| 291 | "\tthe total number of integrable objects in the system\n" | 
| 292 | "\tis only %d.  This is almost certainly not what you want\n" | 
| 293 | "\tto do.  A likely cause of this is forgetting the _RB_0\n" | 
| 294 | "\tselector in the selection script!\n", | 
| 295 | rnemdObjectSelection_.c_str(), | 
| 296 | selectionCount, nIntegrable); | 
| 297 | painCave.isFatal = 0; | 
| 298 | painCave.severity = OPENMD_WARNING; | 
| 299 | simError(); | 
| 300 | } | 
| 301 |  | 
| 302 | areaAccumulator_ = new Accumulator(); | 
| 303 |  | 
| 304 | nBins_ = rnemdParams->getOutputBins(); | 
| 305 |  | 
| 306 | data_.resize(RNEMD::ENDINDEX); | 
| 307 | OutputData z; | 
| 308 | z.units =  "Angstroms"; | 
| 309 | z.title =  "Z"; | 
| 310 | z.dataType = "RealType"; | 
| 311 | z.accumulator.reserve(nBins_); | 
| 312 | for (int i = 0; i < nBins_; i++) | 
| 313 | z.accumulator.push_back( new Accumulator() ); | 
| 314 | data_[Z] = z; | 
| 315 | outputMap_["Z"] =  Z; | 
| 316 |  | 
| 317 | OutputData temperature; | 
| 318 | temperature.units =  "K"; | 
| 319 | temperature.title =  "Temperature"; | 
| 320 | temperature.dataType = "RealType"; | 
| 321 | temperature.accumulator.reserve(nBins_); | 
| 322 | for (int i = 0; i < nBins_; i++) | 
| 323 | temperature.accumulator.push_back( new Accumulator() ); | 
| 324 | data_[TEMPERATURE] = temperature; | 
| 325 | outputMap_["TEMPERATURE"] =  TEMPERATURE; | 
| 326 |  | 
| 327 | OutputData velocity; | 
| 328 | velocity.units = "angstroms/fs"; | 
| 329 | velocity.title =  "Velocity"; | 
| 330 | velocity.dataType = "Vector3d"; | 
| 331 | velocity.accumulator.reserve(nBins_); | 
| 332 | for (int i = 0; i < nBins_; i++) | 
| 333 | velocity.accumulator.push_back( new VectorAccumulator() ); | 
| 334 | data_[VELOCITY] = velocity; | 
| 335 | outputMap_["VELOCITY"] = VELOCITY; | 
| 336 |  | 
| 337 | OutputData density; | 
| 338 | density.units =  "g cm^-3"; | 
| 339 | density.title =  "Density"; | 
| 340 | density.dataType = "RealType"; | 
| 341 | density.accumulator.reserve(nBins_); | 
| 342 | for (int i = 0; i < nBins_; i++) | 
| 343 | density.accumulator.push_back( new Accumulator() ); | 
| 344 | data_[DENSITY] = density; | 
| 345 | outputMap_["DENSITY"] =  DENSITY; | 
| 346 |  | 
| 347 | if (hasOutputFields) { | 
| 348 | parseOutputFileFormat(rnemdParams->getOutputFields()); | 
| 349 | } else { | 
| 350 | outputMask_.set(Z); | 
| 351 | switch (rnemdFluxType_) { | 
| 352 | case rnemdKE: | 
| 353 | case rnemdRotKE: | 
| 354 | case rnemdFullKE: | 
| 355 | outputMask_.set(TEMPERATURE); | 
| 356 | break; | 
| 357 | case rnemdPx: | 
| 358 | case rnemdPy: | 
| 359 | outputMask_.set(VELOCITY); | 
| 360 | break; | 
| 361 | case rnemdPz: | 
| 362 | case rnemdPvector: | 
| 363 | outputMask_.set(VELOCITY); | 
| 364 | outputMask_.set(DENSITY); | 
| 365 | break; | 
| 366 | case rnemdKePx: | 
| 367 | case rnemdKePy: | 
| 368 | outputMask_.set(TEMPERATURE); | 
| 369 | outputMask_.set(VELOCITY); | 
| 370 | break; | 
| 371 | case rnemdKePvector: | 
| 372 | outputMask_.set(TEMPERATURE); | 
| 373 | outputMask_.set(VELOCITY); | 
| 374 | outputMask_.set(DENSITY); | 
| 375 | break; | 
| 376 | default: | 
| 377 | break; | 
| 378 | } | 
| 379 | } | 
| 380 |  | 
| 381 | if (hasOutputFileName) { | 
| 382 | rnemdFileName_ = rnemdParams->getOutputFileName(); | 
| 383 | } else { | 
| 384 | rnemdFileName_ = getPrefix(info->getFinalConfigFileName()) + ".rnemd"; | 
| 385 | } | 
| 386 |  | 
| 387 | exchangeTime_ = rnemdParams->getExchangeTime(); | 
| 388 |  | 
| 389 | Snapshot* currentSnap_ = info->getSnapshotManager()->getCurrentSnapshot(); | 
| 390 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 391 |  | 
| 392 | // Target exchange quantities (in each exchange) =  2 Lx Ly dt flux | 
| 393 | // Lx, Ly = box dimensions in x & y | 
| 394 | // dt = exchange time interval | 
| 395 | // flux = target flux | 
| 396 |  | 
| 397 | RealType area = currentSnap_->getXYarea(); | 
| 398 | kineticTarget_ = 2.0 * kineticFlux_ * exchangeTime_ * area; | 
| 399 | momentumTarget_ = 2.0 * momentumFluxVector_ * exchangeTime_ * area; | 
| 400 |  | 
| 401 | // total exchange sums are zeroed out at the beginning: | 
| 402 |  | 
| 403 | kineticExchange_ = 0.0; | 
| 404 | momentumExchange_ = V3Zero; | 
| 405 |  | 
| 406 | if (hasSlabWidth) | 
| 407 | slabWidth_ = rnemdParams->getSlabWidth(); | 
| 408 | else | 
| 409 | slabWidth_ = hmat(2,2) / 10.0; | 
| 410 |  | 
| 411 | if (hasSlabACenter) | 
| 412 | slabACenter_ = rnemdParams->getSlabACenter(); | 
| 413 | else | 
| 414 | slabACenter_ = 0.0; | 
| 415 |  | 
| 416 | if (hasSlabBCenter) | 
| 417 | slabBCenter_ = rnemdParams->getSlabBCenter(); | 
| 418 | else | 
| 419 | slabBCenter_ = hmat(2,2) / 2.0; | 
| 420 |  | 
| 421 | } | 
| 422 |  | 
| 423 | RNEMD::~RNEMD() { | 
| 424 | if (!doRNEMD_) return; | 
| 425 | #ifdef IS_MPI | 
| 426 | if (worldRank == 0) { | 
| 427 | #endif | 
| 428 |  | 
| 429 | writeOutputFile(); | 
| 430 |  | 
| 431 | rnemdFile_.close(); | 
| 432 |  | 
| 433 | #ifdef IS_MPI | 
| 434 | } | 
| 435 | #endif | 
| 436 | } | 
| 437 |  | 
| 438 | bool RNEMD::inSlabA(Vector3d pos) { | 
| 439 | return (abs(pos.z() - slabACenter_) < 0.5*slabWidth_); | 
| 440 | } | 
| 441 | bool RNEMD::inSlabB(Vector3d pos) { | 
| 442 | return (abs(pos.z() - slabBCenter_) < 0.5*slabWidth_); | 
| 443 | } | 
| 444 |  | 
| 445 | void RNEMD::doSwap() { | 
| 446 | if (!doRNEMD_) return; | 
| 447 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 448 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 449 |  | 
| 450 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 451 |  | 
| 452 | int selei; | 
| 453 | StuntDouble* sd; | 
| 454 |  | 
| 455 | RealType min_val; | 
| 456 | bool min_found = false; | 
| 457 | StuntDouble* min_sd; | 
| 458 |  | 
| 459 | RealType max_val; | 
| 460 | bool max_found = false; | 
| 461 | StuntDouble* max_sd; | 
| 462 |  | 
| 463 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 464 | sd = seleMan_.nextSelected(selei)) { | 
| 465 |  | 
| 466 | Vector3d pos = sd->getPos(); | 
| 467 |  | 
| 468 | // wrap the stuntdouble's position back into the box: | 
| 469 |  | 
| 470 | if (usePeriodicBoundaryConditions_) | 
| 471 | currentSnap_->wrapVector(pos); | 
| 472 | bool inA = inSlabA(pos); | 
| 473 | bool inB = inSlabB(pos); | 
| 474 |  | 
| 475 | if (inA || inB) { | 
| 476 |  | 
| 477 | RealType mass = sd->getMass(); | 
| 478 | Vector3d vel = sd->getVel(); | 
| 479 | RealType value; | 
| 480 |  | 
| 481 | switch(rnemdFluxType_) { | 
| 482 | case rnemdKE : | 
| 483 |  | 
| 484 | value = mass * vel.lengthSquare(); | 
| 485 |  | 
| 486 | if (sd->isDirectional()) { | 
| 487 | Vector3d angMom = sd->getJ(); | 
| 488 | Mat3x3d I = sd->getI(); | 
| 489 |  | 
| 490 | if (sd->isLinear()) { | 
| 491 | int i = sd->linearAxis(); | 
| 492 | int j = (i + 1) % 3; | 
| 493 | int k = (i + 2) % 3; | 
| 494 | value += angMom[j] * angMom[j] / I(j, j) + | 
| 495 | angMom[k] * angMom[k] / I(k, k); | 
| 496 | } else { | 
| 497 | value += angMom[0]*angMom[0]/I(0, 0) | 
| 498 | + angMom[1]*angMom[1]/I(1, 1) | 
| 499 | + angMom[2]*angMom[2]/I(2, 2); | 
| 500 | } | 
| 501 | } //angular momenta exchange enabled | 
| 502 | value *= 0.5; | 
| 503 | break; | 
| 504 | case rnemdPx : | 
| 505 | value = mass * vel[0]; | 
| 506 | break; | 
| 507 | case rnemdPy : | 
| 508 | value = mass * vel[1]; | 
| 509 | break; | 
| 510 | case rnemdPz : | 
| 511 | value = mass * vel[2]; | 
| 512 | break; | 
| 513 | default : | 
| 514 | break; | 
| 515 | } | 
| 516 |  | 
| 517 | if (inA == 0) { | 
| 518 | if (!min_found) { | 
| 519 | min_val = value; | 
| 520 | min_sd = sd; | 
| 521 | min_found = true; | 
| 522 | } else { | 
| 523 | if (min_val > value) { | 
| 524 | min_val = value; | 
| 525 | min_sd = sd; | 
| 526 | } | 
| 527 | } | 
| 528 | } else { | 
| 529 | if (!max_found) { | 
| 530 | max_val = value; | 
| 531 | max_sd = sd; | 
| 532 | max_found = true; | 
| 533 | } else { | 
| 534 | if (max_val < value) { | 
| 535 | max_val = value; | 
| 536 | max_sd = sd; | 
| 537 | } | 
| 538 | } | 
| 539 | } | 
| 540 | } | 
| 541 | } | 
| 542 |  | 
| 543 | #ifdef IS_MPI | 
| 544 | int worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 545 |  | 
| 546 | bool my_min_found = min_found; | 
| 547 | bool my_max_found = max_found; | 
| 548 |  | 
| 549 | // Even if we didn't find a minimum, did someone else? | 
| 550 | MPI::COMM_WORLD.Allreduce(&my_min_found, &min_found, 1, MPI::BOOL, MPI::LOR); | 
| 551 | // Even if we didn't find a maximum, did someone else? | 
| 552 | MPI::COMM_WORLD.Allreduce(&my_max_found, &max_found, 1, MPI::BOOL, MPI::LOR); | 
| 553 | #endif | 
| 554 |  | 
| 555 | if (max_found && min_found) { | 
| 556 |  | 
| 557 | #ifdef IS_MPI | 
| 558 | struct { | 
| 559 | RealType val; | 
| 560 | int rank; | 
| 561 | } max_vals, min_vals; | 
| 562 |  | 
| 563 | if (my_min_found) { | 
| 564 | min_vals.val = min_val; | 
| 565 | } else { | 
| 566 | min_vals.val = HONKING_LARGE_VALUE; | 
| 567 | } | 
| 568 | min_vals.rank = worldRank; | 
| 569 |  | 
| 570 | // Who had the minimum? | 
| 571 | MPI::COMM_WORLD.Allreduce(&min_vals, &min_vals, | 
| 572 | 1, MPI::REALTYPE_INT, MPI::MINLOC); | 
| 573 | min_val = min_vals.val; | 
| 574 |  | 
| 575 | if (my_max_found) { | 
| 576 | max_vals.val = max_val; | 
| 577 | } else { | 
| 578 | max_vals.val = -HONKING_LARGE_VALUE; | 
| 579 | } | 
| 580 | max_vals.rank = worldRank; | 
| 581 |  | 
| 582 | // Who had the maximum? | 
| 583 | MPI::COMM_WORLD.Allreduce(&max_vals, &max_vals, | 
| 584 | 1, MPI::REALTYPE_INT, MPI::MAXLOC); | 
| 585 | max_val = max_vals.val; | 
| 586 | #endif | 
| 587 |  | 
| 588 | if (min_val < max_val) { | 
| 589 |  | 
| 590 | #ifdef IS_MPI | 
| 591 | if (max_vals.rank == worldRank && min_vals.rank == worldRank) { | 
| 592 | // I have both maximum and minimum, so proceed like a single | 
| 593 | // processor version: | 
| 594 | #endif | 
| 595 |  | 
| 596 | Vector3d min_vel = min_sd->getVel(); | 
| 597 | Vector3d max_vel = max_sd->getVel(); | 
| 598 | RealType temp_vel; | 
| 599 |  | 
| 600 | switch(rnemdFluxType_) { | 
| 601 | case rnemdKE : | 
| 602 | min_sd->setVel(max_vel); | 
| 603 | max_sd->setVel(min_vel); | 
| 604 | if (min_sd->isDirectional() && max_sd->isDirectional()) { | 
| 605 | Vector3d min_angMom = min_sd->getJ(); | 
| 606 | Vector3d max_angMom = max_sd->getJ(); | 
| 607 | min_sd->setJ(max_angMom); | 
| 608 | max_sd->setJ(min_angMom); | 
| 609 | }//angular momenta exchange enabled | 
| 610 | //assumes same rigid body identity | 
| 611 | break; | 
| 612 | case rnemdPx : | 
| 613 | temp_vel = min_vel.x(); | 
| 614 | min_vel.x() = max_vel.x(); | 
| 615 | max_vel.x() = temp_vel; | 
| 616 | min_sd->setVel(min_vel); | 
| 617 | max_sd->setVel(max_vel); | 
| 618 | break; | 
| 619 | case rnemdPy : | 
| 620 | temp_vel = min_vel.y(); | 
| 621 | min_vel.y() = max_vel.y(); | 
| 622 | max_vel.y() = temp_vel; | 
| 623 | min_sd->setVel(min_vel); | 
| 624 | max_sd->setVel(max_vel); | 
| 625 | break; | 
| 626 | case rnemdPz : | 
| 627 | temp_vel = min_vel.z(); | 
| 628 | min_vel.z() = max_vel.z(); | 
| 629 | max_vel.z() = temp_vel; | 
| 630 | min_sd->setVel(min_vel); | 
| 631 | max_sd->setVel(max_vel); | 
| 632 | break; | 
| 633 | default : | 
| 634 | break; | 
| 635 | } | 
| 636 |  | 
| 637 | #ifdef IS_MPI | 
| 638 | // the rest of the cases only apply in parallel simulations: | 
| 639 | } else if (max_vals.rank == worldRank) { | 
| 640 | // I had the max, but not the minimum | 
| 641 |  | 
| 642 | Vector3d min_vel; | 
| 643 | Vector3d max_vel = max_sd->getVel(); | 
| 644 | MPI::Status status; | 
| 645 |  | 
| 646 | // point-to-point swap of the velocity vector | 
| 647 | MPI::COMM_WORLD.Sendrecv(max_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 648 | min_vals.rank, 0, | 
| 649 | min_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 650 | min_vals.rank, 0, status); | 
| 651 |  | 
| 652 | switch(rnemdFluxType_) { | 
| 653 | case rnemdKE : | 
| 654 | max_sd->setVel(min_vel); | 
| 655 | //angular momenta exchange enabled | 
| 656 | if (max_sd->isDirectional()) { | 
| 657 | Vector3d min_angMom; | 
| 658 | Vector3d max_angMom = max_sd->getJ(); | 
| 659 |  | 
| 660 | // point-to-point swap of the angular momentum vector | 
| 661 | MPI::COMM_WORLD.Sendrecv(max_angMom.getArrayPointer(), 3, | 
| 662 | MPI::REALTYPE, min_vals.rank, 1, | 
| 663 | min_angMom.getArrayPointer(), 3, | 
| 664 | MPI::REALTYPE, min_vals.rank, 1, | 
| 665 | status); | 
| 666 |  | 
| 667 | max_sd->setJ(min_angMom); | 
| 668 | } | 
| 669 | break; | 
| 670 | case rnemdPx : | 
| 671 | max_vel.x() = min_vel.x(); | 
| 672 | max_sd->setVel(max_vel); | 
| 673 | break; | 
| 674 | case rnemdPy : | 
| 675 | max_vel.y() = min_vel.y(); | 
| 676 | max_sd->setVel(max_vel); | 
| 677 | break; | 
| 678 | case rnemdPz : | 
| 679 | max_vel.z() = min_vel.z(); | 
| 680 | max_sd->setVel(max_vel); | 
| 681 | break; | 
| 682 | default : | 
| 683 | break; | 
| 684 | } | 
| 685 | } else if (min_vals.rank == worldRank) { | 
| 686 | // I had the minimum but not the maximum: | 
| 687 |  | 
| 688 | Vector3d max_vel; | 
| 689 | Vector3d min_vel = min_sd->getVel(); | 
| 690 | MPI::Status status; | 
| 691 |  | 
| 692 | // point-to-point swap of the velocity vector | 
| 693 | MPI::COMM_WORLD.Sendrecv(min_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 694 | max_vals.rank, 0, | 
| 695 | max_vel.getArrayPointer(), 3, MPI::REALTYPE, | 
| 696 | max_vals.rank, 0, status); | 
| 697 |  | 
| 698 | switch(rnemdFluxType_) { | 
| 699 | case rnemdKE : | 
| 700 | min_sd->setVel(max_vel); | 
| 701 | //angular momenta exchange enabled | 
| 702 | if (min_sd->isDirectional()) { | 
| 703 | Vector3d min_angMom = min_sd->getJ(); | 
| 704 | Vector3d max_angMom; | 
| 705 |  | 
| 706 | // point-to-point swap of the angular momentum vector | 
| 707 | MPI::COMM_WORLD.Sendrecv(min_angMom.getArrayPointer(), 3, | 
| 708 | MPI::REALTYPE, max_vals.rank, 1, | 
| 709 | max_angMom.getArrayPointer(), 3, | 
| 710 | MPI::REALTYPE, max_vals.rank, 1, | 
| 711 | status); | 
| 712 |  | 
| 713 | min_sd->setJ(max_angMom); | 
| 714 | } | 
| 715 | break; | 
| 716 | case rnemdPx : | 
| 717 | min_vel.x() = max_vel.x(); | 
| 718 | min_sd->setVel(min_vel); | 
| 719 | break; | 
| 720 | case rnemdPy : | 
| 721 | min_vel.y() = max_vel.y(); | 
| 722 | min_sd->setVel(min_vel); | 
| 723 | break; | 
| 724 | case rnemdPz : | 
| 725 | min_vel.z() = max_vel.z(); | 
| 726 | min_sd->setVel(min_vel); | 
| 727 | break; | 
| 728 | default : | 
| 729 | break; | 
| 730 | } | 
| 731 | } | 
| 732 | #endif | 
| 733 |  | 
| 734 | switch(rnemdFluxType_) { | 
| 735 | case rnemdKE: | 
| 736 | kineticExchange_ += max_val - min_val; | 
| 737 | break; | 
| 738 | case rnemdPx: | 
| 739 | momentumExchange_.x() += max_val - min_val; | 
| 740 | break; | 
| 741 | case rnemdPy: | 
| 742 | momentumExchange_.y() += max_val - min_val; | 
| 743 | break; | 
| 744 | case rnemdPz: | 
| 745 | momentumExchange_.z() += max_val - min_val; | 
| 746 | break; | 
| 747 | default: | 
| 748 | break; | 
| 749 | } | 
| 750 | } else { | 
| 751 | sprintf(painCave.errMsg, | 
| 752 | "RNEMD::doSwap exchange NOT performed because min_val > max_val\n"); | 
| 753 | painCave.isFatal = 0; | 
| 754 | painCave.severity = OPENMD_INFO; | 
| 755 | simError(); | 
| 756 | failTrialCount_++; | 
| 757 | } | 
| 758 | } else { | 
| 759 | sprintf(painCave.errMsg, | 
| 760 | "RNEMD::doSwap exchange NOT performed because selected object\n" | 
| 761 | "\twas not present in at least one of the two slabs.\n"); | 
| 762 | painCave.isFatal = 0; | 
| 763 | painCave.severity = OPENMD_INFO; | 
| 764 | simError(); | 
| 765 | failTrialCount_++; | 
| 766 | } | 
| 767 | } | 
| 768 |  | 
| 769 | void RNEMD::doNIVS() { | 
| 770 | if (!doRNEMD_) return; | 
| 771 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 772 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 773 |  | 
| 774 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 775 |  | 
| 776 | int selei; | 
| 777 | StuntDouble* sd; | 
| 778 |  | 
| 779 | vector<StuntDouble*> hotBin, coldBin; | 
| 780 |  | 
| 781 | RealType Phx = 0.0; | 
| 782 | RealType Phy = 0.0; | 
| 783 | RealType Phz = 0.0; | 
| 784 | RealType Khx = 0.0; | 
| 785 | RealType Khy = 0.0; | 
| 786 | RealType Khz = 0.0; | 
| 787 | RealType Khw = 0.0; | 
| 788 | RealType Pcx = 0.0; | 
| 789 | RealType Pcy = 0.0; | 
| 790 | RealType Pcz = 0.0; | 
| 791 | RealType Kcx = 0.0; | 
| 792 | RealType Kcy = 0.0; | 
| 793 | RealType Kcz = 0.0; | 
| 794 | RealType Kcw = 0.0; | 
| 795 |  | 
| 796 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 797 | sd = seleMan_.nextSelected(selei)) { | 
| 798 |  | 
| 799 | Vector3d pos = sd->getPos(); | 
| 800 |  | 
| 801 | // wrap the stuntdouble's position back into the box: | 
| 802 |  | 
| 803 | if (usePeriodicBoundaryConditions_) | 
| 804 | currentSnap_->wrapVector(pos); | 
| 805 |  | 
| 806 | // which bin is this stuntdouble in? | 
| 807 | bool inA = inSlabA(pos); | 
| 808 | bool inB = inSlabB(pos); | 
| 809 |  | 
| 810 | if (inA || inB) { | 
| 811 |  | 
| 812 | RealType mass = sd->getMass(); | 
| 813 | Vector3d vel = sd->getVel(); | 
| 814 |  | 
| 815 | if (inA) { | 
| 816 | hotBin.push_back(sd); | 
| 817 | Phx += mass * vel.x(); | 
| 818 | Phy += mass * vel.y(); | 
| 819 | Phz += mass * vel.z(); | 
| 820 | Khx += mass * vel.x() * vel.x(); | 
| 821 | Khy += mass * vel.y() * vel.y(); | 
| 822 | Khz += mass * vel.z() * vel.z(); | 
| 823 | if (sd->isDirectional()) { | 
| 824 | Vector3d angMom = sd->getJ(); | 
| 825 | Mat3x3d I = sd->getI(); | 
| 826 | if (sd->isLinear()) { | 
| 827 | int i = sd->linearAxis(); | 
| 828 | int j = (i + 1) % 3; | 
| 829 | int k = (i + 2) % 3; | 
| 830 | Khw += angMom[j] * angMom[j] / I(j, j) + | 
| 831 | angMom[k] * angMom[k] / I(k, k); | 
| 832 | } else { | 
| 833 | Khw += angMom[0]*angMom[0]/I(0, 0) | 
| 834 | + angMom[1]*angMom[1]/I(1, 1) | 
| 835 | + angMom[2]*angMom[2]/I(2, 2); | 
| 836 | } | 
| 837 | } | 
| 838 | } else { | 
| 839 | coldBin.push_back(sd); | 
| 840 | Pcx += mass * vel.x(); | 
| 841 | Pcy += mass * vel.y(); | 
| 842 | Pcz += mass * vel.z(); | 
| 843 | Kcx += mass * vel.x() * vel.x(); | 
| 844 | Kcy += mass * vel.y() * vel.y(); | 
| 845 | Kcz += mass * vel.z() * vel.z(); | 
| 846 | if (sd->isDirectional()) { | 
| 847 | Vector3d angMom = sd->getJ(); | 
| 848 | Mat3x3d I = sd->getI(); | 
| 849 | if (sd->isLinear()) { | 
| 850 | int i = sd->linearAxis(); | 
| 851 | int j = (i + 1) % 3; | 
| 852 | int k = (i + 2) % 3; | 
| 853 | Kcw += angMom[j] * angMom[j] / I(j, j) + | 
| 854 | angMom[k] * angMom[k] / I(k, k); | 
| 855 | } else { | 
| 856 | Kcw += angMom[0]*angMom[0]/I(0, 0) | 
| 857 | + angMom[1]*angMom[1]/I(1, 1) | 
| 858 | + angMom[2]*angMom[2]/I(2, 2); | 
| 859 | } | 
| 860 | } | 
| 861 | } | 
| 862 | } | 
| 863 | } | 
| 864 |  | 
| 865 | Khx *= 0.5; | 
| 866 | Khy *= 0.5; | 
| 867 | Khz *= 0.5; | 
| 868 | Khw *= 0.5; | 
| 869 | Kcx *= 0.5; | 
| 870 | Kcy *= 0.5; | 
| 871 | Kcz *= 0.5; | 
| 872 | Kcw *= 0.5; | 
| 873 |  | 
| 874 | #ifdef IS_MPI | 
| 875 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phx, 1, MPI::REALTYPE, MPI::SUM); | 
| 876 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phy, 1, MPI::REALTYPE, MPI::SUM); | 
| 877 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Phz, 1, MPI::REALTYPE, MPI::SUM); | 
| 878 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcx, 1, MPI::REALTYPE, MPI::SUM); | 
| 879 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcy, 1, MPI::REALTYPE, MPI::SUM); | 
| 880 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pcz, 1, MPI::REALTYPE, MPI::SUM); | 
| 881 |  | 
| 882 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khx, 1, MPI::REALTYPE, MPI::SUM); | 
| 883 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khy, 1, MPI::REALTYPE, MPI::SUM); | 
| 884 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khz, 1, MPI::REALTYPE, MPI::SUM); | 
| 885 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Khw, 1, MPI::REALTYPE, MPI::SUM); | 
| 886 |  | 
| 887 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcx, 1, MPI::REALTYPE, MPI::SUM); | 
| 888 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcy, 1, MPI::REALTYPE, MPI::SUM); | 
| 889 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcz, 1, MPI::REALTYPE, MPI::SUM); | 
| 890 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kcw, 1, MPI::REALTYPE, MPI::SUM); | 
| 891 | #endif | 
| 892 |  | 
| 893 | //solve coldBin coeff's first | 
| 894 | RealType px = Pcx / Phx; | 
| 895 | RealType py = Pcy / Phy; | 
| 896 | RealType pz = Pcz / Phz; | 
| 897 | RealType c, x, y, z; | 
| 898 | bool successfulScale = false; | 
| 899 | if ((rnemdFluxType_ == rnemdFullKE) || | 
| 900 | (rnemdFluxType_ == rnemdRotKE)) { | 
| 901 | //may need sanity check Khw & Kcw > 0 | 
| 902 |  | 
| 903 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 904 | c = 1.0 - kineticTarget_ / (Kcx + Kcy + Kcz + Kcw); | 
| 905 | } else { | 
| 906 | c = 1.0 - kineticTarget_ / Kcw; | 
| 907 | } | 
| 908 |  | 
| 909 | if ((c > 0.81) && (c < 1.21)) {//restrict scaling coefficients | 
| 910 | c = sqrt(c); | 
| 911 | //std::cerr << "cold slab scaling coefficient: " << c << endl; | 
| 912 | //now convert to hotBin coefficient | 
| 913 | RealType w = 0.0; | 
| 914 | if (rnemdFluxType_ ==  rnemdFullKE) { | 
| 915 | x = 1.0 + px * (1.0 - c); | 
| 916 | y = 1.0 + py * (1.0 - c); | 
| 917 | z = 1.0 + pz * (1.0 - c); | 
| 918 | /* more complicated way | 
| 919 | w = 1.0 + (Kcw - Kcw * c * c - (c * c * (Kcx + Kcy + Kcz | 
| 920 | + Khx * px * px + Khy * py * py + Khz * pz * pz) | 
| 921 | - 2.0 * c * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py) | 
| 922 | + Khz * pz * (1.0 + pz)) + Khx * px * (2.0 + px) | 
| 923 | + Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) | 
| 924 | - Kcx - Kcy - Kcz)) / Khw; the following is simpler | 
| 925 | */ | 
| 926 | if ((fabs(x - 1.0) < 0.1) && (fabs(y - 1.0) < 0.1) && | 
| 927 | (fabs(z - 1.0) < 0.1)) { | 
| 928 | w = 1.0 + (kineticTarget_ | 
| 929 | + Khx * (1.0 - x * x) + Khy * (1.0 - y * y) | 
| 930 | + Khz * (1.0 - z * z)) / Khw; | 
| 931 | }//no need to calculate w if x, y or z is out of range | 
| 932 | } else { | 
| 933 | w = 1.0 + kineticTarget_ / Khw; | 
| 934 | } | 
| 935 | if ((w > 0.81) && (w < 1.21)) {//restrict scaling coefficients | 
| 936 | //if w is in the right range, so should be x, y, z. | 
| 937 | vector<StuntDouble*>::iterator sdi; | 
| 938 | Vector3d vel; | 
| 939 | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 940 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 941 | vel = (*sdi)->getVel() * c; | 
| 942 | (*sdi)->setVel(vel); | 
| 943 | } | 
| 944 | if ((*sdi)->isDirectional()) { | 
| 945 | Vector3d angMom = (*sdi)->getJ() * c; | 
| 946 | (*sdi)->setJ(angMom); | 
| 947 | } | 
| 948 | } | 
| 949 | w = sqrt(w); | 
| 950 | // std::cerr << "xh= " << x << "\tyh= " << y << "\tzh= " << z | 
| 951 | //           << "\twh= " << w << endl; | 
| 952 | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 953 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 954 | vel = (*sdi)->getVel(); | 
| 955 | vel.x() *= x; | 
| 956 | vel.y() *= y; | 
| 957 | vel.z() *= z; | 
| 958 | (*sdi)->setVel(vel); | 
| 959 | } | 
| 960 | if ((*sdi)->isDirectional()) { | 
| 961 | Vector3d angMom = (*sdi)->getJ() * w; | 
| 962 | (*sdi)->setJ(angMom); | 
| 963 | } | 
| 964 | } | 
| 965 | successfulScale = true; | 
| 966 | kineticExchange_ += kineticTarget_; | 
| 967 | } | 
| 968 | } | 
| 969 | } else { | 
| 970 | RealType a000, a110, c0, a001, a111, b01, b11, c1; | 
| 971 | switch(rnemdFluxType_) { | 
| 972 | case rnemdKE : | 
| 973 | /* used hotBin coeff's & only scale x & y dimensions | 
| 974 | RealType px = Phx / Pcx; | 
| 975 | RealType py = Phy / Pcy; | 
| 976 | a110 = Khy; | 
| 977 | c0 = - Khx - Khy - kineticTarget_; | 
| 978 | a000 = Khx; | 
| 979 | a111 = Kcy * py * py; | 
| 980 | b11 = -2.0 * Kcy * py * (1.0 + py); | 
| 981 | c1 = Kcy * py * (2.0 + py) + Kcx * px * ( 2.0 + px) + kineticTarget_; | 
| 982 | b01 = -2.0 * Kcx * px * (1.0 + px); | 
| 983 | a001 = Kcx * px * px; | 
| 984 | */ | 
| 985 | //scale all three dimensions, let c_x = c_y | 
| 986 | a000 = Kcx + Kcy; | 
| 987 | a110 = Kcz; | 
| 988 | c0 = kineticTarget_ - Kcx - Kcy - Kcz; | 
| 989 | a001 = Khx * px * px + Khy * py * py; | 
| 990 | a111 = Khz * pz * pz; | 
| 991 | b01 = -2.0 * (Khx * px * (1.0 + px) + Khy * py * (1.0 + py)); | 
| 992 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 993 | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) | 
| 994 | + Khz * pz * (2.0 + pz) - kineticTarget_; | 
| 995 | break; | 
| 996 | case rnemdPx : | 
| 997 | c = 1 - momentumTarget_.x() / Pcx; | 
| 998 | a000 = Kcy; | 
| 999 | a110 = Kcz; | 
| 1000 | c0 = Kcx * c * c - Kcx - Kcy - Kcz; | 
| 1001 | a001 = py * py * Khy; | 
| 1002 | a111 = pz * pz * Khz; | 
| 1003 | b01 = -2.0 * Khy * py * (1.0 + py); | 
| 1004 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 1005 | c1 = Khy * py * (2.0 + py) + Khz * pz * (2.0 + pz) | 
| 1006 | + Khx * (fastpow(c * px - px - 1.0, 2) - 1.0); | 
| 1007 | break; | 
| 1008 | case rnemdPy : | 
| 1009 | c = 1 - momentumTarget_.y() / Pcy; | 
| 1010 | a000 = Kcx; | 
| 1011 | a110 = Kcz; | 
| 1012 | c0 = Kcy * c * c - Kcx - Kcy - Kcz; | 
| 1013 | a001 = px * px * Khx; | 
| 1014 | a111 = pz * pz * Khz; | 
| 1015 | b01 = -2.0 * Khx * px * (1.0 + px); | 
| 1016 | b11 = -2.0 * Khz * pz * (1.0 + pz); | 
| 1017 | c1 = Khx * px * (2.0 + px) + Khz * pz * (2.0 + pz) | 
| 1018 | + Khy * (fastpow(c * py - py - 1.0, 2) - 1.0); | 
| 1019 | break; | 
| 1020 | case rnemdPz ://we don't really do this, do we? | 
| 1021 | c = 1 - momentumTarget_.z() / Pcz; | 
| 1022 | a000 = Kcx; | 
| 1023 | a110 = Kcy; | 
| 1024 | c0 = Kcz * c * c - Kcx - Kcy - Kcz; | 
| 1025 | a001 = px * px * Khx; | 
| 1026 | a111 = py * py * Khy; | 
| 1027 | b01 = -2.0 * Khx * px * (1.0 + px); | 
| 1028 | b11 = -2.0 * Khy * py * (1.0 + py); | 
| 1029 | c1 = Khx * px * (2.0 + px) + Khy * py * (2.0 + py) | 
| 1030 | + Khz * (fastpow(c * pz - pz - 1.0, 2) - 1.0); | 
| 1031 | break; | 
| 1032 | default : | 
| 1033 | break; | 
| 1034 | } | 
| 1035 |  | 
| 1036 | RealType v1 = a000 * a111 - a001 * a110; | 
| 1037 | RealType v2 = a000 * b01; | 
| 1038 | RealType v3 = a000 * b11; | 
| 1039 | RealType v4 = a000 * c1 - a001 * c0; | 
| 1040 | RealType v8 = a110 * b01; | 
| 1041 | RealType v10 = - b01 * c0; | 
| 1042 |  | 
| 1043 | RealType u0 = v2 * v10 - v4 * v4; | 
| 1044 | RealType u1 = -2.0 * v3 * v4; | 
| 1045 | RealType u2 = -v2 * v8 - v3 * v3 - 2.0 * v1 * v4; | 
| 1046 | RealType u3 = -2.0 * v1 * v3; | 
| 1047 | RealType u4 = - v1 * v1; | 
| 1048 | //rescale coefficients | 
| 1049 | RealType maxAbs = fabs(u0); | 
| 1050 | if (maxAbs < fabs(u1)) maxAbs = fabs(u1); | 
| 1051 | if (maxAbs < fabs(u2)) maxAbs = fabs(u2); | 
| 1052 | if (maxAbs < fabs(u3)) maxAbs = fabs(u3); | 
| 1053 | if (maxAbs < fabs(u4)) maxAbs = fabs(u4); | 
| 1054 | u0 /= maxAbs; | 
| 1055 | u1 /= maxAbs; | 
| 1056 | u2 /= maxAbs; | 
| 1057 | u3 /= maxAbs; | 
| 1058 | u4 /= maxAbs; | 
| 1059 | //max_element(start, end) is also available. | 
| 1060 | Polynomial<RealType> poly; //same as DoublePolynomial poly; | 
| 1061 | poly.setCoefficient(4, u4); | 
| 1062 | poly.setCoefficient(3, u3); | 
| 1063 | poly.setCoefficient(2, u2); | 
| 1064 | poly.setCoefficient(1, u1); | 
| 1065 | poly.setCoefficient(0, u0); | 
| 1066 | vector<RealType> realRoots = poly.FindRealRoots(); | 
| 1067 |  | 
| 1068 | vector<RealType>::iterator ri; | 
| 1069 | RealType r1, r2, alpha0; | 
| 1070 | vector<pair<RealType,RealType> > rps; | 
| 1071 | for (ri = realRoots.begin(); ri !=realRoots.end(); ri++) { | 
| 1072 | r2 = *ri; | 
| 1073 | //check if FindRealRoots() give the right answer | 
| 1074 | if ( fabs(u0 + r2 * (u1 + r2 * (u2 + r2 * (u3 + r2 * u4)))) > 1e-6 ) { | 
| 1075 | sprintf(painCave.errMsg, | 
| 1076 | "RNEMD Warning: polynomial solve seems to have an error!"); | 
| 1077 | painCave.isFatal = 0; | 
| 1078 | simError(); | 
| 1079 | failRootCount_++; | 
| 1080 | } | 
| 1081 | //might not be useful w/o rescaling coefficients | 
| 1082 | alpha0 = -c0 - a110 * r2 * r2; | 
| 1083 | if (alpha0 >= 0.0) { | 
| 1084 | r1 = sqrt(alpha0 / a000); | 
| 1085 | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) | 
| 1086 | < 1e-6) | 
| 1087 | { rps.push_back(make_pair(r1, r2)); } | 
| 1088 | if (r1 > 1e-6) { //r1 non-negative | 
| 1089 | r1 = -r1; | 
| 1090 | if (fabs(c1 + r1 * (b01 + r1 * a001) + r2 * (b11 + r2 * a111)) | 
| 1091 | < 1e-6) | 
| 1092 | { rps.push_back(make_pair(r1, r2)); } | 
| 1093 | } | 
| 1094 | } | 
| 1095 | } | 
| 1096 | // Consider combining together the solving pair part w/ the searching | 
| 1097 | // best solution part so that we don't need the pairs vector | 
| 1098 | if (!rps.empty()) { | 
| 1099 | RealType smallestDiff = HONKING_LARGE_VALUE; | 
| 1100 | RealType diff; | 
| 1101 | pair<RealType,RealType> bestPair = make_pair(1.0, 1.0); | 
| 1102 | vector<pair<RealType,RealType> >::iterator rpi; | 
| 1103 | for (rpi = rps.begin(); rpi != rps.end(); rpi++) { | 
| 1104 | r1 = (*rpi).first; | 
| 1105 | r2 = (*rpi).second; | 
| 1106 | switch(rnemdFluxType_) { | 
| 1107 | case rnemdKE : | 
| 1108 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1109 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2) | 
| 1110 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); | 
| 1111 | break; | 
| 1112 | case rnemdPx : | 
| 1113 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1114 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcy, 2); | 
| 1115 | break; | 
| 1116 | case rnemdPy : | 
| 1117 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1118 | + fastpow(r1 * r1 / r2 / r2 - Kcz/Kcx, 2); | 
| 1119 | break; | 
| 1120 | case rnemdPz : | 
| 1121 | diff = fastpow(1.0 - r1, 2) + fastpow(1.0 - r2, 2) | 
| 1122 | + fastpow(r1 * r1 / r2 / r2 - Kcy/Kcx, 2); | 
| 1123 | default : | 
| 1124 | break; | 
| 1125 | } | 
| 1126 | if (diff < smallestDiff) { | 
| 1127 | smallestDiff = diff; | 
| 1128 | bestPair = *rpi; | 
| 1129 | } | 
| 1130 | } | 
| 1131 | #ifdef IS_MPI | 
| 1132 | if (worldRank == 0) { | 
| 1133 | #endif | 
| 1134 | // sprintf(painCave.errMsg, | 
| 1135 | //         "RNEMD: roots r1= %lf\tr2 = %lf\n", | 
| 1136 | //         bestPair.first, bestPair.second); | 
| 1137 | // painCave.isFatal = 0; | 
| 1138 | // painCave.severity = OPENMD_INFO; | 
| 1139 | // simError(); | 
| 1140 | #ifdef IS_MPI | 
| 1141 | } | 
| 1142 | #endif | 
| 1143 |  | 
| 1144 | switch(rnemdFluxType_) { | 
| 1145 | case rnemdKE : | 
| 1146 | x = bestPair.first; | 
| 1147 | y = bestPair.first; | 
| 1148 | z = bestPair.second; | 
| 1149 | break; | 
| 1150 | case rnemdPx : | 
| 1151 | x = c; | 
| 1152 | y = bestPair.first; | 
| 1153 | z = bestPair.second; | 
| 1154 | break; | 
| 1155 | case rnemdPy : | 
| 1156 | x = bestPair.first; | 
| 1157 | y = c; | 
| 1158 | z = bestPair.second; | 
| 1159 | break; | 
| 1160 | case rnemdPz : | 
| 1161 | x = bestPair.first; | 
| 1162 | y = bestPair.second; | 
| 1163 | z = c; | 
| 1164 | break; | 
| 1165 | default : | 
| 1166 | break; | 
| 1167 | } | 
| 1168 | vector<StuntDouble*>::iterator sdi; | 
| 1169 | Vector3d vel; | 
| 1170 | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1171 | vel = (*sdi)->getVel(); | 
| 1172 | vel.x() *= x; | 
| 1173 | vel.y() *= y; | 
| 1174 | vel.z() *= z; | 
| 1175 | (*sdi)->setVel(vel); | 
| 1176 | } | 
| 1177 | //convert to hotBin coefficient | 
| 1178 | x = 1.0 + px * (1.0 - x); | 
| 1179 | y = 1.0 + py * (1.0 - y); | 
| 1180 | z = 1.0 + pz * (1.0 - z); | 
| 1181 | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1182 | vel = (*sdi)->getVel(); | 
| 1183 | vel.x() *= x; | 
| 1184 | vel.y() *= y; | 
| 1185 | vel.z() *= z; | 
| 1186 | (*sdi)->setVel(vel); | 
| 1187 | } | 
| 1188 | successfulScale = true; | 
| 1189 | switch(rnemdFluxType_) { | 
| 1190 | case rnemdKE : | 
| 1191 | kineticExchange_ += kineticTarget_; | 
| 1192 | break; | 
| 1193 | case rnemdPx : | 
| 1194 | case rnemdPy : | 
| 1195 | case rnemdPz : | 
| 1196 | momentumExchange_ += momentumTarget_; | 
| 1197 | break; | 
| 1198 | default : | 
| 1199 | break; | 
| 1200 | } | 
| 1201 | } | 
| 1202 | } | 
| 1203 | if (successfulScale != true) { | 
| 1204 | sprintf(painCave.errMsg, | 
| 1205 | "RNEMD::doNIVS exchange NOT performed - roots that solve\n" | 
| 1206 | "\tthe constraint equations may not exist or there may be\n" | 
| 1207 | "\tno selected objects in one or both slabs.\n"); | 
| 1208 | painCave.isFatal = 0; | 
| 1209 | painCave.severity = OPENMD_INFO; | 
| 1210 | simError(); | 
| 1211 | failTrialCount_++; | 
| 1212 | } | 
| 1213 | } | 
| 1214 |  | 
| 1215 | void RNEMD::doVSS() { | 
| 1216 | if (!doRNEMD_) return; | 
| 1217 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1218 | RealType time = currentSnap_->getTime(); | 
| 1219 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1220 |  | 
| 1221 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1222 |  | 
| 1223 | int selei; | 
| 1224 | StuntDouble* sd; | 
| 1225 |  | 
| 1226 | vector<StuntDouble*> hotBin, coldBin; | 
| 1227 |  | 
| 1228 | Vector3d Ph(V3Zero); | 
| 1229 | RealType Mh = 0.0; | 
| 1230 | RealType Kh = 0.0; | 
| 1231 | Vector3d Pc(V3Zero); | 
| 1232 | RealType Mc = 0.0; | 
| 1233 | RealType Kc = 0.0; | 
| 1234 |  | 
| 1235 |  | 
| 1236 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 1237 | sd = seleMan_.nextSelected(selei)) { | 
| 1238 |  | 
| 1239 | Vector3d pos = sd->getPos(); | 
| 1240 |  | 
| 1241 | // wrap the stuntdouble's position back into the box: | 
| 1242 |  | 
| 1243 | if (usePeriodicBoundaryConditions_) | 
| 1244 | currentSnap_->wrapVector(pos); | 
| 1245 |  | 
| 1246 | // which bin is this stuntdouble in? | 
| 1247 | bool inA = inSlabA(pos); | 
| 1248 | bool inB = inSlabB(pos); | 
| 1249 |  | 
| 1250 | if (inA || inB) { | 
| 1251 |  | 
| 1252 | RealType mass = sd->getMass(); | 
| 1253 | Vector3d vel = sd->getVel(); | 
| 1254 |  | 
| 1255 | if (inA) { | 
| 1256 | hotBin.push_back(sd); | 
| 1257 | //std::cerr << "before, velocity = " << vel << endl; | 
| 1258 | Ph += mass * vel; | 
| 1259 | //std::cerr << "after, velocity = " << vel << endl; | 
| 1260 | Mh += mass; | 
| 1261 | Kh += mass * vel.lengthSquare(); | 
| 1262 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1263 | if (sd->isDirectional()) { | 
| 1264 | Vector3d angMom = sd->getJ(); | 
| 1265 | Mat3x3d I = sd->getI(); | 
| 1266 | if (sd->isLinear()) { | 
| 1267 | int i = sd->linearAxis(); | 
| 1268 | int j = (i + 1) % 3; | 
| 1269 | int k = (i + 2) % 3; | 
| 1270 | Kh += angMom[j] * angMom[j] / I(j, j) + | 
| 1271 | angMom[k] * angMom[k] / I(k, k); | 
| 1272 | } else { | 
| 1273 | Kh += angMom[0] * angMom[0] / I(0, 0) + | 
| 1274 | angMom[1] * angMom[1] / I(1, 1) + | 
| 1275 | angMom[2] * angMom[2] / I(2, 2); | 
| 1276 | } | 
| 1277 | } | 
| 1278 | } | 
| 1279 | } else { //midBin_ | 
| 1280 | coldBin.push_back(sd); | 
| 1281 | Pc += mass * vel; | 
| 1282 | Mc += mass; | 
| 1283 | Kc += mass * vel.lengthSquare(); | 
| 1284 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1285 | if (sd->isDirectional()) { | 
| 1286 | Vector3d angMom = sd->getJ(); | 
| 1287 | Mat3x3d I = sd->getI(); | 
| 1288 | if (sd->isLinear()) { | 
| 1289 | int i = sd->linearAxis(); | 
| 1290 | int j = (i + 1) % 3; | 
| 1291 | int k = (i + 2) % 3; | 
| 1292 | Kc += angMom[j] * angMom[j] / I(j, j) + | 
| 1293 | angMom[k] * angMom[k] / I(k, k); | 
| 1294 | } else { | 
| 1295 | Kc += angMom[0] * angMom[0] / I(0, 0) + | 
| 1296 | angMom[1] * angMom[1] / I(1, 1) + | 
| 1297 | angMom[2] * angMom[2] / I(2, 2); | 
| 1298 | } | 
| 1299 | } | 
| 1300 | } | 
| 1301 | } | 
| 1302 | } | 
| 1303 | } | 
| 1304 |  | 
| 1305 | Kh *= 0.5; | 
| 1306 | Kc *= 0.5; | 
| 1307 |  | 
| 1308 | // std::cerr << "Mh= " << Mh << "\tKh= " << Kh << "\tMc= " << Mc | 
| 1309 | //        << "\tKc= " << Kc << endl; | 
| 1310 | // std::cerr << "Ph= " << Ph << "\tPc= " << Pc << endl; | 
| 1311 |  | 
| 1312 | #ifdef IS_MPI | 
| 1313 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Ph[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1314 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Pc[0], 3, MPI::REALTYPE, MPI::SUM); | 
| 1315 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1316 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kh, 1, MPI::REALTYPE, MPI::SUM); | 
| 1317 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Mc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1318 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &Kc, 1, MPI::REALTYPE, MPI::SUM); | 
| 1319 | #endif | 
| 1320 |  | 
| 1321 | bool successfulExchange = false; | 
| 1322 | if ((Mh > 0.0) && (Mc > 0.0)) {//both slabs are not empty | 
| 1323 | Vector3d vc = Pc / Mc; | 
| 1324 | Vector3d ac = -momentumTarget_ / Mc + vc; | 
| 1325 | Vector3d acrec = -momentumTarget_ / Mc; | 
| 1326 | RealType cNumerator = Kc - kineticTarget_ - 0.5 * Mc * ac.lengthSquare(); | 
| 1327 | if (cNumerator > 0.0) { | 
| 1328 | RealType cDenominator = Kc - 0.5 * Mc * vc.lengthSquare(); | 
| 1329 | if (cDenominator > 0.0) { | 
| 1330 | RealType c = sqrt(cNumerator / cDenominator); | 
| 1331 | if ((c > 0.9) && (c < 1.1)) {//restrict scaling coefficients | 
| 1332 | Vector3d vh = Ph / Mh; | 
| 1333 | Vector3d ah = momentumTarget_ / Mh + vh; | 
| 1334 | Vector3d ahrec = momentumTarget_ / Mh; | 
| 1335 | RealType hNumerator = Kh + kineticTarget_ | 
| 1336 | - 0.5 * Mh * ah.lengthSquare(); | 
| 1337 | if (hNumerator > 0.0) { | 
| 1338 | RealType hDenominator = Kh - 0.5 * Mh * vh.lengthSquare(); | 
| 1339 | if (hDenominator > 0.0) { | 
| 1340 | RealType h = sqrt(hNumerator / hDenominator); | 
| 1341 | if ((h > 0.9) && (h < 1.1)) { | 
| 1342 | // std::cerr << "cold slab scaling coefficient: " << c << "\n"; | 
| 1343 | // std::cerr << "hot slab scaling coefficient: " << h <<  "\n"; | 
| 1344 | vector<StuntDouble*>::iterator sdi; | 
| 1345 | Vector3d vel; | 
| 1346 | for (sdi = coldBin.begin(); sdi != coldBin.end(); sdi++) { | 
| 1347 | //vel = (*sdi)->getVel(); | 
| 1348 | vel = ((*sdi)->getVel() - vc) * c + ac; | 
| 1349 | (*sdi)->setVel(vel); | 
| 1350 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1351 | if ((*sdi)->isDirectional()) { | 
| 1352 | Vector3d angMom = (*sdi)->getJ() * c; | 
| 1353 | (*sdi)->setJ(angMom); | 
| 1354 | } | 
| 1355 | } | 
| 1356 | } | 
| 1357 | for (sdi = hotBin.begin(); sdi != hotBin.end(); sdi++) { | 
| 1358 | //vel = (*sdi)->getVel(); | 
| 1359 | vel = ((*sdi)->getVel() - vh) * h + ah; | 
| 1360 | (*sdi)->setVel(vel); | 
| 1361 | if (rnemdFluxType_ == rnemdFullKE) { | 
| 1362 | if ((*sdi)->isDirectional()) { | 
| 1363 | Vector3d angMom = (*sdi)->getJ() * h; | 
| 1364 | (*sdi)->setJ(angMom); | 
| 1365 | } | 
| 1366 | } | 
| 1367 | } | 
| 1368 | successfulExchange = true; | 
| 1369 | kineticExchange_ += kineticTarget_; | 
| 1370 | momentumExchange_ += momentumTarget_; | 
| 1371 | } | 
| 1372 | } | 
| 1373 | } | 
| 1374 | } | 
| 1375 | } | 
| 1376 | } | 
| 1377 | } | 
| 1378 | if (successfulExchange != true) { | 
| 1379 | sprintf(painCave.errMsg, | 
| 1380 | "RNEMD::doVSS exchange NOT performed - roots that solve\n" | 
| 1381 | "\tthe constraint equations may not exist or there may be\n" | 
| 1382 | "\tno selected objects in one or both slabs.\n"); | 
| 1383 | painCave.isFatal = 0; | 
| 1384 | painCave.severity = OPENMD_INFO; | 
| 1385 | simError(); | 
| 1386 | failTrialCount_++; | 
| 1387 | } | 
| 1388 | } | 
| 1389 |  | 
| 1390 | void RNEMD::doRNEMD() { | 
| 1391 | if (!doRNEMD_) return; | 
| 1392 | trialCount_++; | 
| 1393 | switch(rnemdMethod_) { | 
| 1394 | case rnemdSwap: | 
| 1395 | doSwap(); | 
| 1396 | break; | 
| 1397 | case rnemdNIVS: | 
| 1398 | doNIVS(); | 
| 1399 | break; | 
| 1400 | case rnemdVSS: | 
| 1401 | doVSS(); | 
| 1402 | break; | 
| 1403 | case rnemdUnkownMethod: | 
| 1404 | default : | 
| 1405 | break; | 
| 1406 | } | 
| 1407 | } | 
| 1408 |  | 
| 1409 | void RNEMD::collectData() { | 
| 1410 | if (!doRNEMD_) return; | 
| 1411 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1412 | Mat3x3d hmat = currentSnap_->getHmat(); | 
| 1413 |  | 
| 1414 | areaAccumulator_->add(currentSnap_->getXYarea()); | 
| 1415 |  | 
| 1416 | seleMan_.setSelectionSet(evaluator_.evaluate()); | 
| 1417 |  | 
| 1418 | int selei; | 
| 1419 | StuntDouble* sd; | 
| 1420 |  | 
| 1421 | vector<RealType> binMass(nBins_, 0.0); | 
| 1422 | vector<RealType> binPx(nBins_, 0.0); | 
| 1423 | vector<RealType> binPy(nBins_, 0.0); | 
| 1424 | vector<RealType> binPz(nBins_, 0.0); | 
| 1425 | vector<RealType> binKE(nBins_, 0.0); | 
| 1426 | vector<int> binDOF(nBins_, 0); | 
| 1427 | vector<int> binCount(nBins_, 0); | 
| 1428 |  | 
| 1429 | // alternative approach, track all molecules instead of only those | 
| 1430 | // selected for scaling/swapping: | 
| 1431 | /* | 
| 1432 | SimInfo::MoleculeIterator miter; | 
| 1433 | vector<StuntDouble*>::iterator iiter; | 
| 1434 | Molecule* mol; | 
| 1435 | StuntDouble* sd; | 
| 1436 | for (mol = info_->beginMolecule(miter); mol != NULL; | 
| 1437 | mol = info_->nextMolecule(miter)) | 
| 1438 | sd is essentially sd | 
| 1439 | for (sd = mol->beginIntegrableObject(iiter); | 
| 1440 | sd != NULL; | 
| 1441 | sd = mol->nextIntegrableObject(iiter)) | 
| 1442 | */ | 
| 1443 | for (sd = seleMan_.beginSelected(selei); sd != NULL; | 
| 1444 | sd = seleMan_.nextSelected(selei)) { | 
| 1445 |  | 
| 1446 | Vector3d pos = sd->getPos(); | 
| 1447 |  | 
| 1448 | // wrap the stuntdouble's position back into the box: | 
| 1449 |  | 
| 1450 | if (usePeriodicBoundaryConditions_) | 
| 1451 | currentSnap_->wrapVector(pos); | 
| 1452 |  | 
| 1453 |  | 
| 1454 | // which bin is this stuntdouble in? | 
| 1455 | // wrapped positions are in the range [-0.5*hmat(2,2), +0.5*hmat(2,2)] | 
| 1456 | // Shift molecules by half a box to have bins start at 0 | 
| 1457 | // The modulo operator is used to wrap the case when we are | 
| 1458 | // beyond the end of the bins back to the beginning. | 
| 1459 | int binNo = int(nBins_ * (pos.z() / hmat(2,2) + 0.5)) % nBins_; | 
| 1460 |  | 
| 1461 | RealType mass = sd->getMass(); | 
| 1462 | Vector3d vel = sd->getVel(); | 
| 1463 |  | 
| 1464 | binCount[binNo]++; | 
| 1465 | binMass[binNo] += mass; | 
| 1466 | binPx[binNo] += mass*vel.x(); | 
| 1467 | binPy[binNo] += mass*vel.y(); | 
| 1468 | binPz[binNo] += mass*vel.z(); | 
| 1469 | binKE[binNo] += 0.5 * (mass * vel.lengthSquare()); | 
| 1470 | binDOF[binNo] += 3; | 
| 1471 |  | 
| 1472 | if (sd->isDirectional()) { | 
| 1473 | Vector3d angMom = sd->getJ(); | 
| 1474 | Mat3x3d I = sd->getI(); | 
| 1475 | if (sd->isLinear()) { | 
| 1476 | int i = sd->linearAxis(); | 
| 1477 | int j = (i + 1) % 3; | 
| 1478 | int k = (i + 2) % 3; | 
| 1479 | binKE[binNo] += 0.5 * (angMom[j] * angMom[j] / I(j, j) + | 
| 1480 | angMom[k] * angMom[k] / I(k, k)); | 
| 1481 | binDOF[binNo] += 2; | 
| 1482 | } else { | 
| 1483 | binKE[binNo] += 0.5 * (angMom[0] * angMom[0] / I(0, 0) + | 
| 1484 | angMom[1] * angMom[1] / I(1, 1) + | 
| 1485 | angMom[2] * angMom[2] / I(2, 2)); | 
| 1486 | binDOF[binNo] += 3; | 
| 1487 | } | 
| 1488 | } | 
| 1489 | } | 
| 1490 |  | 
| 1491 |  | 
| 1492 | #ifdef IS_MPI | 
| 1493 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binCount[0], | 
| 1494 | nBins_, MPI::INT, MPI::SUM); | 
| 1495 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binMass[0], | 
| 1496 | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1497 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPx[0], | 
| 1498 | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1499 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPy[0], | 
| 1500 | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1501 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binPz[0], | 
| 1502 | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1503 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binKE[0], | 
| 1504 | nBins_, MPI::REALTYPE, MPI::SUM); | 
| 1505 | MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &binDOF[0], | 
| 1506 | nBins_, MPI::INT, MPI::SUM); | 
| 1507 | #endif | 
| 1508 |  | 
| 1509 | Vector3d vel; | 
| 1510 | RealType den; | 
| 1511 | RealType temp; | 
| 1512 | RealType z; | 
| 1513 | for (int i = 0; i < nBins_; i++) { | 
| 1514 | z = (((RealType)i + 0.5) / (RealType)nBins_) * hmat(2,2); | 
| 1515 | vel.x() = binPx[i] / binMass[i]; | 
| 1516 | vel.y() = binPy[i] / binMass[i]; | 
| 1517 | vel.z() = binPz[i] / binMass[i]; | 
| 1518 |  | 
| 1519 | den = binMass[i] * nBins_ * PhysicalConstants::densityConvert | 
| 1520 | / currentSnap_->getVolume() ; | 
| 1521 |  | 
| 1522 | temp = 2.0 * binKE[i] / (binDOF[i] * PhysicalConstants::kb * | 
| 1523 | PhysicalConstants::energyConvert); | 
| 1524 |  | 
| 1525 | for (unsigned int j = 0; j < outputMask_.size(); ++j) { | 
| 1526 | if(outputMask_[j]) { | 
| 1527 | switch(j) { | 
| 1528 | case Z: | 
| 1529 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(z); | 
| 1530 | break; | 
| 1531 | case TEMPERATURE: | 
| 1532 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(temp); | 
| 1533 | break; | 
| 1534 | case VELOCITY: | 
| 1535 | dynamic_cast<VectorAccumulator *>(data_[j].accumulator[i])->add(vel); | 
| 1536 | break; | 
| 1537 | case DENSITY: | 
| 1538 | dynamic_cast<Accumulator *>(data_[j].accumulator[i])->add(den); | 
| 1539 | break; | 
| 1540 | } | 
| 1541 | } | 
| 1542 | } | 
| 1543 | } | 
| 1544 | } | 
| 1545 |  | 
| 1546 | void RNEMD::getStarted() { | 
| 1547 | if (!doRNEMD_) return; | 
| 1548 | collectData(); | 
| 1549 | writeOutputFile(); | 
| 1550 | } | 
| 1551 |  | 
| 1552 | void RNEMD::parseOutputFileFormat(const std::string& format) { | 
| 1553 | if (!doRNEMD_) return; | 
| 1554 | StringTokenizer tokenizer(format, " ,;|\t\n\r"); | 
| 1555 |  | 
| 1556 | while(tokenizer.hasMoreTokens()) { | 
| 1557 | std::string token(tokenizer.nextToken()); | 
| 1558 | toUpper(token); | 
| 1559 | OutputMapType::iterator i = outputMap_.find(token); | 
| 1560 | if (i != outputMap_.end()) { | 
| 1561 | outputMask_.set(i->second); | 
| 1562 | } else { | 
| 1563 | sprintf( painCave.errMsg, | 
| 1564 | "RNEMD::parseOutputFileFormat: %s is not a recognized\n" | 
| 1565 | "\toutputFileFormat keyword.\n", token.c_str() ); | 
| 1566 | painCave.isFatal = 0; | 
| 1567 | painCave.severity = OPENMD_ERROR; | 
| 1568 | simError(); | 
| 1569 | } | 
| 1570 | } | 
| 1571 | } | 
| 1572 |  | 
| 1573 | void RNEMD::writeOutputFile() { | 
| 1574 | if (!doRNEMD_) return; | 
| 1575 |  | 
| 1576 | #ifdef IS_MPI | 
| 1577 | // If we're the root node, should we print out the results | 
| 1578 | int worldRank = MPI::COMM_WORLD.Get_rank(); | 
| 1579 | if (worldRank == 0) { | 
| 1580 | #endif | 
| 1581 | rnemdFile_.open(rnemdFileName_.c_str(), std::ios::out | std::ios::trunc ); | 
| 1582 |  | 
| 1583 | if( !rnemdFile_ ){ | 
| 1584 | sprintf( painCave.errMsg, | 
| 1585 | "Could not open \"%s\" for RNEMD output.\n", | 
| 1586 | rnemdFileName_.c_str()); | 
| 1587 | painCave.isFatal = 1; | 
| 1588 | simError(); | 
| 1589 | } | 
| 1590 |  | 
| 1591 | Snapshot* currentSnap_ = info_->getSnapshotManager()->getCurrentSnapshot(); | 
| 1592 |  | 
| 1593 | RealType time = currentSnap_->getTime(); | 
| 1594 | RealType avgArea; | 
| 1595 | areaAccumulator_->getAverage(avgArea); | 
| 1596 | RealType Jz = kineticExchange_ / (2.0 * time * avgArea) | 
| 1597 | / PhysicalConstants::energyConvert; | 
| 1598 | Vector3d JzP = momentumExchange_ / (2.0 * time * avgArea); | 
| 1599 |  | 
| 1600 | rnemdFile_ << "#######################################################\n"; | 
| 1601 | rnemdFile_ << "# RNEMD {\n"; | 
| 1602 |  | 
| 1603 | map<string, RNEMDMethod>::iterator mi; | 
| 1604 | for(mi = stringToMethod_.begin(); mi != stringToMethod_.end(); ++mi) { | 
| 1605 | if ( (*mi).second == rnemdMethod_) | 
| 1606 | rnemdFile_ << "#    exchangeMethod  = \"" << (*mi).first << "\";\n"; | 
| 1607 | } | 
| 1608 | map<string, RNEMDFluxType>::iterator fi; | 
| 1609 | for(fi = stringToFluxType_.begin(); fi != stringToFluxType_.end(); ++fi) { | 
| 1610 | if ( (*fi).second == rnemdFluxType_) | 
| 1611 | rnemdFile_ << "#    fluxType  = \"" << (*fi).first << "\";\n"; | 
| 1612 | } | 
| 1613 |  | 
| 1614 | rnemdFile_ << "#    exchangeTime = " << exchangeTime_ << ";\n"; | 
| 1615 |  | 
| 1616 | rnemdFile_ << "#    objectSelection = \"" | 
| 1617 | << rnemdObjectSelection_ << "\";\n"; | 
| 1618 | rnemdFile_ << "#    slabWidth = " << slabWidth_ << ";\n"; | 
| 1619 | rnemdFile_ << "#    slabAcenter = " << slabACenter_ << ";\n"; | 
| 1620 | rnemdFile_ << "#    slabBcenter = " << slabBCenter_ << ";\n"; | 
| 1621 | rnemdFile_ << "# }\n"; | 
| 1622 | rnemdFile_ << "#######################################################\n"; | 
| 1623 | rnemdFile_ << "# RNEMD report:\n"; | 
| 1624 | rnemdFile_ << "#     running time = " << time << " fs\n"; | 
| 1625 | rnemdFile_ << "#     target flux:\n"; | 
| 1626 | rnemdFile_ << "#         kinetic = " | 
| 1627 | << kineticFlux_ / PhysicalConstants::energyConvert | 
| 1628 | << " (kcal/mol/A^2/fs)\n"; | 
| 1629 | rnemdFile_ << "#         momentum = " << momentumFluxVector_ | 
| 1630 | << " (amu/A/fs^2)\n"; | 
| 1631 | rnemdFile_ << "#     target one-time exchanges:\n"; | 
| 1632 | rnemdFile_ << "#         kinetic = " | 
| 1633 | << kineticTarget_ / PhysicalConstants::energyConvert | 
| 1634 | << " (kcal/mol)\n"; | 
| 1635 | rnemdFile_ << "#         momentum = " << momentumTarget_ | 
| 1636 | << " (amu*A/fs)\n"; | 
| 1637 | rnemdFile_ << "#     actual exchange totals:\n"; | 
| 1638 | rnemdFile_ << "#         kinetic = " | 
| 1639 | << kineticExchange_ / PhysicalConstants::energyConvert | 
| 1640 | << " (kcal/mol)\n"; | 
| 1641 | rnemdFile_ << "#         momentum = " << momentumExchange_ | 
| 1642 | << " (amu*A/fs)\n"; | 
| 1643 | rnemdFile_ << "#     actual flux:\n"; | 
| 1644 | rnemdFile_ << "#         kinetic = " << Jz | 
| 1645 | << " (kcal/mol/A^2/fs)\n"; | 
| 1646 | rnemdFile_ << "#         momentum = " << JzP | 
| 1647 | << " (amu/A/fs^2)\n"; | 
| 1648 | rnemdFile_ << "#     exchange statistics:\n"; | 
| 1649 | rnemdFile_ << "#         attempted = " << trialCount_ << "\n"; | 
| 1650 | rnemdFile_ << "#         failed = " << failTrialCount_ << "\n"; | 
| 1651 | if (rnemdMethod_ == rnemdNIVS) { | 
| 1652 | rnemdFile_ << "#         NIVS root-check errors = " | 
| 1653 | << failRootCount_ << "\n"; | 
| 1654 | } | 
| 1655 | rnemdFile_ << "#######################################################\n"; | 
| 1656 |  | 
| 1657 |  | 
| 1658 |  | 
| 1659 | //write title | 
| 1660 | rnemdFile_ << "#"; | 
| 1661 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 1662 | if (outputMask_[i]) { | 
| 1663 | rnemdFile_ << "\t" << data_[i].title << | 
| 1664 | "(" << data_[i].units << ")"; | 
| 1665 | // add some extra tabs for column alignment | 
| 1666 | if (data_[i].dataType == "Vector3d") rnemdFile_ << "\t\t"; | 
| 1667 | } | 
| 1668 | } | 
| 1669 | rnemdFile_ << std::endl; | 
| 1670 |  | 
| 1671 | rnemdFile_.precision(8); | 
| 1672 |  | 
| 1673 | for (int j = 0; j < nBins_; j++) { | 
| 1674 |  | 
| 1675 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 1676 | if (outputMask_[i]) { | 
| 1677 | if (data_[i].dataType == "RealType") | 
| 1678 | writeReal(i,j); | 
| 1679 | else if (data_[i].dataType == "Vector3d") | 
| 1680 | writeVector(i,j); | 
| 1681 | else { | 
| 1682 | sprintf( painCave.errMsg, | 
| 1683 | "RNEMD found an unknown data type for: %s ", | 
| 1684 | data_[i].title.c_str()); | 
| 1685 | painCave.isFatal = 1; | 
| 1686 | simError(); | 
| 1687 | } | 
| 1688 | } | 
| 1689 | } | 
| 1690 | rnemdFile_ << std::endl; | 
| 1691 |  | 
| 1692 | } | 
| 1693 |  | 
| 1694 | rnemdFile_ << "#######################################################\n"; | 
| 1695 | rnemdFile_ << "# Standard Deviations in those quantities follow:\n"; | 
| 1696 | rnemdFile_ << "#######################################################\n"; | 
| 1697 |  | 
| 1698 |  | 
| 1699 | for (int j = 0; j < nBins_; j++) { | 
| 1700 | rnemdFile_ << "#"; | 
| 1701 | for (unsigned int i = 0; i < outputMask_.size(); ++i) { | 
| 1702 | if (outputMask_[i]) { | 
| 1703 | if (data_[i].dataType == "RealType") | 
| 1704 | writeRealStdDev(i,j); | 
| 1705 | else if (data_[i].dataType == "Vector3d") | 
| 1706 | writeVectorStdDev(i,j); | 
| 1707 | else { | 
| 1708 | sprintf( painCave.errMsg, | 
| 1709 | "RNEMD found an unknown data type for: %s ", | 
| 1710 | data_[i].title.c_str()); | 
| 1711 | painCave.isFatal = 1; | 
| 1712 | simError(); | 
| 1713 | } | 
| 1714 | } | 
| 1715 | } | 
| 1716 | rnemdFile_ << std::endl; | 
| 1717 |  | 
| 1718 | } | 
| 1719 |  | 
| 1720 | rnemdFile_.flush(); | 
| 1721 | rnemdFile_.close(); | 
| 1722 |  | 
| 1723 | #ifdef IS_MPI | 
| 1724 | } | 
| 1725 | #endif | 
| 1726 |  | 
| 1727 | } | 
| 1728 |  | 
| 1729 | void RNEMD::writeReal(int index, unsigned int bin) { | 
| 1730 | if (!doRNEMD_) return; | 
| 1731 | assert(index >=0 && index < ENDINDEX); | 
| 1732 | assert(bin < nBins_); | 
| 1733 | RealType s; | 
| 1734 |  | 
| 1735 | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getAverage(s); | 
| 1736 |  | 
| 1737 | if (! isinf(s) && ! isnan(s)) { | 
| 1738 | rnemdFile_ << "\t" << s; | 
| 1739 | } else{ | 
| 1740 | sprintf( painCave.errMsg, | 
| 1741 | "RNEMD detected a numerical error writing: %s for bin %d", | 
| 1742 | data_[index].title.c_str(), bin); | 
| 1743 | painCave.isFatal = 1; | 
| 1744 | simError(); | 
| 1745 | } | 
| 1746 | } | 
| 1747 |  | 
| 1748 | void RNEMD::writeVector(int index, unsigned int bin) { | 
| 1749 | if (!doRNEMD_) return; | 
| 1750 | assert(index >=0 && index < ENDINDEX); | 
| 1751 | assert(bin < nBins_); | 
| 1752 | Vector3d s; | 
| 1753 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getAverage(s); | 
| 1754 | if (isinf(s[0]) || isnan(s[0]) || | 
| 1755 | isinf(s[1]) || isnan(s[1]) || | 
| 1756 | isinf(s[2]) || isnan(s[2]) ) { | 
| 1757 | sprintf( painCave.errMsg, | 
| 1758 | "RNEMD detected a numerical error writing: %s for bin %d", | 
| 1759 | data_[index].title.c_str(), bin); | 
| 1760 | painCave.isFatal = 1; | 
| 1761 | simError(); | 
| 1762 | } else { | 
| 1763 | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; | 
| 1764 | } | 
| 1765 | } | 
| 1766 |  | 
| 1767 | void RNEMD::writeRealStdDev(int index, unsigned int bin) { | 
| 1768 | if (!doRNEMD_) return; | 
| 1769 | assert(index >=0 && index < ENDINDEX); | 
| 1770 | assert(bin < nBins_); | 
| 1771 | RealType s; | 
| 1772 |  | 
| 1773 | dynamic_cast<Accumulator *>(data_[index].accumulator[bin])->getStdDev(s); | 
| 1774 |  | 
| 1775 | if (! isinf(s) && ! isnan(s)) { | 
| 1776 | rnemdFile_ << "\t" << s; | 
| 1777 | } else{ | 
| 1778 | sprintf( painCave.errMsg, | 
| 1779 | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", | 
| 1780 | data_[index].title.c_str(), bin); | 
| 1781 | painCave.isFatal = 1; | 
| 1782 | simError(); | 
| 1783 | } | 
| 1784 | } | 
| 1785 |  | 
| 1786 | void RNEMD::writeVectorStdDev(int index, unsigned int bin) { | 
| 1787 | if (!doRNEMD_) return; | 
| 1788 | assert(index >=0 && index < ENDINDEX); | 
| 1789 | assert(bin < nBins_); | 
| 1790 | Vector3d s; | 
| 1791 | dynamic_cast<VectorAccumulator*>(data_[index].accumulator[bin])->getStdDev(s); | 
| 1792 | if (isinf(s[0]) || isnan(s[0]) || | 
| 1793 | isinf(s[1]) || isnan(s[1]) || | 
| 1794 | isinf(s[2]) || isnan(s[2]) ) { | 
| 1795 | sprintf( painCave.errMsg, | 
| 1796 | "RNEMD detected a numerical error writing: %s std. dev. for bin %d", | 
| 1797 | data_[index].title.c_str(), bin); | 
| 1798 | painCave.isFatal = 1; | 
| 1799 | simError(); | 
| 1800 | } else { | 
| 1801 | rnemdFile_ << "\t" << s[0] << "\t" << s[1] << "\t" << s[2]; | 
| 1802 | } | 
| 1803 | } | 
| 1804 | } | 
| 1805 |  |